江苏省启东中学2017-2018学年高二上学期期末考试数学试题+Word版含答案

合集下载

江苏省南通市启东市2017-2018学年高二数学下学期期末考试试题(扫描版)

江苏省南通市启东市2017-2018学年高二数学下学期期末考试试题(扫描版)
(2)解法一:当b=0时,f(x)=lnx-ax,所以f′(x)= -a= .
10若a≤0,则f′(x)>0,所以f(x)在( ,+∞)上递增,所以f(x)>f( )=-1- ,
因为函数y=f(x)在( ,+∞)上没有零点,所以-1- ≥0,即a≤-e;
……………6分
20若a>0,由f′(x)=0,得x= .
10.2x-y+2=0(或y=2x+2);11.2;12.(0,+∞);13. ;14.4.
二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
甲、乙两个同学分别抛掷一枚质地均匀的骰子.
(1)求他们抛掷的骰子向上的点数之和是4的倍数的概率;
(2)求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率.
①当 ≤ 时,即a≥e时,f′(x)<0,f(x)在( ,+∞)上递减,
所以f(x)<f( )=-1- <0,符合题意,所以a≥e;……………8分
②当 > 时,即0<a<e时,若 <x< ,f′(x)<0,f(x)在( , )上递增;
若x> ,f′(x)>0,f(x)在( ,+∞)上递减,
所以f(x)在x= 处取得极大值,即为最大值,
即所求实数a的取值范围是a≤-e或a> .……………10分
(3)不妨设0<x1<x2,
由f(x1)=f(x2),得lnx1-ax1-b=lnx2-ax2-b,
因为a>0,所以 .……………12分
又因为 ,f′(x)在(0,+∞)上递减,且f′( )=0,
故要证 ,只要证 ,
只要证 ,只要证 ,
只要证 (*),……………14分
(3)当a>1时,若函数f(x)的定义域为A,求函数f(x)的值域.

江苏省启东中学2017-2018学年高二上学期第一次月考(10月)数学试题

江苏省启东中学2017-2018学年高二上学期第一次月考(10月)数学试题

江苏省启东中学2017~2018学年度第一学期第一次月考高二创新班数学试卷 2017.9.25一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题..纸.相应位置上...... 1.命题“x ∀∈R ,2x x -≤0”的否定是 .2.已知实数{0a ∈,1,2,3},且{0a ∉,1,2},则a 的值为 .3.函数()f x =的定义域为 .4.已知函数()f x 是二次函数且(0)2f =,(1)()1f x f x x +-=-,则函数()f x = .5.已知集合{|3}A x x =>,{|}B x x a =>,若“x A ∈”是“x B ∈的”必要不充分条件,则实数a的取值范围为 .6.从1,2,3,4,5这五个数中一次随机地抽取两个数,则其中一个数是另一个数的两倍的概率是 .7.设命题p :实数x 满足2430x x -+<;命题q :实数x 满足2260280x x x x ⎧--<⎪⎨+->⎪⎩ 若p q ∧为真,则实数x 的取值范围是 .8.矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ADE △内部的概率为 .9.随机变量X 的取值为0,1,2,若1(0)5P X ==,()1E X =,则()V X = . 10.若有一批产品共100件,其中有5件不合格品,随机取出10件产品,则不合格品数ξ的数学期望()E ξ= .11.设函数2222()x x f x x ⎧++⎪=⎨-⎪⎩ 若(())2f f a =,则a = . 12.已知集合{I =1,2,3,4,5,6,7},集合P m =,}k I ∈,则P 的元素个数为 .13.若函数2()(2)e e 1x x f x a x x =--+在区间(-∞,0]恒为非负,则实数a 的取值范围为 .14.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[M -,]M .例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:, , ,x ≤0, ,0x >.①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”;②若函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a ∈R )有最大值,则()f x B ∈. 其中的真命题的序号为 .二、解答题:本大题共6小题,共计90分,请在答题..纸.指定区域....内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同 .随机有放回地抽取3次,每次抽取1张,将抽取的卡片上数字依次记为a ,b ,c . ⑴求“抽取的卡片上的数字满足a b c +=”的概率;⑵求“抽取的卡片上的数字不完全相同”的概率.16.(小题满分14分)设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .命题p :若333a b c +=,则π2C <. ⑴写出命题p 的逆否命题,并判断其真假;⑵若命题p 为真,请证明;若为假,请说明理由.17.(本小题满分14分)已知关于x 的一元二次方程229640x ax b +-+=,a 、b ∈R .⑴若1a =,b 是从区间[0,2]内任取的一个数,求方程没有实数根.......的概率; ⑵若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求方程..有实数根....的 概率.18.(本小题满分16分)为拉动经济增长,某市决定新建一批重点工程,其中基础设施工程有6个项目,民生工程有4个项目,产业建设工程有2个项目.现在3名工人独立地从中任选一个项目参与建设,设每个工人选择任意一个项目的概率相同.⑴求他们选择的项目所属类别互不相同的概率;⑵记X 为3人中选择的项目属于基础设施工程或产业建设工程的人数,求X 的概率分布以及它的数学期望()E X 与标准差σ.19.(本小题满分16分)有人玩掷硬币走跳棋的游戏,已知棋盘上标有0站,1站,2站,…,99站,100站.一枚棋子开始时在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,则棋子前进1站;若掷出反面,则棋子前进2站,知道跳到99站(胜利)或100站(失败),游戏结束.设棋子跳到第n站的概率为n P .⑴求0P ,1P ,2P 的值;⑵求n P 与1n P -的关系式;(其中2≤n ≤99)⑶求99P 和100P .20.(本小题满分16分)对于定义域为I 的函数()y f x =,如果存在区间[m ,]n I ⊆,同时满足①()f x 在[m ,]n 内是单调函数;②当定义域为[m ,]n 时,()f x 的值域也是[m ,]n .则称[m ,]n 是函数()y f x =的“好区间”.已知函数3()f x x ax =-,其中a ∈R . ⑴若0a =,判断函数()f x 是否存在“好区间”,请说明理由;⑵若3a =,判断函数()f x 是否存在“好区间”,请说明理由; ⑶若函数()f x 存在“好区间”,试求实数a 的取值范围.。

江苏省-学年度第一学期期终考试高二数学试卷

江苏省-学年度第一学期期终考试高二数学试卷



y P
M
F1
O
F2
x
(第 14 题) 二、解答题:本大题共 6 小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出文字说
明、证明过程或演算步骤.
15.(本小题满分 14 分)
已知 z 为复数, z 2i 和 z 均为实数,其中 i 是虚数单位. 2i
(1)求复数 z 和 z ;
--
江苏省启东中学 2017-2018 学年度第一学期期终考试 高二数学试卷 2018.1.8
注意事项: 1.本试卷共 4 页,包括填空题(第 1 题~第 14 题)、解答题(第 15 题~第 20 题)两部分.
本试卷满分为160 分,考试时间为 120 分钟. 2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答.题.卡.上对应题目的
的方差是
▲.
▲.
5.抛物线 x2 =4 y 的焦点到准线的距离为


Read x If x≥0 y←2x+1
Then
Else y← 2-x2
End If
Print y
(第 3 题)
6.某校高一年级有学生 400 人,高二年级有学生 360 人,现采用分层抽样的方法从全校学生
中抽出 56 人,其中从高一年级学生中抽出 20 人,则从高二年级学生中抽取的人数为
(2)证明: 2 为无理数; (3)证明:1, 2 ,4 不可能为同一等差数列中的三项.
20.(本小题满分 16 分) 已知椭圆 C: x2 y2 1 左焦点 F,左顶点 A,椭圆上一点 B 满足BF⊥x轴,且点 B 16 12
在x轴下方,BA连线与左准线 l 交于点P,过点P任意引一直线与椭圆交于 C、D,

2017-2018学年江苏省南通市启东中学普通班高二(上)第一次月考数学试卷

2017-2018学年江苏省南通市启东中学普通班高二(上)第一次月考数学试卷

2017-2018学年江苏省南通市启东中学普通班高二(上)第一次月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知命题p:∀x∈R,sinx<1,则¬p为.2.(5分)已知双曲线(a>0,b>0)的离心率为,则C的渐近线方程为.3.(5分)过点P(3,4)与圆(x﹣2)2+(y﹣1)2=1相切的直线方程为.4.(5分)若函数f(x)=2x﹣(k2﹣3)•2﹣x,则k=2是函数f(x)为奇函数的条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)5.(5分)若椭圆+=1过点(﹣2,),则其焦距为.6.(5分)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为.7.(5分)已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;命题q:若•<0,则,夹角为钝角,在命题①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命题的是.(填序号)8.(5分)在平面直角坐标系xOy中,已知过原点O的动直线l与圆C:x2+y2﹣6x+5=0相交于不同的两点A,B,若点A恰好使线段OB的中点,则圆心C到直线l的距离为.9.(5分)若双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7:3的两段,则此双曲线的离心率为.10.(5分)若圆上一点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交的弦长为2,则圆的方程是.11.(5分)已知抛物线y2=8x的准线为l,点Q在圆C:x2+y2+2x﹣8y+13=0上,记抛物线上任意一点P到直线l的距离为d,则d+PQ的最小值为.12.(5分)如图所示,A,B是椭圆的两个顶点,C是AB的中点,F为椭圆的右焦点,OC的延长线交椭圆于点M,且|OF|=,若MF⊥OA,则椭圆的方程为.13.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.14.(5分)如图,已知过椭圆(a>b>0)的左顶点A(﹣a,0)作直线1交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且,则椭圆的离心率为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)设a为实数,给出命题p:关于x的不等式的解集为ϕ,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题p和q中有且仅有一个正确,求a的取值范围.16.(14分)抛物线顶点在原点,它的准线过双曲线﹣=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(,),求抛物线与双曲线方程.17.(14分)已知圆M:x2+y2﹣2x+a=0.(1)若a=﹣8,过点P(4,5)作圆M的切线,求该切线方程;(2)若AB为圆M的任意一条直径,且•=﹣6(其中O为坐标原点),求圆M的半径.18.(16分)已知椭圆,点P()在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.19.(16分)如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.(1)求椭圆C的标准方程;(2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.20.(16分)在平面直角坐标系xOy 中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,且A到右准线的距离为6,点P、Q是椭圆C上的两个动点.(1)求椭圆的标准方程;(2)如图,当P、O、Q共线时,直线PA,QA分别与y轴交于M,N两点,求证:•定值;(3)设直线AP,AQ的斜率分别为k1,k2,当k1•k2=﹣1时,证明直线PQ经过定点R.2017-2018学年江苏省南通市启东中学普通班高二(上)第一次月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知命题p:∀x∈R,sinx<1,则¬p为∃x∈R,sinx≥1.【分析】由已知中的原命题,结合全称命题否定的定义,可得答案.【解答】解:命题p:∀x∈R,sinx<1,则¬p为“∃x∈R,sinx≥1”,故答案为:∃x∈R,sinx≥1.【点评】本题考查的知识点是全称命题的否定,难度不大,属于基础题.2.(5分)已知双曲线(a>0,b>0)的离心率为,则C的渐近线方程为y=.【分析】由双曲线的离心率,利用题设条件,结合离心率的变形公式能求出的值,由此能求出双曲线的渐近线的方程.【解答】解:∵双曲线(a>0,b>0)的离心率为,∴===,∴1+=,∴=,解得,∴C的渐近线方程为y==.故答案为:y=.【点评】本题考查双曲线的渐近线方程的求法,是基础题,解题时要熟练掌握双曲线的简单性质.3.(5分)过点P(3,4)与圆(x﹣2)2+(y﹣1)2=1相切的直线方程为x=3或4x﹣3y=0.【分析】讨论切线的斜率不存在时,求出切线的方程;切线的斜率存在时,由圆心到切线的距离等于半径求出斜率,写出切线方程.【解答】解:当切线的斜率不存在时,切线的方程为x=3;当切线的斜率存在时,设切线的斜率为k,则切线的方程为y﹣4=k(x﹣3),即kx﹣y+4﹣3k=0,由圆心(2,1)到切线的距离等于半径,得=1,解得k=,此时切线的方程为4x﹣3y=0;综上,圆的切线方程为x=3或4x﹣3y=0.故答案为:x=3或4x﹣3y=0.【点评】本题主要考查了过圆外一点作圆的切线问题,一般是利用点到切线的距离d=r,求得切线方程.4.(5分)若函数f(x)=2x﹣(k2﹣3)•2﹣x,则k=2是函数f(x)为奇函数的充分不必要条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)【分析】根据奇函数的定义得到k2﹣3=1,解出k的值,从而得到答案.【解答】解:若函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数,则f(﹣x)=2﹣x﹣(k2﹣3)2x=(k2﹣3)2﹣x﹣2x,∴k2﹣3=1,解得:k=±2,∴k=2是函数f(x)为奇函数的充分不必要条件,故答案为:充分不必要.【点评】本题考察了充分必要条件,考察函数的奇偶性,是一道基础题.5.(5分)若椭圆+=1过点(﹣2,),则其焦距为4.【分析】先由条件把椭圆经过的点的坐标代入椭圆的方程,即可求出待定系数m,从而得到椭圆的标准方程,再根据椭圆的a,b,c之间的关系即可求出焦距2c.【解答】解:由题意知,把点(﹣2,)代入椭圆的方程可求得b2=4,故椭圆的方程为,∴a=4,b=2,c==2,则其焦距为4.故答案为4,【点评】本题考查用待定系数法求椭圆的标准方程,以及椭圆方程中a、b、c之间的关系.6.(5分)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为.【分析】设直线AB的倾斜角为θ,利用|AF|=3,可得点A到准线l:x=﹣1的距离为3,从而cosθ=,进而可求|BF|,|AB|,由此可求AOB的面积.【解答】解:设直线AB的倾斜角为θ(0<θ<π)及|BF|=m,∵|AF|=3,∴点A到准线l:x=﹣1的距离为3,∴2+3cosθ=3,即cosθ=,则sinθ=.∵m=2+mcos(π﹣θ)∴m=∴△AOB的面积为S===.故答案为:.【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定抛物线的弦长是解题的关键.7.(5分)已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;命题q:若•<0,则,夹角为钝角,在命题①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命题的是②③.(填序号)【分析】分别判断出命题p和q的真假,然后根据复合命题真假的定义分别进行判断.【解答】解:当a=1,b=4时,满足a+b>4,但a>2且b>2不成立,若a>2且b>2,则a+b>4成立,则“a+b>4”是“a>2且b>2”的必要不充分条件,故命题p为真命题;当和的夹角为π时,满足•<0,但,的夹角不是钝角,故命题q为假命题;则①p∧q是假命题;②¬p∨¬q为真命题;③p∨¬q为真命题;④¬p∨q为假命题;故真命题的是②③.【点评】本题考查复合命题的真假,先判断出命题p和q的真假为解题的关键.8.(5分)在平面直角坐标系xOy中,已知过原点O的动直线l与圆C:x2+y2﹣6x+5=0相交于不同的两点A,B,若点A恰好使线段OB的中点,则圆心C到直线l的距离为.【分析】化圆的一般式方程为标准方程,设出直线方程,和圆的方程联立,由已知可得A,B两点横坐标的关系,结合根与系数的关系列式求得直线的斜率,得到直线方程,由点到直线的距离公式得答案.【解答】解:由圆C:x2+y2﹣6x+5=0,得(x﹣3)2+y2=4,画出图形如图,设OB所在直线方程为y=kx,联立,得(1+k2)x2﹣6x+5=0.设A(x1,y1),B(x2,y2),则由题意可得:x2=2x1,∴,消去x1得:,∴k=.由对称性,不妨取k=,则直线方程为,即,则圆心C(3,0)到直线的距离为d=.故答案为:.【点评】本题考查直线与圆的位置关系,考查了一元二次方程根与系数的关系故选的运用,训练了点到直线的距离公式的用法,是中档题.9.(5分)若双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7:3的两段,则此双曲线的离心率为.【分析】利用线段F1F2被抛物线y2=2bx的焦点分成7:3的两段,确定a,c的关系,从而可求双曲线的离心率【解答】解:因为双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0),线段F1F2被抛物线y2=2bx的焦点(,0)分成7:3的两段,(+c):(c﹣)=7:3,∴5b=4c,∴25(c2﹣a2)=16c2,∴3c=5a,∴e==.故答案为:.【点评】本题考查双曲线的几何性质,主要是离心率的求法,考查学生的计算能力,属于基础题.10.(5分)若圆上一点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交的弦长为2,则圆的方程是(x﹣6)2+(y+3)2=52或(x ﹣14)2+(y+7)2=244.【分析】由圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,知圆心在直线x+2y=0上,设圆心为(2a,﹣a),则R2=(2a﹣2)2+(﹣a﹣3)2,由圆与直线x﹣y+1=0相交的弦长为2,知圆心到直线的距离d=,由此能求出圆的方程.【解答】解:∵圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,∴圆心在直线x+2y=0上.设圆心为(2a,﹣a),则r2=(2a﹣2)2+(﹣a﹣3)2,∵圆与直线x﹣y+1=0相交的弦长为2,∴圆心到直线的距离d=,∴,解得a=3或a=7.∴圆的方程为(x﹣6)2+(y+3)2=52或(x﹣14)2+(y+7)2=244.故答案为:(x﹣6)2+(y+3)2=52或(x﹣14)2+(y+7)2=244.【点评】本题考查对称点的坐标的求法,圆的标准方程的求法,考查计算能力,是中档题.11.(5分)已知抛物线y2=8x的准线为l,点Q在圆C:x2+y2+2x﹣8y+13=0上,记抛物线上任意一点P到直线l的距离为d,则d+PQ的最小值为3.【分析】圆C:x2+y2+2x﹣8y+13=0,以C(﹣1,4)为圆心,半径等于2,抛物线y2=8x的准线为l:x=﹣2,焦点为F(2,0),当P,Q,F三点共线时,P到点Q的距离d与点P到抛物线的焦点距离|PQ|之和最小,从而d+|PQ|的最小值为|FC|﹣r.【解答】解:圆C:x2+y2+2x﹣8y+13=0,即(x+1)2+(y﹣4)2=4,表示以C(﹣1,4)为圆心,半径等于2的圆.抛物线y2=8x的准线为l:x=﹣2,焦点为F(2,0),根据抛物线的定义可知点P到准线的距离等于点P到焦点F的距离,进而推断出当P,Q,F三点共线时,P到点Q的距离d与点P到抛物线的焦点距离|PQ|之和最小,∴d+|PQ|的最小值为:|FC|﹣r=﹣2=3.故答案为:3.【点评】本题考查线段和的最小值的求法,是中档题,解题时要认真审题,注意抛物线性质的合理运用.12.(5分)如图所示,A,B是椭圆的两个顶点,C是AB的中点,F为椭圆的右焦点,OC的延长线交椭圆于点M,且|OF|=,若MF⊥OA,则椭圆的方程为.【分析】设出椭圆方程,利用AB为椭圆的两个顶点,C是AB的中点,OC交椭圆于点M,MF⊥OA,求出M、C的坐标,利用OM的斜率=OC的斜率,即可求得结论.【解答】解:∵F为椭圆的右焦点,|OF|=,∴c=.设椭圆方程为(b>0),∵AB为椭圆的两个顶点,C是AB的中点,OC交椭圆于点M,MF⊥OA,∴A是长轴右端点,∴,∴M()∵A(),B(0,b)∴C()∵OM的斜率=OC的斜率,∴∴b=,∴所求椭圆方程是.故答案为.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,考查学生的计算能力,属于中档题.13.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.【分析】由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.【解答】解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.【点评】本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.14.(5分)如图,已知过椭圆(a>b>0)的左顶点A(﹣a,0)作直线1交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且,则椭圆的离心率为.【分析】利用等腰三角形的性质和向量相等运算即可得出点Q的坐标,再代入椭圆方程即可.【解答】解:∵△AOP是等腰三角形,A(﹣a,0)∴P(0,a).设Q(x0,y0),∵,∴(x0,y0﹣a)=2(﹣a﹣x0,﹣y0).∴,解得.代入椭圆方程得,化为.∴=.故答案为.【点评】熟练掌握等腰三角形的性质和向量相等运算、“代点法”等是解题的关键.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)设a为实数,给出命题p:关于x的不等式的解集为ϕ,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题p和q中有且仅有一个正确,求a的取值范围.【分析】若p正确,求得a>1;②若q正确,求得.根据p和q中有且仅有一个正确,故有或,解不等式组,求得a的取值范围.【解答】解:①若p正确,则由题意可得≤1 恒成立,即的最大值为1,可得a>1.(4分)②若q正确,则解集为R,(6分)当a=0时,的解集不是R,不合题意,舍去;当a≠0时,则由解得.(10分)③∵p和q中有且仅有一个正确,∴,或,∴a≥8,或.故a的取值范围为[8,+∞)∪(,1].(14分)【点评】本题主要考查对数函数、指数函数的单调性和特殊点,复合命题的真假,属于基础题.16.(14分)抛物线顶点在原点,它的准线过双曲线﹣=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(,),求抛物线与双曲线方程.【分析】首先根据抛物线的准线过双曲线的焦点,可得p=2c,再利用抛物线与双曲线同过交点(,),求出c、p的值,进而结合双曲线的性质a2+b2=c2,求解即可.【解答】解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4c•x,∵抛物线过点(,),∴6=4c•.∴c=1,故抛物线方程为y2=4x.又双曲线﹣=1过点(,),∴﹣=1.又a2+b2=c2=1,∴﹣=1.∴a2=或a2=9(舍).∴b2=,故双曲线方程为:4x2﹣=1.【点评】本题考查了抛物线和双曲线方程的求法:待定系数法,熟练掌握圆锥曲线的性质是解题的关键,同时考查了学生的基本运算能力与运算技巧.17.(14分)已知圆M:x2+y2﹣2x+a=0.(1)若a=﹣8,过点P(4,5)作圆M的切线,求该切线方程;(2)若AB为圆M的任意一条直径,且•=﹣6(其中O为坐标原点),求圆M的半径.【分析】(1)分类讨论:当切线的斜率存在时,设切线的方程为l:y﹣5=k(x ﹣4),利用直线与圆相切的性质即可得出.斜率不存在时直接得出即可.(2)•=(+)•(+),即可得出结论.【解答】解:(1)若a=﹣8,圆M:x2+y2﹣2x+a=0即(x﹣1)2+y2=9,圆心(1,0),半径为3,斜率不存在时,x=4,满足题意;斜率存在时,切线l的斜率为k,则l:y﹣5=k(x﹣4),即l:kx﹣y﹣4k+5=0 由=3,解得k=,∴l:8x﹣15y+43=0,综上所述切线方程为x=4或8x﹣15y+43=0;(2)•=(+)•(+)=1﹣(1﹣a)=﹣6,∴a=﹣6,∴圆M的半径==.【点评】本题考查了二次方程与圆的方程之间的关系、直线与圆相切的性质、点到直线的距离公式,考查了向量的数量积公式,属于中档题.18.(16分)已知椭圆,点P()在椭圆上.(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.【分析】(1)根据点P()在椭圆上,可得,由此可求椭圆的离心率;(2)设直线OQ的斜率为k,则其方程为y=kx,设点Q的坐标为(x0,y0),与椭圆方程联立,,根据|AQ|=|AO|,A(﹣a,0),y0=kx0,可求,由此可求直线OQ的斜率的值.【解答】解:(1)因为点P()在椭圆上,所以∴∴∴(2)设直线OQ的斜率为,则其方程为y=kx设点Q的坐标为(x0,y0),由条件得,消元并整理可得①∵|AQ|=|AO|,A(﹣a,0),y0=kx0,∴∴∵x0≠0,∴代入①,整理得∵∴+4,∴5k4﹣22k2﹣15=0∴k2=5∴【点评】本题考查椭圆的离心率,考查直线与椭圆的位置关系,联立方程组是关键.19.(16分)如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.(1)求椭圆C的标准方程;(2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.【分析】(1)设椭圆C的标准方程是,由题意知,由此能够求出椭圆C的方程.(2)由(1)知,F(2,0),由题意设P(4,t),t>0,线段OF的垂直平分线方程为x=1,因为线段FP的中心为(3,),斜率为.所以线段FP的垂直平分线方程为,由此入手能够求出圆M的方程.【解答】解:(1)由题意,设椭圆C的标准方程是,则,解得,∴所求椭圆C的方程为.(2)由(1)知,F(2,0),由题意设P(4,t),t>0,线段OF的垂直平分线方程为x=1,①因为线段FP的中心为(3,),斜率为.所以线段FP的垂直平分线方程为,即y=﹣++,②联立①②,解得,即:圆心M(1,),∵t>0,∴=,当且仅当,即t=2时,圆心M到x轴的距离最小,此时圆心为M(1,),半径为OM=3,故所求圆M的方程为(x﹣1)2+(y﹣2)2=9.【点评】本题考查椭圆标准方程的求法和求当圆心M到x轴的距离最小时圆M 的方程.考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.20.(16分)在平面直角坐标系xOy 中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,且A到右准线的距离为6,点P、Q是椭圆C上的两个动点.(1)求椭圆的标准方程;(2)如图,当P、O、Q共线时,直线PA,QA分别与y轴交于M,N两点,求证:•定值;(3)设直线AP,AQ的斜率分别为k1,k2,当k1•k2=﹣1时,证明直线PQ经过定点R.【分析】(1)由椭圆的离心率为,且A到右准线的距离为6,列方程求解得a=2,c=1,由此能求出椭圆的标准方程;(2)设P(x0,y0),则Q(﹣x0,﹣y0),又A(﹣2,0),求出直线AP的方程得到M点的坐标,再求出,同理可得,进一步求出•=4+,结合点P在椭圆C上,故,即可证得结论;(3)设P(x1,y1),Q(x2,y2),将直线AP的方程y=k1(x+2)与椭圆方程联立得:,即(3+4k12)x2+16k12x+16k12﹣12=0,求出P点的坐标,由k1•k2=﹣1即可求出Q点的坐标,然后分类讨论即可得结论.【解答】(1)解:由题意,且,解得a=2,c=1.∴b=.∴椭圆的标准方程为.(2)证明:设P(x0,y0),则Q(﹣x0,﹣y0),又A(﹣2,0),∴直线AP的方程为y=(x+2),得M(0,),∴=(2,).同理可得N(0,),=(2,),∴•=4+.又点P在椭圆C上,故,即,∴•=4+=1(定值);(3)证明:设P(x1,y1),Q(x2,y2),将直线AP的方程y=k1(x+2)与椭圆方程联立得:,即(3+4k12)x2+16k12x+16k12﹣12=0.∴﹣2+x1=,x1=,y1=,∴P(,).∵k1•k2=﹣1,∴Q(,).当时,点P和点Q的横坐标相同,直线PQ的方程为x=﹣,由此可见,如果直线PQ经过定点R,则点R的横坐标一定为﹣.当时,,直线PQ的方程为y﹣=(x﹣),令x=﹣得:=0.∴直线PQ过定点R(﹣,0).【点评】本题考查椭圆方程的求法,考查两数值是否为定值的判断与求法,考查运算能力,解题时要认真审题,注意直线与椭圆性质的合理运用,是难题.。

2017-2018学年江苏省南通市启东中学高二上学期期中数学试卷与解析

2017-2018学年江苏省南通市启东中学高二上学期期中数学试卷与解析

2017-2018学年江苏省南通市启东中学高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题:∀x∈R,sinx≤1的否定为.2.(5分)抛物线x2=2y的准线方程为.3.(5分)已知复数z满足(z﹣2)(1﹣i)=1+i(i为虚数单位),则复数z的模是.4.(5分)已知p:x>2,q:x≥1,则p是q的条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为.6.(5分)已知点A(﹣1,0),B(5,0),C(1,4),则△ABC的外接圆的方程为.7.(5分)设A,F是椭圆+=1(a>b>0)的上顶点和右焦点,AF的延长线交椭圆右准线于点B,若=λ,则λ的值为.8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.9.(5分)已知点P是直线y=x上一个动点,过点P作圆(x+2)2+(y﹣2)2=1的切线,切点为T,则线段PT长度的最小值为.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为.12.(5分)“求1+q+q2+q3+…(0<q<1)的值时,采用了如下的方式:令1+q+q2+q3+…=x,则有x=1+q(1+q+q2+…)=1+q•x,解得x=”,用类比的方法可以求得:的值为.13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是.14.(5分)在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是.二、解答题(本题共70分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.16.(14分)用合适的方法证明下面两个问题:(1)已知n∈N*,求证:﹣1≥﹣;(2),,不能构成等差数列.17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.18.(16分)在平面直角坐标系xOy中,已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1)求椭圆的方程;(2)过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA,若MF1⊥BF 2,求直线l的斜率.19.(16分)已知方程C:x2+y2+8x﹣m+1=0表示圆(m∈R).(1)求实数m的取值范围;(2)若圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,求m的值;(3)已知点A(﹣2,0),B(4,0),P是与圆C上任意一点,若为定值,求m的值.20.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦,直线y=kx(k>0)经过弦AB的中点M,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点P的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)若直线AB过椭圆的右焦点F,线段FO上一点D满足AB=4FD,求证:以FD为直径的圆恰好经过点M.【附加题】21.(12分)用数学归纳法证明:1+++…+<n(n∈N*,且n>1).22.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,点P在线段A1B上.(1)若P是线段A 1B的中点,求直线MP与直线AC所成的角的大小;(2)是否存在点P,使得直线MP与平面ABC所成角的大小为,若存在,求出线段BP的长度;若不存在,请说明理由.23.(16分)已知抛物线C:y2=4x,过直线l:x=﹣2上任一点A向抛物线C引两条切线AS,AT(切点为S,T,且点S在x轴上方).(1)求证:直线ST过定点,并求出该定点;(2)抛物线C上是否存在点B,使得BS⊥BT.2017-2018学年江苏省南通市启东中学高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题:∀x∈R,sinx≤1的否定为∃x0∈R,使得sinx0>1.【解答】解:∵命题:∀x∈R,sinx≤1,∴命题的否定为:∃x0∈R,使得sinx0>1,故答案为:∃x0∈R,使得sinx0>12.(5分)抛物线x2=2y的准线方程为y=﹣.【解答】解:根据题意,抛物线的方程为x2=2y,其开口向上,且p=1,则抛物线的准线方程y=﹣,故答案为:y=﹣.3.(5分)已知复数z满足(z﹣2)(1﹣i)=1+i(i为虚数单位),则复数z的模是.【解答】解:由(z﹣2)(1﹣i)=1+i,得z﹣2=,∴z=2+i,则|z|=.故答案为:.4.(5分)已知p:x>2,q:x≥1,则p是q的充分不必要条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)【解答】解:∵p:x>2,q:x≥1,∴p⇒q,反之不成立.则p是q的充分不必要条件.故答案为:充分不必要.5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为10.【解答】解:根据题意,双曲线的标准方程为﹣=1,其中a==3,点P在双曲线上,则有||PF1|﹣|PF2||=2a=6,又由|PF1|=4,解可得|PF2|=10或﹣2(舍),则|PF 2|=10;故答案为:10.6.(5分)已知点A(﹣1,0),B(5,0),C(1,4),则△ABC的外接圆的方程为x2+y2﹣4x﹣2y﹣5=0.【解答】解:已知点A(﹣1,0),B(5,0),C(1,4),设△ABC的外接圆的方程为x2+y2+Dx+Ey+F=0,则有,求得,∴△ABC的外接圆的方程为x2+y2﹣4x﹣2y﹣5=0,故答案为:x2+y2﹣4x﹣2y﹣5=0.7.(5分)设A,F是椭圆+=1(a>b>0)的上顶点和右焦点,AF的延长线交椭圆右准线于点B,若=λ,则λ的值为.【解答】解:如图,由题意+=1,得A(0,),c=,则F(1,0),右准线方程为x=.直线AF的方程为,取x=4,得B(4,﹣),,,由=λ,得,即.故答案为:.8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.【解答】解:∵F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,若M为AF2的中点,且MF1⊥AF2,则△F1F2A是等腰三角形,F1F2=F1A,即2c=a,故该椭圆的离心率e==,故答案为:.9.(5分)已知点P是直线y=x上一个动点,过点P作圆(x+2)2+(y﹣2)2=1的切线,切点为T,则线段PT长度的最小值为.【解答】解:圆心坐标C(﹣2,2),半径R=1,则切线长|PT|=,则要使PT最小,则只需要PC最小即可,此时CP垂直直线y=x,则C到直线x﹣y=0的距离d===2,此时|PT|===,故答案为:.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为9.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1.5,则FN|=1.5+3=4.5,|FN|=2|FM|=2×4.5=9.故答案为:9.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为﹣=1.【解答】解:由题意可知,解得a=3,b=3,∴双曲线方程为=1.故答案为:=1.12.(5分)“求1+q+q2+q3+…(0<q<1)的值时,采用了如下的方式:令1+q+q2+q3+…=x,则有x=1+q(1+q+q2+…)=1+q•x,解得x=”,用类比的方法可以求得:的值为.【解答】解:令=x(x>0)则有x=∴x2=1+x∴x2﹣x﹣1=0解得x=或x=∵x>0,∴舍去.故答案为:.13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是[3,13] .【解答】解:令Q为MN中的中点,则圆(x﹣2)2+y2=1的圆心C到MN的距离CQ==,又由C为椭圆+=1的焦点,故|PC|∈[2,6],则PQ|∈[2﹣,6+]=[,],|+|=|2|∈[3,13],故答案为:[3,13].14.(5分)在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是a>或a<﹣.【解答】解:设以MN为直径的圆的圆心为A,则M(﹣2,0),N(0,2),所以中点A(﹣1,1);点P与M,N构成∠MPN恒为锐角,则点P恒在圆A之外,又两个圆半径相等,所以两圆外离,所以(a+1)2+12>(2)2,解得a>或a<﹣;所以a的取值范围是a>或a<﹣;故答案为:a>或a<﹣.二、解答题(本题共70分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.【解答】解:若p为真命题,则(m+3)(m﹣4)<0,解得:﹣3<m<4,¬q:∀x∈R,使得x2+mx+m+3≥0,若¬q是真命题,则m2﹣4(m+3)≤0,解得:﹣2≤m≤6,若“p且¬q”为真命题,则p是真命题且¬q也是真命题,故﹣2≤m<4.16.(14分)用合适的方法证明下面两个问题:(1)已知n∈N*,求证:﹣1≥﹣;(2),,不能构成等差数列.【解答】解:(1)要证:﹣1≥﹣,只要+≥+1,只要证(+)2≥(+1)2,只要证n+2+2≥n+2+2,只要证≥,只要证2n≥n+1,只要证n≥1,显然对于n∈N*,成立,故﹣1≥﹣;(2)假设,,能构成等差数列,则2=+,即(2)2=(+)2,即12=7+2,即5=2,显然不成立,故假设不成立,故,,不能构成等差数列17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.【解答】解:(1)由条件得,解得a=,b=,∴椭圆方程为=1.(2)设M(x0,y0),则MF=y0+=,即p=﹣2y0,又M在椭圆上,∴x02+3y02=6,且x02=2py0,∴(7﹣4y0)y0+3y02=6,解得y0=1或y0=6(舍),∴p=,∴抛物线方程为x2=3y.18.(16分)在平面直角坐标系xOy中,已知F 1,F2分别为椭圆+=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1)求椭圆的方程;(2)过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA,若MF1⊥BF2,求直线l的斜率.【解答】解:(1)∵椭圆E经过点A(2,0)和(1,3e),∴,解得a=2,b=,c=1.∴椭圆方程为;(2)由(1)知,F1(﹣1,0),F2(1,0).设直线l的斜率为k,则直线l的方程是y=k(x﹣2).联立,可得(4k2+3)x2﹣16k2x+16k2﹣12=0,解得x=2,或x=,点B坐标为(,).由OM=MA知,点M在OA的中垂线x=1上,又点M在直线l上,∴点M的坐标为(1,﹣k).从而=(2,k),=(,).∵MF1⊥BF2,∴,∴,解得k=±,故直线l的斜率是±.19.(16分)已知方程C:x2+y2+8x﹣m+1=0表示圆(m∈R).(1)求实数m的取值范围;(2)若圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,求m的值;(3)已知点A(﹣2,0),B(4,0),P是与圆C上任意一点,若为定值,求m的值.【解答】解:(1)若方程C:x2+y2+8x﹣m+1=0表示圆,必有82﹣4(﹣m+1)>0,解可得:m>﹣15;即m的取值范围是(﹣15,+∞);(2)圆C的方程为x2+y2+8x﹣m+1=0,变形可得(x+4)2+y2=15+m,圆心为(﹣4,0),半径r=,圆心C到直线x+y+1=0的距离d==,又由圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,则圆心C到直线的距离d=r,则有=×,解可得m=﹣11;(3)根据题意,如图,连接PC,设圆C的半径为r,则PC=r,设∠PCA=θ,则有CA=2,CB=8,由余弦定理可得:PA=,PB=,若为定值,则设=,则有=即=k,变形可得:r2+4﹣4rcosθ=k(r2+64﹣16rcosθ),分析可得:k=,r2=16,又由圆的标准方程为:(x+4)2+y2=15+m,则有15+m=16,解可得m=1;则m=1.20.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦,直线y=kx(k>0)经过弦AB的中点M,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点P的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)若直线AB过椭圆的右焦点F,线段FO上一点D满足AB=4FD,求证:以FD为直径的圆恰好经过点M.【解答】(1)解:由题意,,解得a=2,b=,∴椭圆方程为;(2)证明:设AB的中点为(x0,y0),A(x1,y1),B(x2,y2),由于A,B为椭圆上的点,∴,,两式相减得:,即=﹣,∵k1=,k=,∴k1k=﹣;(3)证明:由(2)知,AB所在直线的斜率为,又直线AB过点F(1,0),则AB:y=,联立,得(3+4k2)x2﹣6x+3﹣16k2=0.则,.=.∴M().|AB|===.则|FD|==,设D(n,0),则1﹣n=,得n=.∴D(,0),而=,∴,∴以FD为直径的圆恰好经过点M.【附加题】21.(12分)用数学归纳法证明:1+++…+<n(n∈N*,且n>1).【解答】证明:(1)当n=2时,显然1++=<2,不等式成立;(2)假设当n=k(k≥2)时,不等式成立,即1+++…+<k,则当n=k+1时,1+++…++++…+<k++…+<k+++…=k+1,∴当n=k+1时,不等式成立,综上,对于n∈N*,n>1,1+++…+<n.22.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,点P在线段A1B上.(1)若P是线段A1B的中点,求直线MP与直线AC所成的角的大小;(2)是否存在点P,使得直线MP与平面ABC所成角的大小为,若存在,求出线段BP的长度;若不存在,请说明理由.【解答】解:(1)∵在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,P是线段A1B的中点,∴以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,A(0,0,0),B(2,0,0),C(0,2,0),M(1,1,0),A1(0,0,2),P(1,0,1),=(0,﹣1,1),=(0,2,0),设直线MP与直线AC所成的角为θ,则cosθ===,∴θ=,∴直线MP与直线AC所成的角为.(2)假设存在点P(a,b,c),,(0≤λ≤1),使得直线MP与平面ABC所成角的大小为,则(a﹣2,b,c)=(﹣2λ,0,2λ),解得P(2﹣2λ,0,2λ),=(1﹣2λ,﹣1,2λ),平面ABC的法向量=(0,0,1),∵直线MP与平面ABC所成角的大小为,∴sin==,由0≤λ≤1,解得.∴BP=×=.∴存在点P,使得直线MP与平面ABC所成角的大小为,线段BP的长度为.23.(16分)已知抛物线C:y2=4x,过直线l:x=﹣2上任一点A向抛物线C引两条切线AS,AT(切点为S,T,且点S在x轴上方).(1)求证:直线ST过定点,并求出该定点;(2)抛物线C上是否存在点B,使得BS⊥BT.:y﹣t=k(x+2),【解答】解:(1)方法一:(1)设A(﹣2,t),过点A的切线:l切联立,整理得:ky2﹣4y+4(t+2k)=0,由,则得2k2+tk﹣1=0,即k(2k+t)=1,则k+2t=,则k1k2=﹣,且有ky2﹣4y+=0,即(ky﹣2)2=0,得y=,因此S(,),T(,),l ST:y﹣=(x﹣)=(x ﹣)=﹣x﹣,∴y=﹣x+=﹣(x﹣2),即有l ST:y=﹣(x﹣2),∴直线ST过定点P(2,0);方法二:设S(x1,y1),T(x2,y2),由y2=4x,根据复合函数求导法则2yy′=4,则y′=,则直线AS的斜率k=,方程为:y﹣y1=(x﹣x1),由y12=4x1,整理得:yy1=2(x+x1),同理可得:直线AT:yy2=2(x+x2),设A(﹣2,y A),则y A y1=2(x1﹣2),y A y2=2(x2﹣2),即y A y1﹣2x1+4=0,y A y2﹣2x2+4=0,∴S(x1,y1),T(x2,y2)是方程y A y﹣2(x﹣2)=0解,则直线ST:y A y﹣2(x﹣2)=0∴直线ST恒过点(2,0);(2)假设存在点B,使得BS⊥BT,设B(m,n),由直线ST:y A y﹣2(x﹣2)=0,∴,整理得:y2﹣2y A y﹣8=0,则y1+y2=2y A,y1y2=﹣8,则x1+x2=y A2+4,x1x2=×(y1y2)2=4,由BS⊥BT,则•=0,即(x1﹣m,y1﹣n)•(x2﹣m,y2﹣n)=0,整理得:x1x2﹣m(x1+x2)+m2+y1y2﹣n(y1+y2)+n2=0,∴4﹣my A2﹣4m+m2﹣8﹣2ny A+n2=0,my A2+2ny A+4m+4﹣m2﹣n2=0,由4m=n2,代入整理得:y A2+2ny A+4﹣=0,令4﹣=0,即n2=8,当n=2则y A2+2y A=0,解得:y A=0或y A=﹣2,当n=﹣2则y A2﹣2y A=0,解得:y A=0(舍去)或y A=2,∴当B(2,2)或(2,﹣2)时,A(﹣2,±2)时,BS⊥BT.。

【配套K12】江苏省启东市2017-2018学年高二数学上学期期末考试试题

【配套K12】江苏省启东市2017-2018学年高二数学上学期期末考试试题

2017-2018学年度第一学期期终考试高二数学试卷注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置....... 上.1.复数-1iz i=+,其中i 为虚数单位,则z 的虚部是 ▲ . 2.命题:p x R ∃∈,使得220x +≤的否定为_____▲____.3.执行如图所示的伪代码,若输出y 的值为1,则输入x 的值为 ▲ .4.已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是 ▲ . 5.抛物线2=4x y 的焦点到准线的距离为 ▲ .6.某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出56人,其中从高一年级学生中抽出20人,则从高二年级学生中抽取的人数为 ▲ .7.观察下列各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为 ▲ .. 8.离心率为2且与椭圆252x +92y =1有共同焦点的双曲线方程是___▲____ .9.将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷 2次,则出现向上的点数之和不小于9的概率是 ▲ .10.已知命题P :2[1,2],0x x a ∀∈-≥,命题q :2,220x R x ax a ∃∈++-=,若p q ∧是真命题,则实数a 的取值范围是 ▲ .(第3题)11.在平面直角坐标系xoy 中,直线320()mx y m m R ---=∈被圆22(2)(1)4x y -++=截得的所有弦中弦长的最小值为 ▲ .12.已知点A 的坐标是(1,1),1F 是椭圆0124322=-+y x 的左焦点,点P 在椭圆上移动, 则12PF PA +的最小值 ▲ . 13.已知圆()()22:3354C x y -+-=和两点()3,0A m -,()3,0Bm (0m >),若圆C上存在点P ,使得60APB ∠=︒,则实数m 的取值范围是______▲______.14.如图,已知椭圆12222=+by a x (0a b >>)的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足,M F PO 2⊥,O 为坐标原点.椭圆离心率e 的取值范围▲ .21PF F MOy x(第14题)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知z 为复数,2z i +和2zi-均为实数,其中i 是虚数单位. (1)求复数z 和z ;(2)若213(6)z z m m i =++-在第四象限,求实数m 的取值范围.16.(本小题满分14分)已知命题p :x R ∀∈,20tx x t +≤+.(1)若p 为真命题,求实数t 的取值范围;(2)命题q :[]2,16x ∃∈,2log 10t x +≥,当p q ∨为真命题且p q ∧为假命题时, 求实数t 的取值范围. 17.(本小题满分14分)已知椭圆C 的方程为22191x y k k +=--. (1)求k 的取值范围;(2)若椭圆C 的离心率e =,求k 的值.18.(本小题满分16分)已知圆22:4O x y +=,两个定点(),2A a ,(),1B m ,其中a R ∈,0m >.P 为圆O 上任意一点,且PAPBλ=(λ为常数) . (1)求常数λ的值;(2)过点(),E a t 作直线l 与圆22:C x y m +=交于,M N 两点,若M 点恰好是线段NE 的中点,求实数t 的取值范围.19.(本小题满分16分)(1)找出一个等比数列{}n a ,使得1,4为其中的三项,并指出分别是 {}n a 的第几项; (2(3)证明:1,4不可能为同一等差数列中的三项.20.(本小题满分16分)已知椭圆C :2211612x y +=左焦点F ,左顶点A ,椭圆上一点B 满足BF ⊥x 轴,且点B 在x 轴下方,BA 连线与左准线l 交于点P ,过点P 任意引一直线与椭圆交于C 、D ,连结AD 、BC 交于点Q ,若实数λ1,λ2满足:→BC =λ1→CQ ,→QD =λ2→DA (1)求λ1·λ2的值;(2)求证:点Q 在一定直线上.(第20题)江苏省启东中学2017-2018学年度第一学期期终考试高二数学试卷(附加题) 2018.1.8命题人:黄群力注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡.21.(B)选修4-2:矩阵与变换(本小题满分10分)已知矩阵M221a⎡⎤=⎢⎥⎣⎦,其中Ra∈,若点(1,2)P-在矩阵M的变换下得到点(4,0)P'-,(1)求实数a的值;(2)求矩阵M的特征值及其对应的特征向量.21.(C)选修4-4:坐标系与参数方程(本小题满分10分)已知直线的极坐标方程为2sin42πρθ⎛⎫+=⎪⎝⎭,圆的参数方程为(其中为参数).(1)将直线的极坐标方程化为直角坐标方程;(2)求圆上的点到直线的距离的最小值.22.(本小题满分10分)如图,正方形的中心为,四边形为矩形,平面平面,点 为的中点,.(1)求二面角的正弦值;(2)设为线段上的点,且,求直线和平面所成角的正弦值..( 第22题)23. (本小题满分10分)在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S , 且OP →·ST →=0.设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M , 直线l 与x 轴的交点为N .求证:向量SM →与NQ →共线.2017-2018第一学期高二数学调研试卷答案 2018.1.8一、填空题:1. 【答案】2.【答案】,3. 【答案】4.【答案】5.【答案】26.【答案】187. 【答案】8.【答案】-=19.【答案】10.【答案】11.【答案】12.【答案】13.【答案】14.【答案】二.解答题15.【解析】(1)设,则 2分4分所以, 8分(2) 14分16.【解析】(1)∵,,∴且,解得∴为真命题时,. 6分(2),,有解.又时,,∴. 8分∵为真命题且为假命题时,∴真假或假真,当假真,有解得;当真假,有解得;∴为真命题且为假命题时,或. 14分17. 【解析】(1)∵方程表示椭圆,则,解得 k∈(1,5)∪(5,9)……6分(未去5扣2分)(2)①当9﹣k>k﹣1时,依题意可知a=,b=∴c=∵= ∴∴k=2;10分②当9﹣k<k﹣1时,依题意可知b=,a=∴c= ∵= ∴∴k=8;∴k的值为2或8.(一种情况4分共8分)14分18. 【解析】(1)设点,,,,因为,所以,化简得,因为为圆上任意一点,所以,又,解得,所以常数.8分(2)设,是线段的中点,,又在圆C上,即关于的方程组有解,化简得有解,即直线与圆有交点,则,化简得:,解得.16分19. 【解析】(1)取一个等比数列{a n}:首项为1、公比为,则,…2分则令=4,解得n=5,所以a1=1,,a5=4.…4分(2)证明:假设是有理数,则存在互质整数h、k,使得,…5分则h2=2k2,所以h为偶数,…7分设h=2t,t为整数,则k2=2t2,所以k也为偶数,则h、k有公约数2,这与h、k互质相矛盾,…9分所以假设不成立,所以是有理数. …10分 (3)证明:假设1,,4是同一等差数列中的三项, 且分别为第n 、m 、p 项且n 、m 、p 互不相等,…11分 设公差为d ,显然d ≠0,则, 消去d 得,,…13分由n 、m 、p 都为整数,所以为有理数,由(2)得是无理数,所以等式不可能成立,…15分所以假设不成立,即1,,4不可能为同一等差数列中的三项. …16分. 20. 【解析】(1)因为F (-2,0),由BF ⊥x 轴,由对称性不妨设B (-2,-3),则直线AB :y =-32(x +4) 又左准线l :x =-8,所以P (-8,6)又→BC =λ1→CQ ,所以→PC =→PB +λ1→PQ 1+λ1, 同理由→QD =λ2→DA ,得→PD =→PQ +λ2→PA 1+λ2又→PB =32→PA ,所以→PC =32→PA +λ1→PQ 1+λ1又→PC //→PD ,比较系数得32λ2=λ11,所以λ1·λ2=32 8分(2)证明:设点C (x 1,y 2),D (x 2,y 2),Q (x 0,y 0)由→BC =λ1→CQ ,得x 1=-2+λ1x 01+λ1,y 1=-3+λ1y 01+λ1代入椭圆方程3x 2+4y 2=48,得:3⎝ ⎛⎭⎪⎫-2+λ1x 01+λ12+4⎝ ⎛⎭⎪⎫-3+λ1y 01+λ12=48整理得:(3x 20+4y 20-48)λ21-(12x 0+24y 0+96)λ1=0 显然λ1≠0,所以λ1=12x 0+24y 0+963x 20+4y 20-48同理由→QD =λ2→DA ,得x 2=x 0-4λ21+λ2,y 2=y 01+λ2代入椭圆方程3x 2+4y 2=48,得:3⎝ ⎛⎭⎪⎫x 0-4λ21+λ22+4⎝ ⎛⎭⎪⎫y 01+λ22=48同理可得:λ2=3x 20+4y 20-4824x 0+96又由(1)λ1·λ2=32,所以,12x 0+24y 0+963x 20+4y 20-48·3x 20+4y 20-4824x 0+96=32 整理得:x 0-y 0+2=0 即点Q 在定直线x -y +2=0上 16分21.(B)【解析】(1)由=,∴ --------------3分 (2)由(1)知,则矩阵的特征多项式为令,得矩阵的特征值为与4. …………………………..6分 当时,∴矩阵的属于特征值的一个特征向量为; …………………..8分 当时,∴矩阵的属于特征值的一个特征向量为. ………………………10分 21.(C)【解析】(1)以极点为原点,极轴为轴正半轴建立直角坐标系.所以,该直线的直角坐标方程为:……………………..5分 (2)圆的普通方程为: 圆心到直线的距离所以,圆上的点到直线的距离的最小值为…………………….10分 22. 【解析】依题意, ,如图,以为点,分别以的方向为轴、 轴、轴的正方向建立空间直角坐标系,依题意可得,.(1)解:易证, 为平面的一个法向量. 依题意, .K12教育资源学习用资料K12教育资源学习用资料 设为平面的法向量,则,即.不妨设,可得.因此有,于是,所以,二面角的正弦值为 (5)(2)解:由,得.因为,所以,进而有,从而,因此.分…………………………9分所以,直线和平面所成角的正弦值为 (10)23. 【解析】(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ).因为T (3,0),所以OP →=(x ,y ), ST →=(4,-y ).因为OP →·ST →=0,所以4x -y 2=0,即y 2=4x .所以曲线C 的方程为y 2=4x . …………… 3分(2)因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1.P (x 1,y 1),Q (x 2,y 2).联立⎩⎨⎧y 2=4x ,x =my +1,消去x ,得y 2―4my ―4=0. 所以y 1+y 2=4m ,y 1y 2=―4. …………… 5分 因为M 为线段PQ 的中点,所以M 的坐标为(x 1+x 22,y 1+y 22),即M (2m 2+1,2m ). 又因为S (-1,y 1),N (-1,0),所以SM →=(2m 2+2,2m -y 1),NQ →=(x 2+1,y 2)=(my 2+2,y 2). …………… 7分 因为(2m 2+2) y 2-(2m -y 1)(my 2+2)=(2m 2+2) y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0.所以向量SM →与NQ →共线. …………… 10分。

2017年江苏省南通市启东高二(上)期末数学试卷((有答案))AlPKwH

2016-2017学年江苏省南通市启东高二(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.(5分)抛物线y=x2的准线方程是.2.(5分)命题“任意正实数a,函数f(x)=x2+ax在[0,+∞)上都是增函数”的否定是.3.(5分)已知复数z满足(3+4i)z=5i2016(i为虚数单位),则|z|=.4.(5分)将参加夏令营的500名学生编号为:001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,则第三个营区被抽中的人数为.5.(5分)如图是一个算法的流程图,若输出的结果是1023,则判断框中的整数M的值是.6.(5分)在平面直角坐标系内,二元一次方程Ax+By+C=0(A2+B2≠0)表示直线的方程,在空间直角坐标系内,三元一次方程Ax+By+Cz+D=0(A2+B2+C2≠0)表示平面的方程.在平面直角坐标系内,点P(x0,y0)到直线Ax+By+C=0的距离d=,运用类比的思想,我们可以解决下面的问题:在空间直角坐标系内,点P(2,1,1)到平面3x+4y+12z+4=0的距离d=.7.(5分)等轴双曲线的离心率为.8.(5分)“a>1”是“(a+1)x>2对x∈(1,+∞)恒成立”的条件(填“充分不必要、必要不充分、充要”).9.(5分)过点P(5,4)作直线l与圆O:x2+y2=25交于A,B两点,若PA=2,则直线l的方程为.10.(5分)已知双曲线的渐近线方程为,一个焦点为,则双曲线的标准方程是.11.(5分)已知椭圆的离心率,A、B是椭圆的左、右顶点,P是椭圆上不同于A、B的一点,直线PA、PB斜倾角分别为α、β,则=.12.(5分)已知圆心C在抛物线y2=4x上且与准线相切,则圆C恒过定点.13.(5分)在平面直角坐标系xOy中,已知圆O1,圆O2均与x轴相切且圆心O1,O2与原点O 共线,O1,O2两点的横坐标之积为6,设圆O1与圆O2相交于P,Q两点,直线l:2x﹣y﹣8=0,则点P与直线l上任意一点M之间的距离的最小值为.14.(5分)在平面直角坐标系xOy中,B是椭圆的上顶点,直线y=b与椭圆右准线交于点A,若以AB为直径的圆与x轴的公共点都在椭圆内部,则椭圆的离心率e的取值范围是.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.16.(14分)设a为实数,给出命题p:关于x的不等式的解集为∅,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.17.(14分)在平面直角坐标系xOy中,已知圆M经过点A(1,0),B(3,0),C(0,1).(1)求圆M的方程;(2)若直线l“mx﹣2y﹣(2m+1)=0与圆M交于点P,Q,且•=0,求实数m的值.18.(16分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与直线y=kx(k>0)相交于A,B两点(从左到右),过点B作x轴的垂线,垂足为C,直线AC交椭圆于另一点D.(1)若椭圆的离心率为,点B的坐标为(,1),求椭圆的方程;(2)若以OD为直径的圆恰好经过点B,求椭圆的离心率.19.(16分)已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M 的切线PA、PB,切点为A、B.(Ⅰ)当切线PA的长度为2时,求点P的坐标;(Ⅱ)若△PAM的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段AB长度的最小值.20.(16分)在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.试卷(附加题)21.(10分)已知矩阵,其中a,b均为实数,若点A(3,﹣1)在矩阵M的变换作用下得到点B(3,5),求矩阵M的特征值.22.(10分)在极坐标系中,设圆C经过点P(,),圆心是直线ρsin(﹣θ)=与极轴的交点.(1)求圆C的半径;(2)求圆C的极坐标方程.23.(10分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求异面直线AE与A1 F所成角的大小;(2)求平面AEF与平面ABC所成角的余弦值.24.(10分)已知数列{a n}满足a1=﹣1,.(1)求证:数列是等比数列;(2)设,求证:当n≥2,n∈N*时,.2016-2017学年江苏省南通市启东高二(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.(5分)抛物线y=x2的准线方程是4y+1=0.【解答】解:因为抛物线的标准方程为:x2=y,焦点在y轴上;所以:2p=1,即p=,所以:=,∴准线方程y=﹣=﹣,即4y+1=0.故答案为:4y+1=0.2.(5分)命题“任意正实数a,函数f(x)=x2+ax在[0,+∞)上都是增函数”的否定是“存在正实数a,函数f(x)=x2+ax在[0,+∞)上不都是增函数”.【解答】解:命题“任意正实数a,函数f(x)=x2+ax在[0,+∞)上都是增函数”的否定是“存在正实数a,函数f(x)=x2+ax在[0,+∞)上不都是增函数”.故答案为:“存在正实数a,函数f(x)=x2+ax在[0,+∞)上不都是增函数”.3.(5分)已知复数z满足(3+4i)z=5i2016(i为虚数单位),则|z|=1.【解答】解:由(3+4i)z=5i2016,得==,则|z|=.故答案为:1.4.(5分)将参加夏令营的500名学生编号为:001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,则第三个营区被抽中的人数为14.【解答】解:系统抽样的抽取间隔为=10,∵随机抽得的第一个号码为003,∴被抽到号码l=10k+3,k∈N.∴在第三营区中被抽到的号码为363,373…493,∴第三个营区被抽中的人数为14.故答案为:14.5.(5分)如图是一个算法的流程图,若输出的结果是1023,则判断框中的整数M的值是9.【解答】解:执行程序框图,有A=1,S=1当满足条件A≤M,S=1+2+22+…+2M=1023由等比数列的求和公式,可知2M+1﹣1=1023,即可解得M=9.故答案为:9.6.(5分)在平面直角坐标系内,二元一次方程Ax+By+C=0(A2+B2≠0)表示直线的方程,在空间直角坐标系内,三元一次方程Ax+By+Cz+D=0(A2+B2+C2≠0)表示平面的方程.在平面直角坐标系内,点P(x0,y0)到直线Ax+By+C=0的距离d=,运用类比的思想,我们可以解决下面的问题:在空间直角坐标系内,点P(2,1,1)到平面3x+4y+12z+4=0的距离d=2.【解答】解:类比点P(x0,y0)到直线Ax+By+C=0的距离d=,可知在空间中,点P(x0,y0,z0)到平面Ax+By+Cz+D=0(A2+B2+C2≠0)的距离,代入数据可知点P(2,1,1)到平面3x+4y+12z+4=0的距离d=2.故答案为:27.(5分)等轴双曲线的离心率为.【解答】解:∵等轴双曲线中a=b∴c==a∴e==故答案为:8.(5分)“a>1”是“(a+1)x>2对x∈(1,+∞)恒成立”的充分不必要条件(填“充分不必要、必要不充分、充要”).【解答】解:若a>1,则x>,而<1,∴∈(1,+∞),是充分条件;若(a+1)x>2对x∈(1,+∞)恒成立,则x>,只需≤1即可,∴a≥1,是不必要条件,故答案为:充分不必要.9.(5分)过点P(5,4)作直线l与圆O:x2+y2=25交于A,B两点,若PA=2,则直线l的方程为y=4或40x﹣9y﹣164=0.【解答】解:当直线l斜率为0时,A与M重合,B与N重合,此时OQ=4,由垂径定理定理得到Q为MN中点,连接OM,根据勾股定理得:QM==3,∴MN=2QM=6,此时直线l方程为y=4,符合题意;当直线l斜率不为0时,设为k,直线l方程为y﹣4=k(x﹣5),即kx﹣y+4﹣5k=0,由割线定理得到AB=MN=6,再由垂径定理得到C为AB的中点,即AC=AB=3,过O作OC⊥AB,连接OA,根据勾股定理得:OC==4,∴圆心O到直线l的距离d==4,解得:k=0(舍去)或k=,则此时直线l的方程为x﹣y+4﹣5×=0,即40x﹣9y﹣164=0,综上,直线l的方程为y=4或40x﹣9y﹣164=0.故答案为:y=4或40x﹣9y﹣164=010.(5分)已知双曲线的渐近线方程为,一个焦点为,则双曲线的标准方程是﹣=1.【解答】解:根据题意,要求双曲线的一个焦点为,在y轴上,可以设其标准方程为:﹣=1,且有a2+b2=c2=8,①其渐近线方程为:y=±x,又由该双曲线的渐近线方程为,则有=,②联立①、②可得:a2=6,b2=2,则要求双曲线的方程为:﹣=1;故答案为:﹣=1.11.(5分)已知椭圆的离心率,A、B是椭圆的左、右顶点,P是椭圆上不同于A、B的一点,直线PA、PB斜倾角分别为α、β,则=.【解答】解:由题意,A(﹣a,0),B(a,0),设P(x,y),则,∴=∵椭圆的离心率,∴∴a2=4b2∴∴∴=﹣∴∴====故答案为:12.(5分)已知圆心C在抛物线y2=4x上且与准线相切,则圆C恒过定点(1,0).【解答】解:设动圆的圆心到直线x=﹣1的距离为r,因为动圆圆心在抛物线y2=4x上,且抛物线的准线方程为x=﹣1,所以动圆圆心到直线x=﹣1的距离与到焦点(1,0)的距离相等,所以点(1,0)一定在动圆上,即动圆必过定点(1,0).故答案为:(1,0).13.(5分)在平面直角坐标系xOy中,已知圆O1,圆O2均与x轴相切且圆心O1,O2与原点O 共线,O1,O2两点的横坐标之积为6,设圆O1与圆O2相交于P,Q两点,直线l:2x﹣y﹣8=0,则点P与直线l上任意一点M之间的距离的最小值为.【解答】解:设圆O1:(x﹣x1)2+(y﹣kx1)2=k2x12,圆O2:(x﹣x2)2+(y﹣kx2)2=k2x22,两方程相减可得:2ky=x1+x2﹣2x,与圆O1联立可得x2+y2=6,令y﹣2x=t,则y=2x+t,代入可得5x2﹣4tx+t2﹣6=0,△=30﹣t2≥0,可得﹣≤t≤,∵P到直线l的距离为,∴y﹣2x=t=﹣时,点P与直线l上任意一点M之间的距离的最小值为.故答案为:.14.(5分)在平面直角坐标系xOy中,B是椭圆的上顶点,直线y=b与椭圆右准线交于点A,若以AB为直径的圆与x轴的公共点都在椭圆内部,则椭圆的离心率e的取值范围是(,1).【解答】解:如图所示:过圆心M作横轴垂线,垂足为T,圆与横轴交点为N,H则MT=b,MH=r=,要使以AB为直径的圆与x轴的公共点都在椭圆内部,只需TH<a﹣即可,即MH2﹣MT2<(a﹣)2,()2﹣b2<(a﹣)2,化简得c3﹣2a2c+a3<0⇒e3﹣2e+1<0⇒(e﹣1)(e2+e﹣1)<0∵e<1,∴e2+e﹣1>0⇒e>.椭圆的离心率e的取值范围是(,1)二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【解答】解:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,∵用水量小于等于3立方米的频率为85%,∴为使80%以上居民在该用的用水价为4元/立方米,∴w至少定为3立方米.(2)当w=3时,该市居民的人均水费为:(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,∴当w=3时,估计该市居民该月的人均水费为10.5元.16.(14分)设a为实数,给出命题p:关于x的不等式的解集为∅,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.【解答】解:命题p:|x﹣1|≥0,∴,∴a>1;命题q:不等式的解集为R,∴,解得;若命题“p∨q”为真,“p∧q”为假,则p,q一真一假;p真q假时,,解得a≥8;p假q真时,,解得;∴实数a的取值范围为:.17.(14分)在平面直角坐标系xOy中,已知圆M经过点A(1,0),B(3,0),C(0,1).(1)求圆M的方程;(2)若直线l“mx﹣2y﹣(2m+1)=0与圆M交于点P,Q,且•=0,求实数m的值.【解答】解:(1)如图,AB中垂线方程为x=2,AC中垂线方程为y=x,联立,解得M(2,2),又|MA|=,∴圆M的方程为(x﹣2)2+(y﹣2)2=5;(2)∵•=0,∴∠PMQ=90°,则|PQ|=,∴M到直线mx﹣2y﹣(2m+1)=0的距离为.由,解得:m=.18.(16分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与直线y=kx(k>0)相交于A,B两点(从左到右),过点B作x轴的垂线,垂足为C,直线AC交椭圆于另一点D.(1)若椭圆的离心率为,点B的坐标为(,1),求椭圆的方程;(2)若以OD为直径的圆恰好经过点B,求椭圆的离心率.【解答】解:(1)∵椭圆的离心率为,点B的坐标为(,1),∴,,又a2=b2+c2,联立解得a2=4,b2=c2=2.∴椭圆的方程为:=1.(2)设A(x1,y1),D(x2,y2),则B(﹣x1,﹣y1),C(﹣x1,0).k AD==k AC==,k BD==﹣.又,,两式相减可得:=0,∴×=0,化为a2=2b2.∴椭圆的离心率e==.19.(16分)已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M 的切线PA、PB,切点为A、B.(Ⅰ)当切线PA的长度为2时,求点P的坐标;(Ⅱ)若△PAM的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段AB长度的最小值.【解答】解:(Ⅰ)由题可知,圆M的半径r=2,设P(2b,b),因为PA是圆M的一条切线,所以∠MAP=90°,所以MP=,解得所以…4分(Ⅱ)设P(2b,b),因为∠MAP=90°,所以经过A、P、M三点的圆N以MP为直径,其方程为:即(2x+y﹣4)b﹣(x2+y2﹣4y)=0由,…7分解得或,所以圆过定点…9分(Ⅲ)因为圆N方程为(x﹣b)2+(y﹣)2=即x2+y2﹣2bx﹣(b+4)y+4b=0 …①圆M:x2+(y﹣4)2=4,即x2+y2﹣8y+12=0…②②﹣①得圆M方程与圆N相交弦AB所在直线方程为:2bx+(b﹣4)y+12﹣4b=0…11分点M到直线AB的距离…13分相交弦长即:当时,AB有最小值…16分.20.(16分)在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.【解答】解:(1)依题意,得c=1.于是,a=,b=1.…(2分)所以所求椭圆的方程为.…(4分)(2)(i)设A(x1,y1),B(x2,y2),则①,②.又设M(x,y),因,故…(7分)因M在椭圆上,故.整理得.将①②代入上式,并注意cosθsinθ≠0,得.所以,为定值.…(10分)(ii),故y12+y22=1.又,故x12+x22=2.所以,OA2+OB2=x12+y12+x22+y22=3.…(16分)试卷(附加题)21.(10分)已知矩阵,其中a,b均为实数,若点A(3,﹣1)在矩阵M的变换作用下得到点B(3,5),求矩阵M的特征值.【解答】解:由题意得:==,∴,解得a=3,b=2.∴M=,设矩阵M的特征值为λ,则f(λ)==0,化为(2﹣λ)(1﹣λ)﹣6=0,化为λ2﹣3λ﹣4=0,解得λ1=﹣1,λ2=4.22.(10分)在极坐标系中,设圆C经过点P(,),圆心是直线ρsin(﹣θ)=与极轴的交点.(1)求圆C的半径;(2)求圆C的极坐标方程.【解答】解:(1)因为圆心为直线ρsin(﹣θ)=与极轴的交点,所以令θ=0,得ρ=1,即圆心是(1,0),又圆C经过点P(,),P(,)的直角坐标为(,),所以圆的半径r==1.(2)圆C的普通方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0,∵x2+y2=ρ2,x=ρcosθ,∴圆C的极坐标方程为ρ2﹣2ρcosθ=0,即ρ=2cosθ.23.(10分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求异面直线AE与A1 F所成角的大小;(2)求平面AEF与平面ABC所成角的余弦值.【解答】解:(1)建立如图所示的直角坐标系,则A(0,0,0),E(2,0,2),A1(0,0,6),F(0,2,4),从而=(2,0,2),=(0,2,﹣2).…2分记与的夹角为θ,则有:cosθ=cos<>=﹣.由异面直线AE与A1F所成角的范围为(0,π),得异面直线AE与A1F所成角为60°.…4分(2)记平面AEF和平面ABC的法向量分别为和,则由题设可令=(x,y,z),且有平面ABC的法向量为,.由,取x=1,得=(1,2,﹣1).…8分记平面AEF与平面ABC所成的角为β,则cosβ=|cos<>|=||=.∴平面AEF与平面ABC所成角的余弦值为.…10分.24.(10分)已知数列{a n}满足a1=﹣1,.(1)求证:数列是等比数列;(2)设,求证:当n≥2,n∈N*时,.【解答】证明:(1)∵数列{a n}满足a1=﹣1,.∴==3×.=1,∴数列是等比数列,首项为1,公比为3.(2)由(1)可得:=3n﹣1,可得a n+2=n•3n﹣1.b n==.+b n+2+…+b2n=+…+∴当n≥2,n∈N*时,b n+1下面利用数学归纳法证明:.①当n=2时,b3+b4==<=.+b k+2+…+b2k<﹣.②假设n=k∈N*,k≥2.b k+1+b k+3+…+b2k+b2k+1+b2k+2<﹣++﹣=﹣<﹣.则n=k+1时,b k+2∴n=k+1时,假设成立.综上可得:当n≥2,n∈N*时,.。

2017-2018学年江苏省南通市启东中学高二上学期期末数学试题(解析版)

2017-2018学年江苏省南通市启东中学高二(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)复数,其中i为虚数单位,则z的虚部是.2.(5分)命题“∃x∈R,x2﹣2≤0”的否定是.3.(5分)执行如图所示的伪代码,若输出的y值为1,则输入x的值为.4.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是.5.(5分)抛物线x2=4y的焦点到准线的距离为.6.(5分)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出56人,其中从高一年级学生中抽出20人,则从高二年级学生中抽取的人数为.7.(5分)观察下列各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,这些等式反映了自然数间的某种规律,设n表示自然数,用关于n的等式表示为.8.(5分)离心率为2且与椭圆+=1有共同焦点的双曲线方程是.9.(5分)将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和不小于9的概率是.10.(5分)已知命题p:“∀x∈[1,2],x2﹣a≥0”;命题q:“∃x∈R,x2+2ax+2﹣a=0”,若命题“p∧q”是真命题,则实数a的取值范围是.11.(5分)在平面直角坐标系xOy中,直线mx﹣y﹣3m﹣2=0(m∈R)被圆(x﹣2)2+(y+1)2=4截得的所有弦中弦长的最小值为.12.(5分)已知点A的坐标是(1,1),F1是椭圆3x2+4y2﹣12=0的左焦点,点P在椭圆上移动,则|PA|+2|PF1|的最小值.13.(5分)已知圆和两点,(m >0),若圆C上存在点P,使得∠APB=60°,则实数m的取值范围是.14.(5分)如图,已知椭圆(a>b>0)的左、右焦点为F1、F2,P是椭圆上一点,M在PF1上,且满足,PO⊥F2M,O为坐标原点.椭圆离心率e的取值范围.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知z为复数,z+2i和均为实数,其中i是虚数单位.(1)求复数z和|z|;(2)若在第四象限,求实数m的取值范围.16.(14分)已知命题p:∀x∈R,tx2+x+t≤0.(1)若p为真命题,求实数t的取值范围;(2)命题q:∃x∈[2,16],tlog2x+1≥0,当p∨q为真命题且p∧q为假命题时,求实数t的取值范围.17.(14分)已知椭圆C的方程为+=1.(1)求k的取值范围;(2)若椭圆C的离心率e=,求k的值.18.(16分)已知圆O:x2+y2=4,两个定点A(a,2),B(m,1),其中a∈R,m>0.P为圆O上任意一点,且(λ为常数).(1)求常数λ的值;(2)过点E(a,t)作直线l与圆C:x2+y2=m交于M,N两点,若M点恰好是线段NE的中点,求实数t的取值范围.19.(16分)(1)找出一个等比数列{a n},使得1,,4为其中的三项,并指出分别是{a n}的第几项;(2)证明:为无理数;(3)证明:1,,4不可能为同一等差数列中的三项.20.(16分)已知椭圆C:左焦点F,左顶点A,椭圆上一点B满足BF ⊥x轴,且点B在x轴下方,BA连线与左准线l交于点P,过点P任意引一直线与椭圆交于C、D,连结AD、BC交于点Q,若实数λ1,λ2满足:=λ1,=λ2.(1)求λ1•λ2的值;(2)求证:点Q在一定直线上.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵M=,其中a∈R,若点P(1,﹣2)在矩阵M的变换下得到点P′(﹣4,0)(1)求实数a的值;(2)求矩阵M的特征值及其对应的特征向量.[选修4-4:坐标系与参数方程](本小题满分20分)22.已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆M上的点到直线的距离的最小值.23.(10分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF ⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.24.(10分)在平面直角坐标系xOy中,直线l:x=﹣1,点T(3,0),动点P满足PS⊥l,垂足为S,且•=0,设动点P的轨迹为曲线C.(1)求曲线C的方程;(2)设Q是曲线C上异于点P的另一点,且直线PQ过点(1,0),线段PQ的中点为M,直线l与x轴的交点为N.求证:向量与共线.2017-2018学年江苏省南通市启东中学高二(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)复数,其中i为虚数单位,则z的虚部是﹣.【分析】利用复数的运算性质、虚部的定义即可得出.【解答】解:复数=﹣=﹣=﹣﹣i,则z的虚部=﹣.故答案为:.【点评】本题考查了复数的运算性质、虚部的定义,考查了推理能力与计算能力,属于基础题.2.(5分)命题“∃x∈R,x2﹣2≤0”的否定是∀x∈R,x2﹣2>0.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2﹣2≤0”的否定是:∀x∈R,x2﹣2>0.故答案为:∀x∈R,x2﹣2>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.(5分)执行如图所示的伪代码,若输出的y值为1,则输入x的值为﹣1.【分析】分析出算法的功能是求分段函数f(x)的值,根据输出的值为1,分别求出当x≤0时和当x>0时的x值即可.【解答】解:由程序语句知:算法的功能是求f(x)=的值,当x≥0时,y=2x+1=1,解得x=﹣1,不合题意,舍去;当x<0时,y=2﹣x2=1,解得x=±1,应取x=﹣1;综上,x的值为﹣1.故答案为:﹣1.【点评】本题考查了选择结构的程序语句应用问题,根据语句判断算法的功能是解题的关键.4.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是0.1.【分析】根据平均数与方差的公式计算即可.【解答】解:数据4.8,4.9,5.2,5.5,5.6的平均数为:=×(4.8+4.9+5.2+5.5+5.6)=5.2,∴该组数据的方差为:S2=×[(4.8﹣5.2)2+(4.9﹣5.2)2+(5.2﹣5.2)2+(5.5﹣5.2)2+(5.6﹣5.2)2]=0.1.故答案为:0.1.【点评】本题考查了平均数与方差的计算问题,是基础题.5.(5分)抛物线x2=4y的焦点到准线的距离为2.【分析】直接利用抛物线的性质求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:p=2.故答案为:2.【点评】本题考查的简单性质,考查计算能力.6.(5分)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出56人,其中从高一年级学生中抽出20人,则从高二年级学生中抽取的人数为18.【分析】根据学生的人数比,利用分层抽样的定义即可得到结论.【解答】解:设从高二年级学生中抽出x人,由题意得=,解得x=18,故答案为:18【点评】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键,比较基础.7.(5分)观察下列各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,这些等式反映了自然数间的某种规律,设n表示自然数,用关于n的等式表示为(n+2)2﹣n2=4(n+1)(n∈N∗).【分析】根据已知中各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,分析等式两边的数的变化规律,发现等号前为一个平方差的形式,右边是4的整数倍,归纳总结后,即可得到结论.【解答】解:观察下列各式9﹣1=32﹣12=8=4×(1+1),16﹣4=42﹣22=12=4×(1+2),25﹣9=52﹣32=16=4×(1+3),36﹣16=62﹣42=20=4×(1+4),,…,分析等式两边数的变化规律,我们可以推断(n+2)2﹣n2=4(n+1)(n∈N∗)故答案为:(n+2)2﹣n2=4(n+1)(n∈N∗)【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).8.(5分)离心率为2且与椭圆+=1有共同焦点的双曲线方程是﹣=1.【分析】根据题意,求出椭圆的焦点,分析可得双曲线的焦点在x轴上,且c=4,可设双曲线的方程为﹣=1,由离心率公式和c的值可得a的值,进而计算可得b的值,将a、b的值代入双曲线的方程,即可得答案.【解答】解:根据题意,椭圆+=1的焦点为(±4,0),又由双曲线与椭圆有共同焦点,则双曲线的焦点在x轴上,且c=4,设其方程为﹣=1,又由双曲线的离心率e=2,即e==2,则a=2,b2=c2﹣a2=16﹣4=12,则双曲线的方程为:﹣=1;故答案为:﹣=1.【点评】本题考查双曲线的几何性质,注意先求出椭圆的焦点,方便设出双曲线的方程.9.(5分)将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和不小于9的概率是.【分析】基本事件总数n=6×6=36,利用列举法求出出现向上的点数之和不小于9包含的基本事件有10个,由此能求出出现向上的点数之和不小于9的概率.【解答】解:将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,基本事件总数n=6×6=36,出现向上的点数之和不小于9包含的基本事件有:(3,6),(6,3),(4,5),(5,4),(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共有10个,∴出现向上的点数之和不小于9的概率:p=.故答案为:.【点评】本题考查概率的求法,考查古典概型概率计算公式、列举法等基础知识,考查运算求解能力,是基础题.10.(5分)已知命题p:“∀x∈[1,2],x2﹣a≥0”;命题q:“∃x∈R,x2+2ax+2﹣a=0”,若命题“p∧q”是真命题,则实数a的取值范围是a≤﹣2,或a=1.【分析】若命题“p∧q”是真命题,则命题p,q均为真命题,进而可得答案.【解答】解:若命题p:“∀x∈[1,2],x2﹣a≥0”为真;则1﹣a≥0,解得:a≤1,若命题q:“∃x∈R,x2+2ax+2﹣a=0”为真,则△=4a2﹣4(2﹣a)≥0,解得:a≤﹣2,或a≥1,若命题“p∧q”是真命题,则a≤﹣2,或a=1,故答案为:a≤﹣2,或a=1【点评】本题以命题的真假判断与应用为载体,考查了复合命题,函数恒成立问题,方程根的存在性及个数问题,难度中档.11.(5分)在平面直角坐标系xOy中,直线mx﹣y﹣3m﹣2=0(m∈R)被圆(x﹣2)2+(y+1)2=4截得的所有弦中弦长的最小值为.【分析】已知直线过定点I(3,﹣2),由题意画出图形,利用垂径定理求得答案.【解答】解:直线mx﹣y﹣3m﹣2=0过定点I(3,﹣2),圆(x﹣2)2+(y+1)2=4的圆心坐标C(2,﹣1),半径为r=2.如图,∵|CI|=,∴直线mx﹣y﹣3m﹣2=0被圆(x﹣2)2+(y+1)2=4截得的所有弦中弦长的最小值为.故答案为:.【点评】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查垂径定理的应用,是中档题.12.(5分)已知点A的坐标是(1,1),F1是椭圆3x2+4y2﹣12=0的左焦点,点P在椭圆上移动,则|PA|+2|PF1|的最小值5.【分析】由椭圆方程求得椭圆的离心率和左准线方程,把2|PF1|转化为椭圆上的点到左准线的距离,过A作左准线的垂线AB,则AB的长度即为所求.【解答】解:由椭圆3x2+4y2﹣12=0作出椭圆如图,由a2=4,b2=3,得c2=1,c=1,∴=,由椭圆的第二定义可得,椭圆上的点到左焦点的距离|PF1|与到左准线的距离的比值为e=,∴2|PF1|为椭圆上的点到左准线的距离,过A作AB⊥左准线l与B,交椭圆于P,则P点为使|PA|+2|PF1|最小的点,最小值为A到l的距离,等于1+=1+4=5.故答案为:5.【点评】本题考查了椭圆的第二定义,考查了椭圆的简单几何性质,体现了数学转化思想方法,是中档题.13.(5分)已知圆和两点,(m >0),若圆C上存在点P,使得∠APB=60°,则实数m的取值范围是{m|} .【分析】当D(0,3m)时,∠ADB=60°,满足条件的点P必在以A、B、D三点所确定的圆周上,该圆圆心为M(0,m),要使圆C上存在点P,由两圆必有交点,从而|r M﹣r C|≤|MC|≤|r M+r C|,进而(2m﹣2)2≤(3)2+(m﹣5)2≤(2m+2)2,由此能求出实数m的取值范围.【解答】解:如图,当D(0,3m)时,∠ADB=60°,故满足条件的点P必在以A、B、D三点所确定的圆周上,∴该圆圆心为M(0,m),要使圆C上存在点P,由两圆必有交点,即|r M﹣r C|≤|MC|≤|r M+r C|,如图,∴|r M﹣r C|2≤|MC|2≤|r M+r C|2,∴(2m﹣2)2≤(3)2+(m﹣5)2≤(2m+2)2,由m>0,解得2.故答案为:{m|}.【点评】本题考查实数的取值范围的求法,考查直线方程、圆、两点间距离公式等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想,是中档题.14.(5分)如图,已知椭圆(a>b>0)的左、右焦点为F1、F2,P是椭圆上一点,M在PF1上,且满足,PO⊥F2M,O为坐标原点.椭圆离心率e的取值范围(,1).【分析】设P(x0,y0),M(x M,y M),运用向量的坐标和向量共线和垂直的条件,再由椭圆的性质可得﹣a<x0<a,解不等式即可得到所求离心率的范围.【解答】解:设P(x0,y0),M(x M,y M),∵,∴=(x0+c,y0)=(x M+c,y M)∴M(x0﹣c,y0),=(x0﹣c,y0),∵PO⊥F2M,=(x0,y0)∴(x0﹣c)x0+y02=0即x02+y02=2cx0,联立方程得:,消去y0得:c2x02﹣2a2cx0+a2(a2﹣c2)=0,解得:x0=或x0=,∵﹣a<x0<a,∴x0=∈(0,a),∴0<a2﹣ac<ac解得:e>,综上,椭圆离心率e的取值范围为(,1).故答案为:(,1).【点评】本题考查椭圆的方程的运用,考查向量共线的坐标表示,以及向量垂直的条件:数量积为0,同时考查解方程和解不等式的运算求解能力,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知z为复数,z+2i和均为实数,其中i是虚数单位.(1)求复数z和|z|;(2)若在第四象限,求实数m的取值范围.【分析】(1)设z=a+bi(a,b∈R),则z+2i=a+(b+2)i,由虚部为0求得b,代入,由其虚部为0求得a,则复数z和|z|可求;(2)由的实部大于0且虚部小于0联立不等式组求解.【解答】解:(1)设z=a+bi(a,b∈R),则z+2i=a+(b+2)i,由z+2i为实数,得b+2=0,则b=﹣2.由=为实数,得,则a=4,∴z=4﹣2i,则;(2)由=4+3m+(m2﹣4)i在第四象限,得,解得.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.16.(14分)已知命题p:∀x∈R,tx2+x+t≤0.(1)若p为真命题,求实数t的取值范围;(2)命题q:∃x∈[2,16],tlog2x+1≥0,当p∨q为真命题且p∧q为假命题时,求实数t的取值范围.【分析】(1)利用全称命题,以及不等式恒成立,通过二次函数的性质求解即可.(2)求出命题q成立时,t的范围,然后通过复合命题的真假转化求解即可.【解答】解:(1)∵∀x∈R,tx2+x+t≤0,∴t<0且△=1﹣4t2≤0,解得∴p为真命题时,.…(6分)(2)∃x∈[2,16],tlog2x+1≥0⇒∃x∈[2,16],有解.又x∈[2,16]时,,∴t≥﹣1.…(8分)∵p∨q为真命题且p∧q为假命题时,∴p真q假或p假q真,当p假q真,有解得;当p真q假,有解得t<﹣1;∴p∨q为真命题且p∧q为假命题时,t<﹣1或.…(14分)【点评】本题考查命题的真假的判断与应用,复合命题的真假的判断,考查计算能力.17.(14分)已知椭圆C的方程为+=1.(1)求k的取值范围;(2)若椭圆C的离心率e=,求k的值.【分析】(1)利用椭圆的简单性质,列出不等式求解即可.(2)通过椭圆的焦点所在的轴,求解椭圆的离心率即可.【解答】解:(1)∵方程为+=1表示椭圆,则,解得k∈(1,5)∪(5,9)…(6分)(未去5扣2分)(2)①当9﹣k>k﹣1时,依题意可知a=,b=,∴c=,∵=,∴,∴k=2;②当9﹣k<k﹣1时,依题意可知b=,a=,∴c=,∵=,∴,∴k=8;∴k的值为2或8.(一种情况(4分)共8分)【点评】本题考查椭圆的简单性质的应用,考查计算能力.18.(16分)已知圆O:x2+y2=4,两个定点A(a,2),B(m,1),其中a∈R,m>0.P为圆O上任意一点,且(λ为常数).(1)求常数λ的值;(2)过点E(a,t)作直线l与圆C:x2+y2=m交于M,N两点,若M点恰好是线段NE的中点,求实数t的取值范围.【分析】(1)设出P的坐标,利用距离公式,通过待定系数法列出方程组求解即可.(2)设M(x0,y0),M是线段NE的中点,N(2x0﹣2,2y0﹣t),M,N在圆C 上,即关于x,y的方程组有解,转化为直线n:8x+4ty﹣t2﹣7=0与圆C:x2+y2=1有交点,利用点到直线的距离公式,列出不等式求解即可.【解答】解:(1)设点P(x,y),x2+y2=4,,,因为,所以(x﹣a)2+(y﹣2)2=λ2[(x﹣m)2+(y﹣1)2],化简得2ax+4y﹣a2﹣8=λ2(2mx+2y﹣m2﹣5),因为P为圆O上任意一点,所以,又m>0,λ>0,解得,所以常数.…(8分)(2)设M(x0,y0),M是线段NE的中点,N(2x0﹣2,2y0﹣t),又M,N在圆C上,即关于x,y的方程组有解,化简得有解,即直线n:8x+4ty﹣t2﹣7=0与圆C:x2+y2=1有交点,则,化简得:t4﹣2t2﹣15≤0,解得.…(16分)【点评】本题考查直线与圆的方程的综合应用,考查转化思想以及计算能力.19.(16分)(1)找出一个等比数列{a n},使得1,,4为其中的三项,并指出分别是{a n}的第几项;(2)证明:为无理数;(3)证明:1,,4不可能为同一等差数列中的三项.【分析】(1)根据题意取一个等比数列{a n}:首项为1、公比为,由等比数列的通项公式求出a n,再求出a n=4时的项数n即可判断;(2)假设是有理数,利用有理数的定义得:存在互质整数h、k,使得,再进行证明直到推出矛盾;(3)假设1,,4是同一等差数列中的三项,利用等差数列的通项公式和(2)的结论进行证明,直到推出矛盾.【解答】解:(1)取一个等比数列{a n}:首项为1、公比为,则,…2分则令=4,解得n=5,所以a 1=1,,a5=4.…4分(2)证明:假设是有理数,则存在互质整数h、k,使得,…5分则h2=2k2,所以h为偶数,…7分设h=2t,t为整数,则k2=2t2,所以k也为偶数,则h、k有公约数2,这与h、k互质相矛盾,…9分所以假设不成立,所以是有理数.…10分(3)证明:假设1,,4是同一等差数列中的三项,且分别为第n、m、p项且n、m、p互不相等,…11分设公差为d,显然d≠0,则,消去d得,,…13分由n、m、p都为整数,所以为有理数,由(2)得是无理数,所以等式不可能成立,…15分所以假设不成立,即1,,4不可能为同一等差数列中的三项.…16分.【点评】本题考查了等差、等比数列的通项公式,有理数的定义是应用,以及利用反证法证明结论成立,属于中档题.20.(16分)已知椭圆C:左焦点F,左顶点A,椭圆上一点B满足BF ⊥x轴,且点B在x轴下方,BA连线与左准线l交于点P,过点P任意引一直线与椭圆交于C、D,连结AD、BC交于点Q,若实数λ1,λ2满足:=λ1,=λ2.(1)求λ1•λ2的值;(2)求证:点Q在一定直线上.【分析】(1)由椭圆方程求得F坐标,结合BF⊥x轴,不妨设B(﹣2,﹣3),结合A(﹣4,0),求得直线AB方程,进一步求得P的坐标,由=λ1,得,再由=λ2,得,再由,可得,利用,由系数相等即可求得;(2)设点C(x1,y1),D(x2,y2),Q(x0,y0),由=λ1,得,,代入椭圆方程:,求得λ1,同理求得λ2,代入,可得x0+y0+2=0,说明点Q在定直线x﹣y+2=0上.【解答】解:(1)由椭圆C:,得a2=16,b2=12,∴,则F(﹣2,0),由BF⊥x轴,不妨设B(﹣2,﹣3),∵A(﹣4,0),∴直线AB:y=﹣(x+4),又左准线l:x=﹣8,∴P(﹣8,6),又=λ1,∴,得,由=λ2,得,得,又,∴,∵,由系数相等得,得;(2)证明:设点C(x1,y1),D(x2,y2),Q(x0,y0),由=λ1,得(x1+2,y1+3)=λ1(x0﹣x1,y0﹣y1),得,,代入椭圆方程:,得:,显然λ1≠0,∴,同理得:,又由(1),∴,整理得:x0+y0+2=0,即点Q在定直线x﹣y+2=0上.【点评】本题考查椭圆的简单性质,考查平面向量在求解圆锥曲线问题中的应用,考查计算能力,属难题.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵M=,其中a∈R,若点P(1,﹣2)在矩阵M的变换下得到点P′(﹣4,0)(1)求实数a的值;(2)求矩阵M的特征值及其对应的特征向量.【分析】(1)点P(1,﹣2)在矩阵M的变换下得到点P'(﹣4,0),利用二阶矩阵与平面列向量的乘法可求实数a的值;(2)先求矩阵M的特征多项式f(λ),令f(λ)=0,从而可得矩阵M的特征值,进而可求特征向量.【解答】解:(1)由=,∴2﹣2a=﹣4⇒a=3.(2)由(1)知M=,则矩阵M的特征多项式为令f(λ)=0,得矩阵M的特征值为﹣1与4.当λ=﹣1时,∴矩阵M的属于特征值﹣1的一个特征向量为;当λ=4时,∴矩阵M的属于特征值4的一个特征向量为.【点评】本题主要考查二阶矩阵与平面列向量的乘法,考查矩阵M的特征值及其对应的特征向量.关键是写出特征多项式,从而求得特征值.[选修4-4:坐标系与参数方程](本小题满分20分)22.已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆M上的点到直线的距离的最小值.【分析】(Ⅰ)以极点为原点,极轴为x轴正半轴建立直角坐标系,利用和角的正弦函数,即可求得该直线的直角坐标方程;(Ⅱ)圆M的普通方程为:x2+(y+2)2=4,求出圆心M(0,﹣2)到直线x+y ﹣1=0的距离,即可得到圆M上的点到直线的距离的最小值.【解答】解:(Ⅰ)以极点为原点,极轴为x轴正半轴建立直角坐标系.(1分)∵∴,∴ρsinθ+ρcosθ=1.(2分)∴该直线的直角坐标方程为:x+y﹣1=0.(3分)(Ⅱ)圆M的普通方程为:x2+(y+2)2=4(4分)圆心M(0,﹣2)到直线x+y﹣1=0的距离.(5分)所以圆M上的点到直线的距离的最小值为.(7分)【点评】本题考查极坐标方程与直角坐标方程,参数方程与普通方程的互化,考查点线距离公式的运用,属于基础题.23.(10分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF ⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【分析】(1)取AD的中点I,连接FI,证明四边形EFIG是平行四边形,可得EG ∥FI,利用线面平行的判定定理证明:EG∥平面ADF;(2)建立如图所示的坐标系O﹣xyz,求出平面OEF的法向量,平面OEF的法向量,利用向量的夹角公式,即可求二面角O﹣EF﹣C的正弦值;(3)求出=(﹣,,),利用向量的夹角公式求出直线BH和平面CEF 所成角的正弦值.【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD.∵O是正方形ABCD的中心,∴OB=BD.∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;(2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣,0),C(,0,0),E(0,﹣,2),F(0,0,2),设平面CEF的法向量为=(x,y,z),则,取=(,0,1)∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=∴二面角O﹣EF﹣C的正弦值为=;(3)解:AH=HF,∴==(,0,).设H(a,b,c),则=(a+,b,c)=(,0,).∴a=﹣,b=0,c=,∴=(﹣,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.【点评】本题考查证明线面平行的判定定理,考查二面角O﹣EF﹣C的正弦值,直线BH和平面CEF所成角的正弦值,考查学生分析解决问题的能力,属于中档题.24.(10分)在平面直角坐标系xOy中,直线l:x=﹣1,点T(3,0),动点P满足PS⊥l,垂足为S,且•=0,设动点P的轨迹为曲线C.(1)求曲线C的方程;(2)设Q是曲线C上异于点P的另一点,且直线PQ过点(1,0),线段PQ的中点为M,直线l与x轴的交点为N.求证:向量与共线.【分析】(1)设P(x0,y0),则S(﹣1,y0),由此利用向量的数量积能求出曲线C的方程.(2)设Q(x1,y1),则,从而y2=4x,p=2,焦点F(1,0),N(﹣1,0),由PQ过F,得,,进而=(),=(),由此能证明向量与共线.【解答】解:(1)设P(x0,y0),则S(﹣1,y0),∴=(x0,y0)•(4,﹣y0)=4=0,∴.∴曲线C:y2=4x.证明:(2)设Q(x1,y1),则,y2=4x,p=2,焦点F(1,0),N(﹣1,0),∵PQ过F,∴x0x1=﹣=1,,∴,,∴=,=,∴=()=(),=(x1+1,y1)=(),假设=成立,∴,解得,∴,∴向量与共线.【点评】本题考查曲线方程的求法,考查向量共线的证明,考查抛物线、直线方程、向量的数量积等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.。

江苏省南通市启东市2017-2018学年高二下学期期末考试数学试题+Word版含解析

江苏省南通市启东市2017-2018学年高二下学期期末考试数学试题第Ⅰ卷(共160分)一、填空题(每题5分,满分70分,将答案填在答题纸上)1. “”的否定是__________.【答案】【解析】分析:根据的否定为得结果.详解:因为的否定为,所以“”的否定是点睛:对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定. 的否定为,的否定为.2. 函数的定义域是__________.【答案】【解析】分析:根据分母不为零得定义域.详解:因为,所以,即定义域为.点睛:求具体函数定义域,主要从以下方面列条件:偶次根式下被开方数非负,分母不为零,对数真数大于零,实际意义等.3. 两根相距的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于的概率是__________.【答案】【解析】在距绳子两段两米处分别取A,B两点,当绳子在线段AB上时(不含端点),符合要求,所以灯与两端距离都大于2m的概率为,故填.4. 命题,命题,则“或”是__________命题.(填“真”、“假”)【答案】真【解析】分析:先判断p,q真假,再判断“或”真假.详解:因为,所以p为假命题,因为,所以q为真命题,因此“或”是真命题,点睛:若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非”:真假相反,做出判断即可.5. 函数的导函数__________.【答案】【解析】分析:根据导数运算法则直接计算.详解:点睛:本题考查基本初等函数导数,考查基本求解能力.6. 已知函数是上奇函数,且当时,则__________.【答案】【解析】分析:先求,再根据奇函数得.详解:因为,因为函数是上奇函数,所以点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.7. 已知集合,若,则实数的值是__________.【答案】【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为,所以点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.8. 函数的单调减区间为__________.【答案】【解析】分析:先求导数,再求导数小于零的解集.详解:因为,所以因此单调减区间为.点睛:求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想.9. “”是“函数是上的奇函数”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中一个)【答案】必要不充分【解析】分析:先举反例说明充分性不成立,再根据奇函数性质推导,说明必要性成立. 详解:因为满足,但不是奇函数,所以充分性不成立,因为函数是上的奇函数,所以必要性成立.因此“”是“函数是上的奇函数”的必要不充分条件.,点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.10. 设函数图象在处的切线方程是,则函数的图象在处的切线方程是__________.【答案】【解析】分析:先根据导数几何意义得,再根据点斜式求切线方程.详解:因为函数图象在处的切线方程是,,所以,因此函数的图象在处的切线斜率等于,切线方程是.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化11. 若关于的不等式的解集是,则实数的值是__________.【答案】【解析】分析:先根据二次函数图像得恒成立且的两根为1,3,再根据韦达定理求实数的值详解:因为关于的不等式的解集是,所以恒成立且的两根为1,3,所以.点睛:一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.12. 函数的图象如图所示,则的取值范围是__________.【答案】【解析】分析:先根据图像得,解得b,a关系,即得解析式,根据二次函数性质求取值范围.详解:因为根据图像得,所以点睛:本题考查幂函数图像与性质,考查二次函数求最值方法.13. 已知函数,若函数恰有两个不同的零点,则实数的取值范围是__________.【答案】【解析】分析:先根据导数研究图像,再根据与图像交点情况确定实数的取值范围.详解:令,所以当时,;当时,;作与图像,由图可得要使函数恰有两个不同的零点,需点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.14. 已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的【答案】【解析】分析:先根据单调性得对任意的都成立,再根据实数存在性得,即得,解得正整数的最大值.详解:因为偶函数在区间上是增函数,对任意的,都有,所以对任意的都成立,因为存在实数,所以即得,因为成立,,所以正整数的最大值为4.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.二、解答题:15. 甲、乙两个同学分別抛掷一枚质地均匀的骰子.(1)求他们抛掷的骰子向上的点数之和是4的倍数的概率;(2)求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率.【答案】(1);(2).【解析】分析:(1)先求基本事件总数,再求点数之和是4的倍数事件数,最后根据古典概型概率公式求概率,(2)先求基本事件总数,再求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的事件数,最后根据古典概型概率公式求概率.详解:(1)记“他们抛掷的骰子向上的点数之和是4的倍数”为事件A,基本事件共有36个,事件A包含9个基本事件,故P(A)=;(2)记“甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数”为事件B,基本事件共有36个,事件B包含21个基本事件,故P(B)=.答(1)他们抛掷的骰子向上的点数之和是4的倍数的概率为.(2)甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.16. 已知集合.(1)当时,求集合;(2)当时,若,求实数的取值范围.【答案】(1);(2).【解析】分析:(1)解一次不等式得集合A,(2)先根据A∩B= B得B A,再根据k分类解集合A,最后根据数轴确定实数的取值范围.详解:(1)当k=1时,A={x|0≤x+1≤5}={x|-1≤x≤4};(2)因为A∩B= B,所以B A,由0≤kx+1≤5,得-1≤kx≤4,①当k=0时,A=R,满足B A成立;②当k<0时,A=,由B A,得,即,故,综上所述:.点睛:将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.17. 如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:,为圆柱的底面枳,为圆柱的高)【答案】(1);(2),.【解析】分析:(1)先利用勾股定理可得OA,根据周长公式得半径,再根据圆柱体积公式求V(x),最后根据实际意义确定定义域,(2)先求导数,再求导函数零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值.详解:(1)连接OB,在Rt△OAB中,由AB=x,利用勾股定理可得OA=,设圆柱底面半径为r,则=2πr,即4=3600-,所以V(x)=π=π··x=,即铁皮罐的容积为V(x)关于x的函数关系式为V(x)=,定义域为(0,60).(2)由V ′(x)==0,x∈(0,60),得x=20.列表如下:(20V(20所以当x=20时,V(x)有极大值,也是最大值为.答:当x为20 cm时,做出的圆柱形铁皮罐的容积最大,最大容积是.点睛:利用导数解答函数最值的一般步骤:第一步:利用或求单调区间;第二步:解得实根;第三步:比较实根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.18. 已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.(1)若命题为真命题,求实数的值;(2)若“且”为假命题,“或”为真命题,求实数的取值范围.【答案】(1);(2).【解析】分析:(1)根据奇函数定义得f(-x)+f(x)=0,解得实数的值;(2)根据函数单调性得转化为对应一元二次方程有两个大于1的不相等实根,利用实根分布解得k 的取值范围,由“p且q”为假命题,“p或q”为真命题,得命题p和q中有且仅有一个为真命题,根据真假列方程组解得实数的取值范围.详解:(1)若命题p为真命题,则f(-x)+f(x)=0,即,化简得对任意的x∈R成立,所以k=1.(2)若命题q为真命题,因为在[a,b]上恒成立,所以g(x)在[a,b]上是单调增函数,又g(x)的定义域和值域都是[a,b],所以所以a,b是方程的两个不相等的实根,且1<a<b.即方程有两个大于1的实根且不相等,记h(x)=k2x2-k(2k-1)x+1,故,解得,所以k的取值范围为.因为“p且q”为假命题,“p或q”为真命题,所以命题p和q中有且仅有一个为真命题,即p真q假,或p假q真.所以或所以实数k的取值范围为.点睛:以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p∨q”“p∧q”“非p”形式命题的真假,列出含有参数的不等式(组)求解即可.19. 已知函数,集合.(1)当时,解不等式;(2)若,且,求实数的取值范围;(3)当时,若函数的定义域为,求函数的值域.【答案】(1);(2);(3)当时,的值域为;当时,的值域为;当时,的值域为.【解析】分析:(1)先根据一元二次方程解得e x>3,再解对数不等式得解集,(2)解一元二次不等式得集合A,再根据,得log2f(x)≥1在0≤x≤1上有解,利用变量分离法得a≥3e x-e2x在0≤x≤1上有解,即a≥[3e x-e2x]min.最后根据二次函数性质求最值得结果,(3)先转化为对勾函数,再根据拐点与定义区间位置关系,分类讨论,结合单调性确定函数值域. 详解:(1)当a=-3时,由f(x)>1得e x-3e-x-1>1,所以e2x-2e x-3>0,即(e x-3) (e x+1)>0,所以e x>3,故x>ln3,所以不等式的解集为(ln3,+∞).(2)由x2-x≤0,得0≤x≤1,所以A={x|0≤x≤1}.因为A∩B≠,所以log2f(x)≥1在0≤x≤1上有解,即f(x)≥2在0≤x≤1上有解,即e x+ae-x-3≥0在0≤x≤1上有解,所以a≥3e x-e2x在0≤x≤1上有解,即a≥[3e x-e2x]min.由0≤x≤1得1≤e x≤e,所以3e x-e2x=-(e x-)2+∈[3e-e2,],所以a≥3e-e2.(3)设t=e x,由(2)知1≤t≤e,记g(t)=t+-1(1≤t≤e,a>1),则,(①当≥e时,即a≥e2时,g(t)在1≤t≤e上递减,所以g(e)≤g(t)≤g(1),即.所以f(x)的值域为.②当1<<e时,即1<a<e2时,g(t)min= g()=2-1,g(t)max=max{ g(1),g(e)} =max{ a,}.1°若a,即e<a<e2时,g(t)max= g(1)= a;所以f(x)的值域为;2°若a,即1<a≤e时,g(t)max= g(e) =,所以f(x)的值域为.综上所述,当1<a≤e时,f(x)的值域为;当e<a<e2时,f(x)的值域为;当a≥e2时,f(x)的值域为.点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.20. 已知函数.(1)若函数的图象在处的切线过点,求的值;(2)当时,函数在上没有零点,求实数的取值范围;(3)当时,存在实数使得,求证:.【答案】(1);(2)或;(3)证明见解析.【解析】分析:(1)先根据导数几何意义得切线斜率,再根据两点间斜率公式列等式,解得的值;(2)先求导数,根据a讨论导数零点情况,再根据对应单调性确定函数值域,最后根据无零点确定最小值大于零或最大值小于零,解得结果,(3)先根据,解得,代入得,再转化为一元函数:最后利用导数证明h(t)< 0成立.详解:(1)因为f ′(x)=-a,所以k=f ′(1)=1-a,又因为f(1)=-a-b,所以切线方程为y+a+b=(1-a)(x-1),因为过点(2,0),所以a+b=1-a,即2a+b=1.(2)当b=0时,f(x)=lnx-ax,所以f ′(x)=-a=.10若a≤0,则f ′(x)>0,所以f(x)在(,+∞)上递增,所以f(x)>f()=-1-,因为函数y=f(x)在(,+∞)上没有零点,所以-1-≥0,即a≤-e;20若a>0,由f ′(x)=0,得x=.①当≤时,即a≥e时,f ′(x)<0,f(x)在(,+∞)上递减,所以f(x)<f()=-1-<0,符合题意,所以a≥e;②当>时,即0<a<e时,若<x<,f ′(x)<0,f(x)在(,)上递增;若x>,f ′(x)>0,f(x)在(,+∞)上递减,所以f(x)在x=处取得极大值,即为最大值,要使函数y=f(x)在(,+∞)上没有零点,必须满足f()=ln-1=-lna-1<0,得a>,所以<a<e.综上所述,实数a的取值范围是a≤-e或a>.(3)不妨设0<x1<x2,由f(x1)=f(x2),得lnx1-ax1-b=lnx2-ax2-b,因为a>0,所以.又因为,f ′(x)在(0,+∞)上递减,且f ′()=0,故要证,只要证,只要证,只要证,只要证(*),令,记,则,所以h(t)在(1,+∞)上递减,所以h(t)< h(1)=0,所以(*)成立,所以原命题成立.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.21. 求下列函数的导数:(1);(2).【答案】(1);(2)或.【解析】分析:(1)根据复合函数(指数函数与一次函数的复合)求导法则求导数,(2)根据复合函数(幂函数与一次函数的复合)求导法则求导数.详解:(1);(2).或.点睛:本题考查复合函数求导法则,注意函数如何复合的.22. 2名男生、4名女生排成一排,问:(1)男生平必须排在男生乙的左边(不一定相邻)的不同排法共有多少种?(2)4名女生不全相邻的不同排法共有多少种?【答案】(1);(2).【解析】分析:(1)根据定序法确定排列数,(2)先求相邻的排列数(捆绑法),再用全排列相减得结果.详解:(1)法1:,法2:;(2).答:分别有360和576种不同的排法.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.23. 小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.【答案】(1);(2).【解析】分析:(1)先求小陈同学三次投篮都没有命中的概率,再用1减得结果,(2)先确定随机变量取法,再利用组合数求对应概率,列表得分布列,最后根据数学期望公式求结果. 详解:(1)小陈同学三次投篮都没有命中的概率为(1-)×(1-)×(1-)=;所以小陈同学三次投篮至少命中一次的概率为1-=.(2)ξ可能的取值为0,1,2,3.P(ξ=0)=;P(ξ=1)=×(1-)×(1-)+(1-)××(1-)+(1-)×(1×)×=;P(ξ=2)=××+××+××=;P(ξ=3)=××=;故随机变量ξ的概率分布为所以数学期望E(ξ)=0×+1×+2×=+3×=.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.24. 已知,定义.(1)求的值;(2)证明:.【答案】(1);(2)证明见解析.【解析】分析:(1)先根据定义代入求求的值;(2)根据定义可得,则左边化简得,利用等式化简,并利用二项式定理可得结果.详解:(1),.(2)当n=1时,,等式成立.当n≥2时,,由于,所以,综上所述,对n∈N*,成立.点睛:有关组合式的求值证明,常采用构造法逆用二项式定理.常应用组合数性质进行转化:,.。

江苏省南通市启东中学2017-2018学年高二上学期10月月考数学试卷 Word版含解析

2017-2018学年江苏省南通市启东中学高二(上)10月月考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.命题:∀x∈R,sinx<1的否定是.2.椭圆+=1的焦点坐标为.3.圆C1:x2+y2=1与圆C2:(x﹣1)2+(y+1)2=4有条公切线.4.“p∧q为假”是“p∨q为假”的条件.(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个)5.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的命题.6.若直线x+y+m=0与圆x2+y2=m相离,则m取值范围是.7.已知圆C:x2+y2=1,点A(﹣2,0)及点B(2,a),若从A点观察B点,要使视线不被圆C挡住,则a的取值范围是.8.椭圆的离心率为,则m=.9.过点M(1,1)且与椭圆+=1交于A,B两点,则被点M平分的弦所在的直线方程为.10.已知点P是椭圆+=1(a>b>0)上的动点,F1,F2为椭圆的左右焦点,焦距为2c,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且MF1⊥MP,则OM的取值范围为.11.若直线y=x+b与曲线x=恰有一个公共点,则b的取值范围是.12.设F是椭圆+=1的右焦点,点A(1,2),M是椭圆上一动点,则MA+MF取值范围为.13.已知椭圆的离心率是,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1,k2,若点A,B关于原点对称,则k1•k2的值为.14.椭圆(a>b>0)上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF=a,a∈[,],则椭圆的离心率的取值范围为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知命题p:实数m满足m2﹣7ma+12a2<0(a>0),命题q:满足方程+=1表示焦点在y轴上的椭圆,若¬p是¬q的必要而不充分条件,求实数a的取值范围.16.设a为实数,给出命题p:关于x的不等式的解集为∅,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.17.已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)(Ⅰ)证明:无论m取什么实数,l与圆恒交于两点;(Ⅱ)求直线被圆C截得的弦长最小时l的方程.18.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=3上,圆弧C1的圆心是坐标原点O,半径为5,圆弧C2过点A(﹣1,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由.19.已知中心在原点,焦点在坐标轴上的椭圆过M(1,),N(﹣,)两点.(1)求椭圆的方程;(2)在椭圆上是否存在点P(x,y)到定点A(a,0)(其中0<a<3)的距离的最小值为1,若存在,求出a的值及点P的坐标;若不存在,请给予证明.20.已知平面直角坐标系xOy中,已知椭圆=1(a>0,b>0)的右顶点和上顶点分别为A,B,椭圆的离心率为,且过点(1,).(1)求椭圆的标准方程;(2)如图,若直线l与该椭圆交于点P,Q两点,直线BQ,AP的斜率互为相反数.①求证:直线l的斜率为定值;②若点P在第一象限,设△ABP与△ABQ的面积分别为S1,S2,求的最大值.2016-2017学年江苏省南通市启东中学高二(上)10月月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.命题:∀x∈R,sinx<1的否定是∃x∈R,sinx≥1.【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题:∀x∈R,sinx<1的否定是:∃x∈R,sinx≥1.故答案为:∃x∈R,sinx≥1.2.椭圆+=1的焦点坐标为(0,﹣1),(0,1).【考点】椭圆的简单性质.【分析】由椭圆的方程求得半焦距c的值,根据椭圆的性质即可求得椭圆的焦点坐标.【解答】解:由椭圆的性质可知焦点在y轴上,c===1,∴椭圆的焦点坐标为(0,﹣1),(0,1),故答案为:(0,﹣1),(0,1),.3.圆C1:x2+y2=1与圆C2:(x﹣1)2+(y+1)2=4有2条公切线.【考点】圆与圆的位置关系及其判定.【分析】根据两圆的方程的标准形式,分别求出圆心和半径,两圆的圆心距小于两圆的半径之和,大于半径之差,故两圆相交,即可得出结论.【解答】解:圆C1:x2+y2=1,圆心C1(0,0),半径为1,圆C2:(x﹣1)2+(y+1)2=4,圆心C2(1,﹣1),半径为2,两圆的圆心距为,正好小于两圆的半径之和,大于半径之差,故两圆相交,故两圆的公切线只有二条,故答案为2.4.“p∧q为假”是“p∨q为假”的必要不充分条件.(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个)【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合复合命题之间的关系进行判断即可.【解答】解:若“p∨q为假”则p,q同时为假命题,若““p∧q为假”则p,q至少有一个为假命题,p∧q为假”是“p∨q为假”的必要不充分,故答案为:必要不充分5.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的否命题.【考点】四种命题.【分析】设命题p为:若m,则n.根据已知写出命题r,s,t,结合四种命题的定义,可得答案.【解答】解:设命题p为:若m,则n.那么命题r:若¬m,则¬n,命题s:若¬n,则¬m.命题t:若n,则m.根据命题的关系,s是t的否命题.故答案为:否6.若直线x+y+m=0与圆x2+y2=m相离,则m取值范围是m>2.【考点】直线与圆的位置关系.【分析】根据直线与圆相离得到圆心到直线的距离d大于r,利用点到直线的距离公式列出关于m的不等式,求出不等式的解集即可确定出m的范围.【解答】解:∵x+y+m=0与圆x2+y2=m相离,∴圆心到直线的距离d>r,即>,解得:m>2,故答案为:m>2.7.已知圆C:x2+y2=1,点A(﹣2,0)及点B(2,a),若从A点观察B点,要使视线不被圆C挡住,则a的取值范围是a>或a..【考点】圆的切线方程.【分析】先求过A与圆C:x2+y2=1相切的直线方程,再求a的取值范围.【解答】解:过A与圆C:x2+y2=1相切的直线的斜率是,切线方程是y=(x+2),若从A点观察B点,要使视线不被圆C挡住,B在x=2的直线上,且a>或a.故选A>或a.8.椭圆的离心率为,则m=3或.【考点】椭圆的简单性质.【分析】方程中4和m哪个大,哪个就是a2,利用离心率的定义,分0<m<4和m>4两种情况求出m的值.【解答】解:方程中4和m哪个大,哪个就是a2,(ⅰ)若0<m<4,则a2=4,b2=m,∴c=,∴e==,得m=3;(ⅱ)m>4,则b2=4,a2=m,∴c=,∴e==,得m=;综上:m=3或m=,故答案为:3或.9.过点M(1,1)且与椭圆+=1交于A,B两点,则被点M平分的弦所在的直线方程为x+4y﹣5=0.【考点】椭圆的简单性质.【分析】设过M点的直线与椭圆两交点的坐标,分别代入椭圆方程,得到两个关系式,分别记作①和②,①﹣②后化简得到一个关系式,然后根据M为弦AB的中点,由中点坐标公式,表示出直线AB方程的斜率,把化简得到的关系式变形,将A和B两点的横纵坐标之和代入即可求出斜率的值,然后由点M的坐标和求出的斜率写出直线AB的方程即可.【解答】解:设过点M的直线与椭圆相交于两点,A(x1,y1),B(x2,y2),则有+=1①,+=1②,①﹣②式可得: +=0,又点M为弦AB的中点,且M(1,1),由+<1,可得M在椭圆内,∴x1+x2=2,y1+y2=2,即得k AB==﹣,∴过点A且被该点平分的弦所在直线的方程是y﹣1=﹣(x﹣1),即x+4y﹣5=0.故答案为:x+4y﹣5=0.10.已知点P是椭圆+=1(a>b>0)上的动点,F1,F2为椭圆的左右焦点,焦距为2c,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且MF1⊥MP,则OM的取值范围为(0,c).【考点】椭圆的简单性质.【分析】利用M是∠F1PF2平分线上的一点,且F1M⊥MP,判断OM是三角形F1F2N的中位线,把OM用PF1,PF2表示,再利用椭圆的焦半径公式,转化为用椭圆上点的横坐标表示,借助椭圆的范围即可求出OM的范围.【解答】解:如图,延长PF2,F1M,交与N点,∵PM是∠F1PF2平分线,且F1M⊥MP,∴|PN|=|PF1|,M为F1N中点,连接OM,∵O为F1F2中点,M为F1N中点∴|OM|=|F2N|=||PN|﹣|PF2||=||PF1|﹣|PF2||∵在椭圆+=1(a>b>0)中,设P点坐标为(x0,y0)则|PF1|=a+ex0,|PF2|=a﹣ex0,∴||PF1|﹣|PF2||=|a+ex0﹣a+ex0|=|2ex0|=2e|x0|∵P点在椭圆+=1(a>b>0)上,∴|x0|∈(0,a],又∵当|x0|=a时,F1M⊥MP不成立,∴|x0|∈(0,a)∴|OM|∈(0,c).故答案为:(0,c).11.若直线y=x+b与曲线x=恰有一个公共点,则b的取值范围是﹣1<b≤1或b=﹣.【考点】直线与圆相交的性质.【分析】直线y=x+b是一条斜率为1,截距为b的直线;曲线x=是一个圆心为(0,0),半径为1的右半圆.它们有且有一个公共点,做出它们的图形,则易得b的取值范围.【解答】解:直线y=x+b是一条斜率为1,截距为b的直线;曲线x=变形为x2+y2=1且x≥0显然是一个圆心为(0,0),半径为1的右半圆.根据题意,直线y=x+b与曲线x=有且有一个公共点做出它们的图形,则易得b的取值范围是:﹣1<b≤1或b=﹣.故答案为:﹣1<b≤1或b=﹣.12.设F是椭圆+=1的右焦点,点A(1,2),M是椭圆上一动点,则MA+MF取值范围为(6﹣2,6+2).【考点】椭圆的简单性质.【分析】椭圆左焦点设为F1,连接MF1.利用椭圆的定义以及在三角形中,两边之差总小于第三边,当A、M、F1成一直线时,|MA|﹣|MF1|最大,求解即可.利用|MA|+|MF2|=|MA|+6﹣|MF1|=10﹣(|MF1|﹣|MA|)≥6﹣|AF1|,即可得出其最小值.【解答】解:由椭圆+=1的焦点在x轴上,a=3,b=2,c=1,左焦点为F1(﹣1,0),连接MF1.由椭圆的定义可知:|MF1|+|MF|=2a,|MA|+|MF|=|MA|+2a﹣|MF1|=6+|MA|﹣|MF1|.即|MA|﹣|MF1|最大时,|MA|+|MF2|最大.在△AMF1中,两边之差总小于第三边,所以当A、M、F1成一直线时,|MA|﹣|MF1|最大,|MA|﹣|MF1|=|AF1|==2.∴|MA|+|MF2|的最大值是6+2.∴|MA|+|MF2|=|MA|+6﹣|MF1|=6﹣(|MF1|﹣|MA|)≥10﹣|AF1|=6﹣2,∴|MA|+|MF|的取值范围(6﹣2,6+2),故答案为:(6﹣2,6+2).13.已知椭圆的离心率是,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1,k2,若点A,B关于原点对称,则k1•k2的值为.【考点】椭圆的简单性质;直线的斜率.【分析】椭圆的离心率是,则椭圆的方程可化为:x2+2y2=2b2.设M(m,n),直线AB的方程为:y=kx,可设:A(x0,kx0),B(﹣x0,﹣kx0).代入椭圆方程和利用斜率计算公式即可得出.【解答】解:∵椭圆的离心率是,∴,∴,于是椭圆的方程可化为:x2+2y2=2b2.设M(m,n),直线AB的方程为:y=kx,可设:A(x0,kx0),B(﹣x0,﹣kx0).则m2+2n2=2b2,,∴=.∴k1•k2===.故答案为:﹣.14.椭圆(a>b>0)上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF=a,a∈[,],则椭圆的离心率的取值范围为[,] .【考点】椭圆的简单性质.【分析】设左焦点为F′,根据椭圆定义:|AF|+|AF′|=2a,根据B和A关于原点对称可知|BF|=|AF′|,推知|AF|+|BF|=2a,又根据O是Rt△ABF的斜边中点可知|AB|=2c,在Rt△ABF中用α和c分别表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出即离心率e,进而根据α的范围确定e的范围.【解答】解:∵B和A关于原点对称∴B也在椭圆上设左焦点为F′根据椭圆定义:|AF|+|AF′|=2a又∵|BF|=|AF′|∴|AF|+|BF|=2a …①O是Rt△ABF的斜边中点,∴|AB|=2c又|AF|=2csinα…②|BF|=2ccosα…③②③代入①2csinα+2ccosα=2a∴=即e==∵a∈[,],∴≤α+π/4≤∴≤sin(α+)≤1∴≤e≤故答案为[,]二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知命题p:实数m满足m2﹣7ma+12a2<0(a>0),命题q:满足方程+=1表示焦点在y轴上的椭圆,若¬p是¬q的必要而不充分条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据命题p、q分别求出m的范围,再根据p是q的充分不必要条件列出关于a的不等式组,解不等式组即可【解答】解:由m2﹣7am+12a2<0(a>0),则3a<m<4a即命题p:3a<m<4a,实数m满足方程+=1表示焦点在y轴上的椭圆,则,即,解得1<m<,因为¬p是¬q的必要而不充分条件,所以p是q的充分不必要条件,则,解得≤a≤,故实数a的取值范围为:[,].16.设a为实数,给出命题p:关于x的不等式的解集为∅,命题q:函数f (x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.【考点】复合命题的真假.【分析】先根据指数函数的单调性,对数函数的定义域,以及一元二次不等式解的情况和判别式△的关系求出命题p,q下的a的取值范围,再根据p∨q为真,p∧q为假得到p,q一真一假,所以分别求出p真q假,p假q真时的a的取值范围并求并集即可.【解答】解:命题p:|x﹣1|≥0,∴,∴a>1;命题q:不等式的解集为R,∴,解得;若命题“p∨q”为真,“p∧q”为假,则p,q一真一假;p真q假时,,解得a≥8;p假q真时,,解得;∴实数a的取值范围为:.17.已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)(Ⅰ)证明:无论m取什么实数,l与圆恒交于两点;(Ⅱ)求直线被圆C截得的弦长最小时l的方程.【考点】直线与圆相交的性质.【分析】(Ⅰ)求得所给的直线经过x+y﹣4=0 和2x+y﹣7=0的交点M(3,1),而点M在圆C:(x﹣1)2+(y﹣2)2=25的内部,从而得到l与圆恒交于两点.(Ⅱ)弦长最小时,MC和弦垂直,再利用点斜式求得弦所在的直线的方程.【解答】解:(Ⅰ)证明:直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,即x+y﹣4+m(2x+y﹣7)=0,恒经过直线x+y﹣4=0 和2x+y﹣7=0的交点M(3,1),而点M到圆心C(1,2)的距离为MC==<半径5,故点M在圆C:(x﹣1)2+(y﹣2)2=25的内部,故l与圆恒交于两点.(Ⅱ)弦长最小时,MC和弦垂直,故弦所在的直线l的斜率为==2,故直线l的方程为y﹣1=2(x﹣3),即2x﹣y﹣5=0.18.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=3上,圆弧C1的圆心是坐标原点O,半径为5,圆弧C2过点A(﹣1,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由.【考点】直线与圆的位置关系.【分析】(1)由圆弧C1所在圆的方程求出M、N的坐标,求出直线AM的中垂线方程与直线MN中垂线方程,再求出圆弧C2所在圆的圆心和半径,即可求出圆弧C2所在圆的方程;(2)先假设存在这样的点P(x,y),根据条件和两点的距离公式列出方程化简,求出点P 的轨迹方程,分别与圆弧C1的方程、圆弧C2的方程联立后求出P的坐标即可得到答案.【解答】解:(1)圆弧C1所在圆的方程为x2+y2=25,令x=3,解得M(3,4),N(3,﹣4),∵圆弧C2过点A(﹣1,0),∴直线AM的中垂线方程为y﹣2=﹣(x﹣1),∵直线MN的中垂线方程y=0上,∴令y=0,得圆弧C2所在圆的圆心为O2(3,0),∴圆弧C2所在圆的半径为r2=|O2A|=4,∴圆弧C2的方程为(x﹣3)2+y2=16(﹣1≤x≤3);(2)假设存在这样的点P(x,y),由得,,化简得,x2+y2+4x+2=0,∴点P的轨迹方程是x2+y2+4x+2=0,由,解得(舍去),由,解得,综上知的,这样的点P存在2个.19.已知中心在原点,焦点在坐标轴上的椭圆过M(1,),N(﹣,)两点.(1)求椭圆的方程;(2)在椭圆上是否存在点P(x,y)到定点A(a,0)(其中0<a<3)的距离的最小值为1,若存在,求出a的值及点P的坐标;若不存在,请给予证明.【考点】椭圆的应用;椭圆的标准方程;椭圆的简单性质.【分析】(1)设椭圆方程为mx2+ny2=1(m>0,n>0,且m≠n),由椭圆过M,N两点得,求出m,n后就得到椭圆的方程.(2)设存在点P(x,y)满足题设条件,由+=1,得y2=4(1﹣),结合题设条件能够推导出|AP|2=(x﹣a)2+4﹣a2(|x|≤3),由此可以求出a的值及点P的坐标.【解答】解:(1)设椭圆方程为mx2+ny2=1(m>0,n>0,且m≠n)∵椭圆过M,N两点∴⇒,即椭圆方程为+=1.(2)设存在点P(x,y)满足题设条件,由+=1,得y2=4(1﹣)∴|AP|2=(x﹣a)2+y2=(x﹣a)2+4(1﹣)=(x﹣a)2+4﹣a2(|x|≤3),当||≤3即0<a≤时,|AP|2的最小值为4﹣a2∴4﹣a2=1⇒a=±∉(0,]∴a>3即<a<3,此时当x=3时,|AP|2的最小值为(3﹣a)2∴(3﹣a)2=1,即a=2,此时点P的坐标是(3,0)故当a=2时,存在这样的点P满足条件,P点的坐标是(3,0).20.已知平面直角坐标系xOy中,已知椭圆=1(a>0,b>0)的右顶点和上顶点分别为A,B,椭圆的离心率为,且过点(1,).(1)求椭圆的标准方程;(2)如图,若直线l与该椭圆交于点P,Q两点,直线BQ,AP的斜率互为相反数.①求证:直线l的斜率为定值;②若点P在第一象限,设△ABP与△ABQ的面积分别为S1,S2,求的最大值.【考点】直线与圆锥曲线的综合问题.【分析】(1)通过将点(1,)代入椭圆方程,结合离心率为计算即得结论;(2)通过(1)可知A(2,0)、B(0,1).①通过设直线AP的方程为x=my+2、直线BQ的方程为x=﹣my+m,分别与椭圆方程联立,计算可知P(,﹣)、Q(,),利用斜率计算公式计算即可;②通过(1)可知直线AB的方程为x+2y﹣2=0,|AB|=,通过①可知P(,﹣)、Q(,),利用点P在第一象限可知﹣2<m<0,分别计算出点P、Q到直线AB的距离,利用三角形面积公式计算、结合基本不等式化简即得结论.【解答】(1)解:依题意,,化简得:,解得:,∴椭圆的标准方程为:;(2)由(1)可知,A(2,0),B(0,1),直线BQ,AP的斜率均存在且不为0.①证明:设直线AP的方程为:x=my+2,则直线BQ的方程为:x=﹣my+m,联立,消去x整理得:(4+m2)y2+4my=0,∴P(,﹣),联立,消去x整理得:(4+m2)y2﹣2m2y+m2﹣4=0,∴Q(,),∴直线l的斜率为==;②解:由(1)可知直线AB的方程为:x+2y﹣2=0,|AB|==,由①可知:P(,﹣),Q(,),∵点P在第一象限,∴<﹣,即﹣2<m<0,∴点P到直线AB的距离d P==﹣,点Q到直线AB的距离d Q==,∴=== [(m﹣4)++10],∵(4﹣m)+≥2=4,当且仅当4﹣m=即m=4﹣2时取等号,∴(m﹣4)+≤﹣4,∴的最大值为(10﹣4)=5﹣2.2016年12月29日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省启东中学2017-2018学年度第一学期期终考试高二数学试卷 2018.1.8命题人:黄群力 注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置....... 上.1.复数-1iz i=+,其中i 为虚数单位,则z 的虚部是 ▲ . 2.命题:p x R ∃∈,使得220x +≤的否定为_____▲____.3.执行如图所示的伪代码,若输出y 的值为1,则输入x 的值为 ▲ .4.已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是 ▲ . 5.抛物线2=4x y 的焦点到准线的距离为 ▲ .6.某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出56人,其中从高一年级学生中抽出20人,则从高二年级学生中抽取的人数为 ▲ .7.观察下列各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为 ▲ .. 8.离心率为2且与椭圆252x +92y =1有共同焦点的双曲线方程是___▲____ .9.将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷 2次,则出现向上的点数之和不小于9的概率是 ▲ .10.已知命题P :2[1,2],0x x a ∀∈-≥,命题q :2,220x R x ax a ∃∈++-=,若p q ∧是真命题,则实数a 的取值范围是 ▲ .(第3题)11.在平面直角坐标系xoy 中,直线320()mx y m m R ---=∈被圆22(2)(1)4x y -++=截得的所有弦中弦长的最小值为 ▲ .12.已知点A 的坐标是(1,1),1F 是椭圆0124322=-+y x 的左焦点,点P 在椭圆上移动, 则12PF PA +的最小值 ▲ . 13.已知圆(()22:54C x y -+-=和两点(),0A,),0B(0m >),若圆C上存在点P ,使得60APB ∠=︒,则实数m 的取值范围是______▲______.14.如图,已知椭圆12222=+b y a x (0a b >>)的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足,M F PO 2⊥,O 为坐标原点.椭圆离心率e 的取值范围▲ .(第14题)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知z 为复数,2z i +和2zi-均为实数,其中i 是虚数单位. (1)求复数z 和z ;(2)若213(6)z z m m i =++-在第四象限,求实数m 的取值范围.16.(本小题满分14分)已知命题p :x R ∀∈,20tx x t +≤+.(1)若p 为真命题,求实数t 的取值范围;(2)命题q :[]2,16x ∃∈,2log 10t x +≥,当p q ∨为真命题且p q ∧为假命题时, 求实数t 的取值范围. 17.(本小题满分14分)已知椭圆C 的方程为22191x y k k +=--.(1)求k 的取值范围;(2)若椭圆C 的离心率e =k 的值.18.(本小题满分16分)已知圆22:4O x y +=,两个定点(),2A a ,(),1B m ,其中a R ∈,0m >.P 为圆O 上任意一点,且PAPBλ=(λ为常数) . (1)求常数λ的值;(2)过点(),E a t 作直线l 与圆22:C x y m +=交于,M N 两点,若M 点恰好是线段 NE 的中点,求实数t 的取值范围.19.(本小题满分16分)(1)找出一个等比数列{}n a ,使得14为其中的三项,并指出分别是 {}n a 的第几项; (2(3)证明:14不可能为同一等差数列中的三项.20.(本小题满分16分)已知椭圆C :2211612x y +=左焦点F ,左顶点A ,椭圆上一点B 满足BF ⊥x 轴,且点B 在x 轴下方,BA 连线与左准线l 交于点P ,过点P 任意引一直线与椭圆交于C 、D ,连结AD 、BC 交于点Q ,若实数λ1,λ2满足:→BC =λ1→CQ ,→QD =λ2→DA (1)求λ1·λ2的值;(2)求证:点Q 在一定直线上.(第20题)江苏省启东中学2017-2018学年度第一学期期终考试高二数学试卷(附加题) 2018.1.8命题人:黄群力 注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 21.(B )选修4-2:矩阵与变换(本小题满分10分)已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中R a ∈,若点(1,2)P -在矩阵M 的变换下得到点(4,0)P '-, (1)求实数a 的值;(2)求矩阵M 的特征值及其对应的特征向量.21.(C )选修4-4:坐标系与参数方程(本小题满分10分)已知直线的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭,圆M 的参数方程为(其中为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆上的点到直线的距离的最小值.22.(本小题满分10分)如图,正方形的中心为,四边形为矩形,平面平面,点 为的中点,.(1)求二面角的正弦值;(2)设为线段上的点,且,求直线和平面所成角的正弦值..( 第22题)23. (本小题满分10分)在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S , 且OP →·ST →=0.设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M , 直线l 与x 轴的交点为N .求证:向量SM →与NQ →共线.2017-2018第一学期高二数学调研试卷答案 2018.1.8一、填空题:1. 【答案】2.【答案】,3. 【答案】4.【答案】5.【答案】26.【答案】187. 【答案】8.【答案】-=19.【答案】10.【答案】11.【答案】12.【答案】13.【答案】14.【答案】二.解答题15.【解析】(1)设,则 2分4分所以, 8分(2) 14分16.【解析】(1)∵,,∴且,解得∴为真命题时,. 6分(2),,有解.又时,,∴. 8分∵为真命题且为假命题时,∴真假或假真,当假真,有解得;当真假,有解得;∴为真命题且为假命题时,或. 14分17. 【解析】(1)∵方程表示椭圆,则,解得 k∈(1,5)∪(5,9)……6分(未去5扣2分)(2)①当9﹣k>k﹣1时,依题意可知a=,b=∴c=∵= ∴∴k=2;10分②当9﹣k<k﹣1时,依题意可知b=,a=∴c= ∵= ∴∴k=8;∴k的值为2或8.(一种情况4分共8分)14分18. 【解析】(1)设点,,,,因为,所以,化简得,因为为圆上任意一点,所以,又,解得,所以常数.8分(2)设,是线段的中点,,又在圆C上,即关于的方程组有解,化简得有解,即直线与圆有交点,则,化简得:,解得.16分19. 【解析】(1)取一个等比数列{a n}:首项为1、公比为,则,…2分则令=4,解得n=5,所以a1=1,,a5=4.…4分(2)证明:假设是有理数,则存在互质整数h、k,使得,…5分则h2=2k2,所以h为偶数,…7分设h=2t,t为整数,则k2=2t2,所以k也为偶数,则h、k有公约数2,这与h、k互质相矛盾,…9分所以假设不成立,所以是有理数. …10分 (3)证明:假设1,,4是同一等差数列中的三项, 且分别为第n 、m 、p 项且n 、m 、p 互不相等,…11分 设公差为d ,显然d ≠0,则, 消去d 得,,…13分由n 、m 、p 都为整数,所以为有理数,由(2)得是无理数,所以等式不可能成立,…15分所以假设不成立,即1,,4不可能为同一等差数列中的三项. …16分. 20. 【解析】(1)因为F (-2,0),由BF ⊥x 轴,由对称性不妨设B (-2,-3),则直线AB :y =-32(x +4) 又左准线l :x =-8,所以P (-8,6)又→BC =λ1→CQ ,所以→PC =→PB +λ1→PQ 1+λ1, 同理由→QD =λ2→DA ,得→PD =→PQ +λ2→PA 1+λ2又→PB =32→PA ,所以→PC =32→PA +λ1→PQ 1+λ1又→PC //→PD ,比较系数得32λ2=λ11,所以λ1·λ2=32 8分(2)证明:设点C (x 1,y 2),D (x 2,y 2),Q (x 0,y 0)由→BC =λ1→CQ ,得x 1=-2+λ1x 01+λ1,y 1=-3+λ1y 01+λ1代入椭圆方程3x 2+4y 2=48,得:3⎝ ⎛⎭⎪⎫-2+λ1x 01+λ12+4⎝ ⎛⎭⎪⎫-3+λ1y 01+λ12=48整理得:(3x 20+4y 20-48)λ21-(12x 0+24y 0+96)λ1=0 显然λ1≠0,所以λ1=12x 0+24y 0+963x 20+4y 20-48同理由→QD =λ2→DA ,得x 2=x 0-4λ21+λ2,y 2=y 01+λ2代入椭圆方程3x 2+4y 2=48,得:3⎝ ⎛⎭⎪⎫x 0-4λ21+λ22+4⎝ ⎛⎭⎪⎫y 01+λ22=48同理可得:λ2=3x 20+4y 20-4824x 0+96又由(1)λ1·λ2=32,所以,12x 0+24y 0+963x 20+4y 20-48·3x 20+4y 20-4824x 0+96=32 整理得:x 0-y 0+2=0 即点Q 在定直线x -y +2=0上 16分21.(B)【解析】(1)由=,∴ --------------3分 (2)由(1)知,则矩阵的特征多项式为令,得矩阵的特征值为与4. …………………………..6分 当时,∴矩阵的属于特征值的一个特征向量为; …………………..8分 当时,∴矩阵的属于特征值的一个特征向量为. ………………………10分 21.(C)【解析】(1)以极点为原点,极轴为轴正半轴建立直角坐标系.所以,该直线的直角坐标方程为:……………………..5分 (2)圆的普通方程为: 圆心到直线的距离所以,圆上的点到直线的距离的最小值为…………………….10分 22. 【解析】依题意, ,如图,以为点,分别以的方向为轴、 轴、轴的正方向建立空间直角坐标系,依题意可得,.(1)解:易证, 为平面的一个法向量. 依题意, .设为平面的法向量,则,即.不妨设,可得.因此有,于是,所以,二面角的正弦值为 (5)(2)解:由,得.因为,所以,进而有,从而,因此.分…………………………9分所以,直线和平面所成角的正弦值为 (10)23. 【解析】(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ).因为T (3,0),所以OP →=(x ,y ), ST →=(4,-y ).因为OP →·ST →=0,所以4x -y 2=0,即y 2=4x .所以曲线C 的方程为y 2=4x . …………… 3分(2)因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1.P (x 1,y 1),Q (x 2,y 2).联立⎩⎨⎧y 2=4x ,x =my +1,消去x ,得y 2―4my ―4=0. 所以y 1+y 2=4m ,y 1y 2=―4. …………… 5分 因为M 为线段PQ 的中点,所以M 的坐标为(x 1+x 22,y 1+y 22),即M (2m 2+1,2m ). 又因为S (-1,y 1),N (-1,0),所以SM →=(2m 2+2,2m -y 1),NQ →=(x 2+1,y 2)=(my 2+2,y 2). …………… 7分 因为(2m 2+2) y 2-(2m -y 1)(my 2+2)=(2m 2+2) y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0.所以向量SM →与NQ →共线. …………… 10分。

相关文档
最新文档