数值分析中的最小二乘法与曲线拟合
曲线拟合实验报告[优秀范文5篇]
![曲线拟合实验报告[优秀范文5篇]](https://img.taocdn.com/s3/m/ed56c4cd0342a8956bec0975f46527d3240ca6e1.png)
曲线拟合实验报告[优秀范文5篇]第一篇:曲线拟合实验报告数值分析课程设计报告学生姓名学生学号所在班级指导教师一、课程设计名称函数逼近与曲线拟合二、课程设计目的及要求实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
⑵学会基本的矩阵运算,注意点乘与叉乘的区别。
实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数与拟合函数的图形;⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。
三、课程设计中的算法描述用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而就是拟合曲线无限逼近离散点所形成的数据曲线。
思路分析 : 从整体上考虑近似函数)(x p 同所给数据点)(i iy x , 误差i i iy x p r -=)(的大小,常用的方法有三种:一就是误差i i iy x p r -=)(绝对值的最大值im ir≤≤ 0max ,即误差向量的无穷范数;二就是误差绝对值的与∑=miir0,即误差向量的 1成绩评定范数;三就是误差平方与∑=miir02的算术平方根,即类似于误差向量的 2 范数。
前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2 范数的平方,此次采用第三种误差分析方案。
算法的具体推导过程: 1、设拟合多项式为:2、给点到这条曲线的距离之与,即偏差平方与:3、为了求得到符合条件的 a 的值,对等式右边求偏导数,因而我们得到了:4、将等式左边进行一次简化,然后应该可以得到下面的等式5、把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====niininiiknikinikinikinikiniiniinikiniiyyyaax x xx x xx x11i11012111111211 1an MMΛM O M MΛΛ 6.将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n kkn nkkyyyaaax xx xx x M MΛM O M MΛΛ21102 21 1111 7、因为 Y A X = * ,那么 X Y A / = ,计算得到系数矩阵,同时就得到了拟合曲线。
excel最小二乘法拟合曲线

Excel是一款功能强大的电子表格软件,广泛应用于数据处理与分析领域。
其中最小二乘法是一种常见的曲线拟合方法,在Excel中通过使用函数进行实现。
本文将介绍如何利用Excel进行最小二乘法拟合曲线的操作步骤及相关注意事项。
希望通过本文的介绍,读者能够掌握利用Excel进行曲线拟合的方法,从而在实际工作中能够更加高效地处理数据和分析结果。
一、最小二乘法简介最小二乘法是一种数学上常用的曲线拟合方法,其本质是通过调整曲线参数使得实际观测值与拟合值之间的差异最小化。
在实际应用中,最小二乘法常用于拟合直线、曲线以及多项式等形式的函数模型,用于描述变量之间的关系。
二、Excel中最小二乘法拟合曲线的操作步骤1. 准备数据首先需要在Excel中准备好需要拟合的数据,通常是包含自变量和因变量的数据列。
假设我们有一组数据,自变量为x,因变量为y,我们希望通过最小二乘法找到一条曲线来描述它们之间的关系。
2. 插入散点图在准备好数据之后,需要在Excel中插入散点图来直观地观察数据点的分布情况。
选择数据区域后,点击插入菜单中的散点图,选择合适的图表类型进行插入。
通过散点图可以直观地观察到数据点的分布情况,从而初步判断需要拟合的曲线形式。
3. 计算拟合曲线参数利用Excel中的函数可以很方便地进行最小二乘法拟合曲线的计算。
在Excel中,可以使用“线性拟合”函数进行直线拟合,使用“多项式拟合”函数进行多项式曲线拟合。
通过输入相关参数和数据范围,即可得到拟合曲线的参数值,并在图表中显示拟合曲线。
4. 绘制拟合曲线根据计算得到的拟合曲线参数值,可以利用Excel中的图表工具绘制出拟合曲线。
在散点图的基础上,添加拟合曲线,并进行必要的格式设置,可以清晰地展示出拟合曲线与原始数据之间的关系。
5. 拟合曲线的评估拟合曲线的好坏可以通过一些评价指标来进行评估,例如拟合优度R方值、残差分布等。
通过观察这些评价指标,可以对拟合曲线的质量进行初步判断,从而确定是否需要调整模型或者采取其他措施。
数值分析论文--曲线拟合的最小二乘法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。
设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi, yi) i=1, 2,, N。
都对应于 xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。
显然Nm 时,参数不能确定。
在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合是一个重要的数值分析方法,它是通过最小二乘法对样本点与直线或曲线之间的关系进行拟合和分析,从而估算出一个函数的一组参数。
最小二乘法曲线拟合是一种经典的数值分析方法,可以用来拟合函数和曲线,估算出参数,预测数据,分析函数,优化模型,甚至可以分析复杂多变量函数。
最小二乘法曲线拟合的核心方法是使用最小二乘法把拟合的曲线拟合到观察到的数据,通过求解方程的最小二乘法,把一系列的观察数据点拟合为最小二乘法曲线,计算出拟合曲线的最佳系数,满足拟合效果的最佳拟合曲线。
最小二乘法曲线拟合的核心目标是通过计算拟合曲线的最小均方误差(SSE)、平均均方误差(MSE)、最大均方误差(MAXE)等方法,使拟合曲线与观察数据点之间的差距最小,从而求解出最佳拟合曲线系数。
最小二乘法曲线拟合具有很强的解析性,可以用数学计算方法快速求解,可以满足各种不同应用场景的需求,因而被广泛应用于科学研究、工程设计、市场分析等领域。
最小二乘法曲线拟合最常见的应用场景有:根据观察数据拟合和估计函数的参数;分析函数的性质;优化模型的能力;预测数据等等。
当应用最小二乘法拟合函数时,首先需要把观察数据用直线或曲线拟合,然后使用极小化残差平方和的方法,来求解参数,这是一个典型的最优化问题,利用一般最优化算法来求解,如梯度下降算法、牛顿法等。
此外,在应用最小二乘法曲线拟合的过程中,还可以考虑几种情况,比如样本数据受到误差的影响,具有某种偏差性;偏差是否服从正态分布;样本数据的分布是否同分布;拟合曲线的拟合是否收敛,参数计算是否准确等等。
总之,最小二乘法曲线拟合是一种重要的数值分析方法,可以用来拟合函数和曲线、估算参数、预测数据、优化模型等。
在应用最小二乘法曲线拟合时,需要考虑一些影响因素,比如样本数据受到误差的影响、偏差是否服从正态分布等,因此,它是一种有效的数值分析方法。
数值分析作业答案

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
matlab最小二乘法拟合曲线

matlab最小二乘法拟合曲线Matlab最小二乘法拟合曲线是一种应用于数据拟合的有效的工具,它的作用是使用最小二乘法来估计未知参数并获得适合拟合的最优拟合曲线,以下是Matlab最小二乘法拟合曲线的具体用法:一、Matlab最小二乘法拟合模型:1、首先,根据需要拟合的数据,定义未知参数的类型、数量和频率;2、接下来,定义未知参数的初始值,以及用于确定参数最优拟合曲线的搜索算法;3、然后,调用最小二乘法函数,使用最小二乘法函数计算拟合参数θ;4、最后,用优化到的θ值生成最优曲线,即得到拟合曲线。
二、Matlab最小二乘法拟合曲线的特点:1、精度高:最小二乘法在误差估计上是最佳的,能控制估计偏差,通过求解思维运算完成最小二乘拟合;2、可以处理多元数据:最小二乘法可以处理多个变量进行统计拟合,有多个自变量时,仍然能生成反映变量之间关系的拟合曲线;3、计算量小:最小二乘法只需计算发生一次,消耗计算量较小,计算正确率高;4、反应速度快:最小二乘法反应速度快,可以很好的拟合多项式,某一特定点的拟合能力强,它具有很高的拟合度。
三、Matlab最小二乘法拟合曲线的应用:1、最小二乘法拟合曲线可以用于多元统计拟合,研究变量之间的关系,可用于实验数据处理和建模;2、最小二乘法拟合曲线也可以用于经济学,可以通过估计最小二乘回归系数进行广义线性模型的预测;3、最小二乘法拟合曲线可以用于工程曲线拟合,如机械设计的几何拟合等,以及测量仪器的校正等;4、最小二乘法拟合曲线也可以用于生物学研究,可以通过进化分类树及类群的状态估计其特征变化趋势;5、最小二乘法拟合曲线还可以用于物理和化学实验中,以及天气、气候等领域。
四、Matlab最小二乘法拟合曲线的优缺点:优点:1、计算量小,计算消耗较小;2、可对多元数据进行拟合,处理变量之间的关系;3、拟合精度高,控制估计偏差;4、反应速度快,容错性强。
缺点:1、处理误差较大的数据时,拟合效果不佳;2、对曲线的凸性要求,不能处理异常数据;3、无法处理变量间的非线性关系,拟合结果也会出现偏差。
函数拟合最小二乘法用法
函数拟合最小二乘法用法
最小二乘法是一种在数学上用于拟合函数的常用方法。
它的目标是找到一个函数,使得该函数与给定的数据点之间的差异最小化。
以下是使用最小二乘法进行函数拟合的一般步骤:
1. 收集数据:首先,需要收集与要拟合的函数相关的数据点。
这些数据点通常包含自变量和对应的因变量的值。
2. 选择函数形式:根据数据的特征和所要拟合的函数类型,选择一个合适的函数形式。
常见的函数形式包括线性函数、多项式函数、指数函数等。
3. 建立函数模型:使用所选择的函数形式,建立一个函数模型。
该模型将包含一些待确定的参数。
4. 定义损失函数:为了衡量函数模型与数据点之间的差异,需要定义一个损失函数。
常见的损失函数是平方和函数,即计算每个数据点与函数模型预测值之间的平方差。
5. 最小化损失函数:使用优化算法(如梯度下降法、牛顿法等)来最小化损失函数。
这将通过调整函数模型中的参数,使得损失函数的值最小。
6. 确定最佳参数:当损失函数最小化时,所得到的函数模型中的参数就是最佳参数。
7. 评估拟合效果:使用拟合得到的函数模型来预测新的数据点,并与实际值进行比较,以评估拟合效果。
需要注意的是,最小二乘法是一种基于数据的拟合方法,它假设数据中存在噪声或误差。
因此,拟合结果可能会受到数据质量和噪声的影响。
在实际应用中,需要根据具体情况进行适当的误差分析和模型验证。
《数值分析》第5章 曲线拟合与函数插值
例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为
常用数值分析方法
常用数值分析方法1.插值方法插值是通过已知数据点的近似值,获得未知位置上的函数值。
常用的插值方法包括拉格朗日插值、牛顿插值和分段线性插值等。
插值方法通常用于数据的光滑处理、曲线拟合和函数逼近等问题。
2.数值微分与积分方法数值微分是通过有限差分等方法,对实际问题的函数进行求导。
数值积分则是通过数值方法求解复杂函数的积分。
常用的数值微分与积分方法包括欧拉法、龙格-库塔法和辛算法等。
3.非线性方程求解非线性方程求解是求解形如f(x)=0的方程,其中f(x)是一个非线性函数。
常用的非线性方程求解方法包括二分法、牛顿法和割线法等。
这些方法基于不同的数学原理来逼近方程的根。
4.线性方程组求解线性方程组求解是求解形如Ax=b的方程组,其中A是一个矩阵,b 是一个向量。
常用的线性方程组求解方法包括高斯消元法、LU分解和迭代法等。
这些方法可以高效地求解大规模的线性方程组。
5.最小二乘法最小二乘法是一种用于拟合实验或观测数据的方法。
它通过最小化观测数据与理论模型之间的残差平方和,得到最佳的参数估计。
最小二乘法广泛应用于曲线拟合、回归分析和信号处理等领域。
6.数值优化数值优化是在约束条件下求解最优化问题的方法。
常用的数值优化方法包括梯度下降法、共轭梯度法和拟牛顿法等。
这些方法可以在函数复杂或维度高的情况下,有效地寻找最优解。
7.偏微分方程数值解法偏微分方程数值解法是用数值方法解决偏微分方程的方法。
常用的数值解法包括有限差分法、有限元法和谱方法等。
这些方法广泛应用于物理学、工程学和金融学等领域,可以模拟和预测复杂现象。
总之,数值分析方法在科学和工程领域中起着重要的作用。
通过数学和计算机的结合,数值分析使得复杂计算变得简单,从而有效解决各种实际问题。
数值分析(22)离散数据的最小二乘拟合
xi
m i0
(
m
n)上至多只有n个不同零点,则称0
(
x
),
1
(
x),
...,
n
(
x
)在点集
xi
m i0
上满足Haar条件。
可以证明,如果0
(
x
),
1
(
x),
...,
n
(
x
)在
xi
m i0
上满足
Haar条件,则法方程的系数矩阵非奇异。
数值分析
数值分析
法方程的另一种形式
记 A (0 , 1 , ..., n ), 由矩阵乘法可知 G ATWA,F ATWY
则
1
A
1
x0 x1
x02 x12
x0n x1n
1
xm
xm2
xmn
m
实际计算中要计算x0n,x1n,...,xmn , xik ,(k 0,1, ..., 2n)
i 1
当数据点数值很大时,可能会在计算中溢出,可采用
P240的方法处理。
数值分析
数值分析
三、法方程的求解
求解法方程AT AC ATY或GC F (取W I )
1.确定n+1个线性无关函数
j( x)
n 的具体形式
j=0
常用的代数多项式拟合是取
j( x)=x j (j 0,1, , n) 最佳平方逼近函数的形式是
s( x)=c0 c1 x c2 x2 cn xn
G
(1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析中的最小二乘法与曲线拟合数值分析是现代理论与实践密切结合的一门交叉学科,其中最小二乘法和曲线拟合是其中两个非常重要的概念。
最小二乘法是一种数学运算方法,用于求解一组方程组的未知参数,使得每个方程的误差平方和最小。
在实际应用中,最小二乘法广泛应用于数据拟合、信号处理、回归分析等领域。
在数据拟合中,最小二乘法是一种常见的方法,它可以用于拟合曲线和函数。
它通过延伸曲线以获得局部数据之间的交点,并通过在它们上进行平均化的方法来尝试匹配数据。
最小二乘法的概念为我们提供了一个理论基础,以便在一定程度上预测新的数据中对象的行为或趋势。
但是,即使在相对简单的问题中,最小二乘法可能并不是最佳选择。
曲线拟合是对一系列数据进行插值的过程,以便获得与原始数据点更准确相匹配的曲线或函数。
曲线拟合可以通过在相邻数据点之间进行插值来完成。
在曲线拟合中,只有在数据有很好的统计关系或在相邻数据点
有很好的相关性时,才会产生准确的结果。
否则,结果可能并不
准确,因为这些结果取决于数据点的数量和分布。
需要注意的是,曲线拟合和最小二乘法并不是一个可以代替另
一个的工具。
它们的适用范围不同。
曲线拟合适用于对离散数据
点进行联合分析,而最小二乘法适用于求解连续数据的线性模型。
总之,数值分析中的最小二乘法和曲线拟合是非常实用的概念,可以应用于各种领域。
它们作为现代数据分析的主要工具之一,
不断吸引着越来越多的学者和工程师投入到其中,将继续发挥重
要作用。