小麦赤霉病和DON毒素研究进展

合集下载

小麦赤霉病及控制技术研究进展

小麦赤霉病及控制技术研究进展

对广 大种植 户 造成 巨 大 的经 济 损失 。 此外 , 病 麦对 人
畜 的健康也 有 较大影 响 。
能够减轻赤霉病的发生频率n 。 赤霉病侵染小麦后 , 主要引起苗腐 、 穗腐 、 茎基腐 、 秆腐 , 其 中影响最严重
的是穗 腐 。
1 小 麦赤 霉 病 的病 原 菌及 侵 染情 况
小 麦 赤 霉 病可 由镰 刀 属 的多 种 镰 刀 菌 引起 。 国
收 稿 日期 : 2 0 1 2 — 1 1 - 2 4 基金项 目: 国家 自然 科 学 基 金 ( 面上 ) 项 目( 3 1 2 7 1 8 1 5 ) 现 代 农 业 产 业 技 术体 系建 设 专 项 ( C A R S 一 1 4 ) 作者简介 : 崔 航( 1 9 8 7 一 ) , 男, 硕士 ; 专 业 方 向 为谷 物 品 质与加工。 王晓曦 , 男, 教 授; 专 业方 向为谷物 品质与加工。
1 . 1 小麦 赤霉病 的侵染性 状
赤霉 病对 小麦 侵染 的最重要 时期是 小麦 对赤 霉 病 的初 侵 染 源 和菌 丝 生长 抗 性 最差 的时 刻 。 小 麦 开 花期 是 小 麦赤 霉 病 最 易感 病 时 期 , 至 小 麦灌 浆 期 时
病 原 菌对 小 麦 的侵 染 力 下 降 。 去 除 雄 蕊 的 小 麦
国 内外 农业 礴
小麦赤霉病及控制技术研究进展
崔 航 ,王 晓曦 ,付 奎 ,邹恩 坤 ,丁艳 芳 4 5 0 0 0 1 ) ( 河 南工 业 大学粮 油食 品 学院 ,郑 州

要 :赤 霉病作 为 小麦 常见 病症 的一 种 ,近年 来发 生 的越 来越 频繁 。本 文 筒述 小麦 赤霉病 发 生 的性
病 主 要 发生 在 气 候湿 润 的长 江流 域 , 淮 河 流 域及 珠

小麦赤霉病生物防治研究进展

小麦赤霉病生物防治研究进展

小麦赤霉病生物防治研究进展小麦赤霉病是一种由赤黄镰孢菌(Fusarium graminearum)引起的小麦病害,是全球范围内对小麦产量和质量造成重大影响的病害之一。

随着农药的大量使用,赤霉病的防治问题变得越来越突出。

为了找到一个有效的生物防治方法,科研人员进行了大量的研究。

研究人员发现一些对赤霉病有抵抗力的小麦品种,并进行了深入研究。

他们通过遗传分析和基因组学研究发现,一些小麦品种具有一些抗性相关基因,这些基因可以增加小麦对赤霉病菌的抵抗力。

这为进一步培育抗性小麦品种提供了理论基础。

研究人员研发了一些具有生物防治作用的微生物制剂。

通过筛选和鉴定,他们发现一些微生物可以产生抗菌物质,抑制赤霉病菌的生长和繁殖。

这些微生物包括一些细菌和真菌,例如拮抗细菌、枯草杆菌和木霉等。

利用这些微生物制剂进行田间试验,取得了一定的防治效果。

研究人员还发现一些天然产物具有抑制赤霉病菌的能力。

一些植物提取物和生物活性物质可以干扰菌丝的生长和孢子的萌发。

一些天然产物还可以激活小麦植株的抗病防御机制,增强其抵抗赤霉病的能力。

这些天然产物包括茶树油、辣椒素、茶多酚和噁唑酮等。

研究人员还将非生物因子与生物防治相结合,进行了一系列的研究。

他们发现一些非生物因子可以增强微生物对赤霉病菌的抑制作用。

一些辅酶Q10衍生物可以增强枯草杆菌对赤霉病菌的抑制作用,提高生物防治效果。

小麦赤霉病的生物防治研究取得了一些进展。

通过对抗性小麦品种、微生物制剂和天然产物的研究,科研人员发现了一些具有抗菌活性的物质,可以有效抑制赤霉病菌的生长和繁殖。

目前的研究还存在一些问题和挑战,例如如何提高生物防治效果、如何减少对环境的影响等。

需要进一步加强研究,寻找更有效的生物防治方法,为赤霉病的防治提供更好的选择。

氰烯·戊唑醇不同用药时间和次数对小麦赤霉病及DON毒素的管控效果

氰烯·戊唑醇不同用药时间和次数对小麦赤霉病及DON毒素的管控效果

氰烯·戊唑醇不同用药时间和次数对小麦赤霉病及DON毒素的管控效果作者:张海燕许莉杨爱国张银贵董飞徐剑宏来源:《农学学报》2022年第05期摘要:扬花初期是防控小麦赤霉病的最佳时期,为了探索错过扬花初期用药补防对小麦赤霉病和毒素的管控效果,本试验选择姜堰地区存在的13个小麦品种,用48%氰烯·戊唑醇SC 进行赤霉病防控,通过扬花初期漏防6天后补防1次和扬花初期用药1次、扬花初期用药2次3种方式,对各品种小麦赤霉病防效和DON毒素控减效果进行比较。

结果表明:错过扬花初期6天后用48%氰烯·戊唑醇补防1次,对各品种赤霉病的平均病穗率和病指防效、DON毒素控减效果比扬花初期防治1次分别低15.87%、21.25%、35.48%,比扬花初期用药2次分别低39.79%、44.87%、66.84%。

赤霉病最适首次防治时间是扬花初期,扬花初期漏防6天后补防1次,對赤霉病和DON毒素的管控效果较差,坚持扬花初期+6天后两次用药效果最好,在各个品种中该趋势表现一致。

关键词:小麦;赤霉病;DON毒素;氰烯·戊唑醇;扬花初期;用药时间中图分类号:S435.121.4+5文献标志码:A论文编号:cjas2020-0130Efficacy of Cyanene·pentazolol Application Methods on Controlling Wheat Scab and DON ToxinZHANG Haiyan1, XU Li1, YANG Aiguo1, ZHANG Yingui1, DONG Fei2, XU Jianhong2(1Plant Protection and Plant Quarantine Station of Jiangyan Agricultural Technology Extension Center, Taizhou 225500, Jiangsu, China;2Institute of Agricultural Product Quality, Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China)Abstract: The best period to prevent and control wheat scab is on the preliminary stage of flowering. To explore the control efficacy on wheat scab and toxins when missing the preliminary stage of flowering, 13 wheat varieties in Jiangyan were selected for this experiment, and 48% cyanene·pentazolol SC was used to control the wheat scab. We designed three application methods:spraying 48% cyanene·pentazolol SC once after 6 days missing the preliminary stage of flowering,spraying 48% cyanene·pentazolol SC once at the preliminary stage of flowering, and spraying 48% cyanene·pentazolol SC once at the preliminary stage of flowering plus once after 6 days. The controlling efficacy of the 3 treatments against wheat scab, as well as their impact on the content of DON toxin in wheat grain were compared for each wheat variety. The results showed that the average control efficacy on diseased ear rate and the disease index and the reduction effect on DON toxin under spraying 48% cyanene·pentazolol SC once after 6 days missing the preliminary stage of flowering were 15.87% , 21.25% and 35.48% lower than those under spraying once at the preliminary stage of flowering respectively, and were 39.79%, 44.87% and 66.84% lower than those under spraying once at the preliminary stage of flowering plus once after 6 days. Therefore,the optimal first control time for scab is at the preliminary stage of flowering, while spraying 48% cyanene·pentazolol SC once after 6 days missing the preliminary stage of flowering has relatively poor control efficacy on scab and DON toxin. Spraying 48% cyanene·pentazolol SC once at the preliminary stage of flowering plus once after 6 days shows the best efficacy, and the performance trend of all the varieties are consistent.Keywords: wheat; wheat scab; DON toxin; cyanene·pentazolol; preliminary stage of flowering; pesticide application timing0引言小麦赤霉病是由禾谷镰刀菌(Fusarium graminearum Schw)等多种镰刀菌引起的小麦病害,是典型的气候性病害,世界范围内广泛流行[1],在中国主要发生在长江中下游流域和东北东部麦区,近年来,大流行频率不断增加,发病范围成明显扩大趋势[2]。

小麦赤霉病和赤霉菌研究进展

小麦赤霉病和赤霉菌研究进展

小麦赤霉病和赤霉菌研究进展作者:许凌凌来源:《南方农业·下》2022年第08期摘要小麦赤霉病是一种真菌性病害,主要由禾谷镰刀菌引起,是小麦主要的病害之一。

小麦赤霉病影响小麦的产量和品质,同时赤霉菌产生的真菌毒素严重威胁人畜的身体健康和生命安全。

为给小麦赤霉病的研究提供更多的理论参考,从小麦赤霉菌的种类及分布,小麦赤霉病的发生与流行,赤霉菌毒素种类、毒性及治理方法,禾谷镰刀菌的组学研究及小麦抗赤霉病分子机制的组学研究等方面对小麦赤霉病和赤霉菌的研究进展进行了综述。

关键词小麦赤霉病;赤霉菌;禾谷镰刀菌中图分类号:S435.12 文献标志码:A DOI:10.19415/ki.1673-890x.2022.16.011小麦赤霉病从小麦幼苗期到抽穗期均可发生,其中穗腐病危害最为严重。

我国长江中下游一直是小麦赤霉病普遍发生的区域,病害大流行年份小麦病穗率在50%~100%,产量损失20%~40%。

2001—2018年共发生9次大规模的小麦赤霉病,给农民带来了巨大的经济损失。

1 小麦赤霉菌的种类及分布小麦赤霉病病原菌为镰刀菌复合种,其无性态为禾谷镰刀菌(Fusarium graminearum),属镰刀菌属,能产生分生孢子进行无性繁殖;有性态为玉蜀黍赤霉(Gibberella zeae),属赤霉属。

赤霉菌在病害发生后期进行有性生殖,由感病部位产生子囊壳,释放子囊孢子。

研究表明,能够引起小麦赤霉病的镰刀菌除禾谷镰刀菌外,还有20多个镰刀菌种[1]。

自20世纪50年代以来,我国科研工作者对小麦赤霉病的致病菌进行了大量的研究,20世纪70年代中期,我国苏、浙、沪等地相继开展了小麦赤霉菌的种类研究,最终鉴定出27个镰刀菌种或变种,其中禾谷镰刀菌在各地均占绝对优势。

20世纪90年代,国内外主要采用形态学手段对禾谷镰刀菌进行鉴定,CARTER等利用Fg16F/R引物鉴定了来自不同大洲的禾谷镰刀菌,并根据PCR产物片段的大小将其分为6种类型[2]。

脱氧雪腐镰刀菌烯醇DON的研究进展

脱氧雪腐镰刀菌烯醇DON的研究进展
DON的结构
DON毒素的概况
DON的产生 DON主要由镰刀菌属真菌产生,其中禾谷镰刀菌占绝对 优势。镰刀菌产毒能力随着培养时间的推移逐步增强, 高峰一般出现在第4周左右,并一直维持至第8周。
DON毒素的概况
DON的污染及危害
DON是污染粮食和动物饲料的最为广泛的天然毒素之一, 在农作物病害的病原菌的致病过程中也具有重要作用。 许多粮谷(如小麦、黑麦、大麦、燕麦等)及其制品(如麦 芽、啤酒和面包等)受DON污染严重。 DON具有很强的细胞毒性,对原核细胞、真核细胞均具 有明显的毒性作用。国内外对DON的致突变、致畸、致 癌作用的研究结果表明,DON具有胚胎毒性和致畸作用。 流行病学研究发现,DON的含量与食管癌的发生呈正相 关。
小麦赤霉病及其与DON的关系
赤霉病是温暖多雨和气候湿润地区小麦和其他麦类的重 要流行性病害,小麦赤霉菌侵入寄主后,不仅造成产量 损失和品质下降,同时还会引起严重的毒素污染。禾谷 镰刀菌是我国绝大部分地区小麦赤霉病的主要致病类型。
禾谷镰刀菌能产生多种真菌毒素,DON是其产生的最主 要的一种单端孢霉烯族化合物。
ON污染最为严 重,DON对小麦种子的萌发、胚根与胚芽鞘的伸长及幼 苗的生长均有显著的抑制作用,可导致小麦叶片损伤, 叶片细胞膜结构破坏。DON对小麦的毒害作用与小麦品 种对赤霉病的抗性直接相关,有研究表明,麦粒DON含 量与小麦赤霉病田间发病程度之间存在有非常显著的相 关性。
免疫学检测包括:放射免疫法(Radioimmunoassay,RI A)、荧光极性免疫分析(Fluorescence polarization imm unoassay)、酶联免疫分析(Enzyme-linked immunosorb ent assay,ELISA)等,应用最为普遍的是ELISA。

小麦抗赤霉病育种研究进展

小麦抗赤霉病育种研究进展

小麦病 害 , 几乎 每年 都 在 美 国 的一 些 地 区造 成 严 重危
害 。过 去 1 0年 间 , 霉病 在 伊利 诺州 、 赤 印第安 纳 州 、 密
分 化 、 病 机制 、 源 筛 选 和 鉴定 、 抗 抗 抗病 基 凶的 分 子标 记 和 克 隆 以及 抗 赤霉病 育 种 5 方 面概述 c 国小 麦抗 个 t l
道 , 1  ̄2  ̄ 件下 , 对湿 度低于 9 子囊 孢子 不 在 8 0 C条 相 5
能释 放 ; 相对 湿度 达 9 以上时 开始有 少 量释放 , 5 饱和
湿 度下释 放 量最 多 。 囊孢 子对 低温 的抵抗 力很 强 , 子 在 我 国东 北 及西 北 各地 , 残 体 上 子囊 壳 内的子 囊 孢 子 病 均 能 顺利 越 冬 。带 菌 残体 内的 菌丝体 不论 在室 内和室
D Jl . 9 9ji n 1 0 2 0 2 1 . 3 2 O :03 6 /. s . 0 15 8 . 0 1 0 。 4 s
Adv c s i h tBr e n n Sc b Ress an e an e n W ea e di g O a it c
L io x n,GuN i i I a —u X a - e,Z a g Y - o g j h n us n
收稿 日期 :0 01 —1 2 1— 22 作 者 简介 : 李小 勋 (9 9 ) 男, 1 7 一 , 河北 沧 州人 , 长期从 事农
业技术推广工作 。
赤霉 病 育 种研 究进 展 , 讨 目前 小麦抗 赤 霉 病 育 种 巾 探
存 在 的 问题 , 对其 发展 前 景进行 展望 。 并
21 年 第 2 01 5卷 第 3期

小麦赤霉病穗组织中黄色镰刀菌和DON毒素的定量分析

小麦赤霉病穗组织中黄色镰刀菌和DON毒素的定量分析

⼩麦⾚霉病穗组织中黄⾊镰⼑菌和DON毒素的定量分析1期吴茂森等:⼩麦⾚霉病穗组织中黄⾊镰⼑菌和DON毒素的定量分析譬2305罩20善。

1。

55剁20慈i-e甾善-:棚Ill呈8薹茎?误00l234病菌⽣物量对致值Logvalue(Pg)05101520253035病菌⽣物量三重复平均值Averageofthreereplicates(xtCpg)图1⼩麦接种穗中黄⾊镰⼑菌TaqMan实时PCR定量分析Fig.ITaqManreal—timePCRquantificationofFusariumculmonMYzininoculatedwheatheads表117个⼩麦品系麦穗组织中黄⾊镰⼑菌DNA和DON毒素含量的测定Table1MeasurementsofFusariumculll'lorumDNA(FeDNA)andDONcontentintheinoculatedheadsof17wheatvarieties4daysafterfu.galinoculation⼩麦品系(基园型)FcDNA含量DON毒素含量⼩麦品系(基因犁)FcDNA含量DON毒素含量WheatlinesFeDNAcontentDONcontentWhemhnesFcDNAcontentDONcontent(genotype)(w/msDW)(t培,/mL)(genotype)(w/msDW)(ttg/mL)2—4447.91±135.0515.50⼟1.42lcr7—8628.91±152,3914,2l±2.346—21115.15±849.517.46±0.7l108—45723.32±2697.5841.10-I-2.906—4838.36±144.4133.07±5.21108—5871.174-212.8l2.92±0.3824—4930.47-I-101.6843.36±2.33108—6532.5l4-471.5515.Ol±1.9369⼀l22647.17±3480.0873.63±15.59108—97137.34±725.4357.094-19.2786—226470.65±14910.8468.67±12.20114—17807.534-l758.7479,55±15.22102⼀I13843.27±l198.18102.09±23.80114—414097.39±554.7195.984-15.42102—4232.84⼟119.15II.86±0.49119—513467354-4070.8086.11±34.67107—41193.67±465.6635.11±9.65DON含量平均值x与标准差),相关|⽣为Y=0.1846x+0.1265,显⽰重复间变化极⼩;对同⼀批样品进⾏独⽴重复测定,同样显⽰出较好的重复性;在标准样品中等量加⼊检测样品后,其测定数据基本不受除DON外其它成分的⼲扰(R2=0.934)。

湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测

湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测

麦类作物学报 2024,44(4):432-441J o u r n a l o fT r i t i c e a eC r o ps d o i :10.7606/j.i s s n .1009-1041.2024.04.04网络出版时间:2024-03-19网络出版地址:h t t ps ://l i n k .c n k i .n e t /u r l i d /61.1359.S .20240319.0900.002湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测收稿日期:2023-09-18 修回日期:2023-12-22基金项目:国家自然科学基金(青年)项目(32101803);湖北省农业科学院粮食作物研究所创新基金(2022Z Z C X 001)第一作者E -m a i l :395045924@q q .c o m (徐晴)通讯作者E -m a i l :d o n g j i n gs i r 061@163.c o m (董静)徐晴1,郑丹2,许甫超1,秦丹丹1,董建辉3,葛双桃1,朱展望1,董静1(1.湖北省农业科学院粮食作物研究所/种质创新与遗传改良湖北省重点实验室,湖北武汉430064;2.湖北省农业科学院农业质量标准与检测技术研究所,湖北武汉430064;3.湖北省农业科学院,湖北武汉430064)摘 要:赤霉病是由禾谷镰刀菌引起的小麦穗部病害,严重危害小麦生产,抗赤霉病品种选育是减轻其危害的重要途径之一㊂本研究以湖北省不同时期审定的59个小麦品种和选育的7份优异品系为材料,采用喷雾接种对其进行田间赤霉病抗性鉴定,并利用抗性基因F h b 1功能性分子标记和主效抗性基因(F h b 2㊁F h b 4㊁F h b 5和Q F h s .c r c -2D L )连锁分子标记对供试材料进行检测,分析其遗传分布和利用状况;同时分析湖北小麦品种(系)赤霉病抗性㊁株高和小穗密度等性状年代间的差异㊂结果表明,16份供试材料赤霉病抗性水平达到中抗,占比24.2%,以810619品系抗性最好,病情指数略低于苏麦3号;42份材料达到中感,占63.6%㊂分子检测结果显示,仅鄂T 45048携带F h b 1;鄂麦11㊁鄂麦18和810619等29份材料(43.9%)可能携带F h b 5和Q F -h s .c r c -2D L 单个或2个抗性基因,说明这2个抗性基因在湖北小麦赤霉病抗性育种中得到了较多应用㊂赤霉病抗性与株高的相关性分析结果显示,近15年湖北小麦品种株高持续降低,但其与赤霉病抗性无显著相关㊂研究结果为明确湖北小麦品种赤霉病抗性水平和分子遗传基础提供了参考㊂关键词:小麦;赤霉病抗性鉴定;分子检测;株高中图分类号:S 512.1;S 330 文献标识码:A 文章编号:1009-1041(2024)04-0432-10F u s a r i u m H e a dB l i g h tR e s i s t a n c eE v a l u a t i o na n dM o l e c u l a rC h a r a c t e r i z a t i o n o f 66W h e a tM a t e r i a l s f r o m H u b e i P r o v i n c eX U Q i n g 1,Z H E N GD a n 2,X UF u c h a o 1,Q I ND a n d a n 1,D O N GJ i a n h u i 3,G ES h u a n g t a o 1,Z H UZ h a n w a n g 1,D O N GJ i n g1(1.F o o dC r o p I n s t i t u t e o fH u b e iA c a d e m y o fA g r i c u l t u r a l S c i e n c e s /H u b e iK e y L a b o r a t o r y o f F o o dC r o p G e r m p l a s m s a n dG e n e t i c I m p r o v e m e n t ,W u h a n ,H u b e i 430064,C h i n a ;2.I n s t i t u t e o fA g r i c u l t u r a lQ u a l i t y S t a n d a r d s a n dT e s t i n g T e c h n o l o g y R e s e a r c h ,H u b e iA c a d e m y o fA g r i c u l t u r a l S c i e n c e sW u h a n ,H u b e i 430064,C h i n a ;3.H u b e iA c a d e m y o fA gr i c u l t u r a l S c i e n c e s ,W u h a n ,H u b e i 430064,C h i n a)A b s t r a c t :F u s a r i u mh e a db l i g h t (F H B )i s a s e r i o u s s p i k e d i s e a s e c a u s e db y Fu s a r i u m g r a m i n e a r u m i n w h e a t ,s e r i o u s l y a f f e c t i n g t h e p r o d u c t i o no fw h e a t .T h e a p pl i c a t i o no f r e s i s t a n t c u l t i v a r i s o n eo f t h e c r u c i a lw a y s t o r e l i e v e t h e d a m a g e o f t h e d i s e a s e .I n t h i s s t u d y ,59w h e a t c u l t i v a r s a n d 7e l i t e b r e e d i n gl i n e sw e r eu s e d t o i n v e s t i g a t e t h eF H Br e s i s t a n c e i n f i e l db y s p r a y i n o c u l a t i o n ,a n d t h em a jo r r e s i s t -a n c e g e n e s a n d g e n e l o c i ,s u c h a s F h b 1,F h b 2,F h b 4,F h b 5a n d Q F h s .c r c -2D L w e r e d e t e c t e db y f u n c -t i o n a l o r c l o s e l y l i n k e dm a r k e r s .B e s i d e s ,t h e d i f f e r e n c e s o f F H Br e s i s t a n c e a n d p l a n t h e i gh t b e t w e e n t h ew h e a t v a r i e t i e sr e l e a s e d i n2008o re a r l i e ra n dt h ev a r i e t i e sr e l e a s e d i n2009o r l a t e rw e r ec o m -pa r e d .T h e r e s u l t s s h o w e d t h a t 16w h e a tm a t e r i a l sw e r e i d e n t i f i e da sm o d e r a t e r e s i s t a n c e ,w h i c ha c -c o u n t e d f o r 24.2%.S p e c i f i c a l l y ,t h e l i n e 810619s h o w e d t h e l o w e s t d i s e a s e i n d e x a m o n g al l t h e e v a l u -a t e d l i n e s ,a n dw a s o n l y a l i t t l eb i th i g h e r t h a nt h e r e s i s t a n c e c o n t r o l v a r i e t y ofS u m a i 3.T h e r e f o r et h e l i n e810619c a nb e c o n s i d e r e da sa ne l i t en e ws o u r c e f o rF H Bb r e e d i n g.M o r e o v e r,42m a t e r i a l s w e r e i d e n t i f i e da sm o d e r a t es u s c e p t i b i l i t y t oF H B,w h i c hc o u n t e df o r63.6%o f t h e t o t a l e x a m i n e d m a t e r i a l s.M o l e c u l a rm a r k e ra n a l y s i ss h o w e dt h a to n l y T45048c o n t a i n e dt h e F h b1r e s i s t a n c e g e n e, w h e r e a s29w h e a tm a t e r i a l s s u c ha sE m a i11,E m a i18,a n d810619c o n t a i n e d i n d i v i d u a l o rb o t ho f t h e t w o r e s i s t a n c e l o c i F h b5a n d Q F h s.c r c-2D L,s u g g e s t i n g t h a t t h e s e t w o l o c iw e r em o r e f r e q u e n t l y u s e d i n t h e F h b r e s i s t a n c e b r e e d i n g p r o g r a mi nH u b e i P r o v i n c e.C o r r e l a t i o n a n a l y s i s b e t w e e n t h e F H B d i s e a s e i n d e xa n d p l a n t h e i g h t o f t h e t e s t e dw h e a t l i n e s f r o md i f f e r e n t y e a r s s h o w e d t h a t e v e n t h o u g h t h e p l a n t h e i g h t c o n t i n u o u s l y d e c r e a s e du p o nt h e t i m e,t h eF H Bs e v e r i t y w a sn o t i n c r e a s i n g s i g n i f i-c a n t l y.N os i g n i f i c a n tc o r r e l a t i o n w a so b s e r v e db e t w e e nt h eF H Bs e v e r i t y a n d p l a n th e i g h t i nt h e w h e a t v a r i e t i e s s i n c e2009.T h i ss t u d yp r o v i d e sn e wi n s i g h t s f o ru n d e r s t a n d i n g t h eF H Br e s i s t a n c e a n dm o l e c u l a r b a s i s o f t h e c u l t i v a r s b r e d i nH u b e i P r o v i n c e.K e y w o r d s:W h e a t;F H Br e s i s t a n c e e v a l u a t i o n;M o l e c u l a r d e t e c t i o n;P l a n t h e i g h t赤霉病(F u s a r i u m h e a db l i g h t)主要是由禾谷镰刀菌引起的小麦真菌病害,温暖湿润的气候条件利于病害的发生,特别是小麦扬花期若遇阴雨天气,病原菌可在麦穗上迅速侵染和扩展,给小麦生产带来灾难性威胁[1-2]㊂中国长江中下游麦区和东北春麦区是赤霉病的重发区[3]㊂近年来,受气候变化和秸秆还田等耕作措施影响,赤霉病的发生范围逐渐扩大,已成为黄淮麦区和北方麦区小麦生产的重要威胁[4]㊂中国赤霉病流行年份的发生面积可达300多万h m2,2016和2018年发生面积分别为680万h m2和570万h m2[5]㊂赤霉病发生除造成严重的产量损失外,病原菌侵染还可产生脱氧雪腐镰刀菌烯醇(D O N)等真菌毒素,降低籽粒品质,威胁食品安全[6]㊂虽然使用化学药剂和栽培措施等可以降低病害风险,但是抗性品种利用是减轻小麦赤霉病危害最绿色环保的措施[7]㊂根据抗性类型的不同,小麦赤霉病抗性可以分为5类[8-10]㊂第一类为抗侵染(T y p e I:r e s i s t-a n c e t o i n v a s i o n),反映植株抵抗病原菌初始侵染的能力,通常采用喷雾接种,以病穗率或病情指数表示;第二类为抗扩展(T y p eⅡ:r e s i s t a n c et o s p r e a d i n g),反映病害在穗部侵染后扩展程度,采用单花滴注方式接种鉴定,以病小穗率表示;第三类为抗毒素积累能力(T y p eⅢ:r e s i s t a n c e t o t o x-i n s a c c u m u l a t i o n),一般指降解毒素的能力,通过测定染病籽粒中毒素含量进行评价;第四类为籽粒抗感染能力(T y p eⅣ:r e s i s t a n c e t ok e r n e l i n-f e c t i o n),一般用病粒率(F D K:f u s a r i u m-d a m a g e d k e r n a l s)表示;第五类为耐病性(T y p e V:t o l e r-a n c e),以产量损失进行评价㊂鉴于抗性鉴定的复杂性,目前研究以前3种抗性类型研究居多㊂开展小麦种质抗性评价是赤霉病抗性育种的前提㊂胡文静等[11]利用单花滴注的方法对93份小麦栽培及地方品种(系)的赤霉病抗扩展能力进行评价,筛选出可用于赤霉病育种的扬麦23等9份综合性状优异的材料㊂蒋正宁等[12]对扬麦系材料进行赤霉病抗扩展鉴定,并利用相关分子标记推测了扬麦系小麦品种抗性分子基础,为合理利用赤霉病抗源提供了参考㊂由于赤霉病抗性是多基因控制的数量性状,抗性鉴定易受环境条件影响,其抗性分子遗传解析和基因克隆进展缓慢㊂目前被正式命名的赤霉病抗性基因有8个(F h b1 ~F h b8)㊂F h b1和F h b2分别位于3B和6B染色体,为抗扩展类型基因,在苏麦3号等抗性品种中发现[13-14];F h b4和F h b5分别位于4B和5A染色体,为抗侵染类型基因,在地方品种望水白中发现[15-16]㊂F h b3㊁F h b6和F h b7来源于小麦近缘属物种大赖草㊁日本披碱草和长穗偃麦草[17-18]㊂F h b8来源于望水白,位于7D染色体,与籽粒病粒率抗性相关[19]㊂这些基因中,仅F h b1和F h b7被克隆,F h b1编码一个富含组氨酸的钙结合蛋白T a H R C[20-21](h i s t i d i n e-r i c h c a l c i u m-b i n d i n g);F h b7编码谷胱甘肽转移酶基因[22]㊂F h b1是目前在育种应用最多的抗性基因[23]㊂此外,对赤霉病抗性种质的遗传解析定位到数百个赤霉病抗性相关Q T L,多数位点由于遗传效应有限,尚未在生产上得到广泛应用[24]㊂武汉1号㊁扬麦158等品种中定位到Q T L位点Q F h s.c r c-2D L,是目前长江中下游麦区小麦育种中应用较多的抗性位点[23,25-28]㊂在小麦品种冀5265中定位到另一个位于2D染色体的Q T L位点,表型贡献率高达㊃334㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测30%,也具有较高育种利用潜力[29]㊂这些基因位点的发掘极大地丰富了小麦赤霉病抗性基因资源㊂湖北省地处长江中游,小麦扬花期易遭遇阴雨天气,是小麦赤霉病的重发区,但同时也蕴含着丰富的小麦赤霉病抗性资源,育成品种常具有较好的赤霉病抗性[30]㊂本研究收集湖北省历年审定小麦品种及选育高代品系66份,采取喷雾接种对供试材料进行田间赤霉病抗性鉴定,筛选优异抗性种质;利用赤霉病主效抗性基因功能性分子标记和连锁标记对供试材料进行分子检测,解析其抗性遗传位点组成;同时分析不同年代间小麦品种(系)赤霉病抗性㊁株高和小穗密度等性状的差异,为湖北省小麦抗赤霉病育种提供参考㊂1材料与方法1.1试验材料供试材料为湖北省不同时期审定小麦品种59份及选育优异高代品系7份㊂苏麦3号㊁鄂恩1号和安农8455分别为高抗㊁中抗和高感赤霉病对照品种㊂抗性鉴定所用赤霉病菌株为保存于湖北省农业科学院植保土肥所的 黄冈1号 ㊂1.2田间种植供试小麦材料分别于2021-2022和2022-2023年度在湖北省农业科学院南湖试验田种植㊂播种日期分别为2021年10月31日和2022年11月2日㊂试验采用完全随机区组设计,2次重复,每小区行长1m,行距0.25m,每行播种65粒㊂1.3赤霉病抗性鉴定赤霉病抗性鉴定依据‘中华人民共和国农业行业标准N Y/T2954-2016:小麦区域试验品种抗赤霉病鉴定技术规程“实施㊂每试验小区开花期标记10个始花麦穗,使用浓度为1ˑ105个㊃m L-1分生孢子液对标记穗子进行喷雾接种㊂从接种后到调查结束采用弥雾装置进行增湿处理以保证发病充分㊂接种后21d,调查标记麦穗的发病穗数及每个病穗发病小穗数和总小穗数,计算病情指数(d i s e a s e i n d e x,D I)㊂其中,发病率=发病穗数/调查总穗数;严重度=发病总小穗数/总小穗数;病情指数=发病率ˑ严重度ˑ100㊂根据病情指数对供试小麦品种抗性进行划分(表1)㊂1.4D N A提取及分子标记分析苗期取植株幼嫩叶片,采用C T A B法提取植物基因组D N A[31]㊂F h b1基因检测采用朱展望等[32]设计的诊断性H i s-I n D e l标记,F h b2(Wm c398和G w m644)[15]㊁F h b4(G w m149和G w m513)[33]㊁F h b5(X b a r c180和G w m186)[34]和Q F h s.c r c-2D L(G w m539和Wm c41)[25]检测根据文献报道采用上述紧密连锁S S R标记,引物序列来源于网站h t t p://202.194.139.32/[35]㊂其中,苏麦3号为F h b1基因阳性对照,望水白为F h b2㊁F h b4和F h b5阳性对照,武汉1号为Q F h s.c r c-2D L位点阳性对照㊂P C R反应体系为20μL,2ˑT a q M a s t e rm i x(P C0902,北京艾德莱生物科技有限公司)10μL,上下游引物(10μm o l㊃L-1)各1.2μL,D N A模板(50n g㊃μL-1)2μL,d d H2O 5.6μL㊂P C R扩增程序:94ħ预变性3m i n;94ħ变性30s,55ħ退火30s(退火温度根据不同引物确定),72ħ延伸1m i n(延伸时间由片段大小确定),35个循环;72ħ延伸8m i n,4ħ保存㊂除F h b1基因用1%琼脂糖电泳检测外,其余S S R 标记P C R产物均采用8%(W/V)的非变性聚丙烯酰胺凝胶检测,1ˑT B E缓冲液180V电压下电泳1.5~2h,然后银染显色检测㊂当目标基因条带与阳性对照一致时,认为该品种(系)可能含有该基因㊂表1小麦赤霉病喷雾接种抗性鉴定标准T a b l e1E v a l u a t i o n c r i t e r i a u s e d f o r t h e r e s i s t a n c ec l a s s i f i c a t i o nb y s p r a y i n o c u l a t i o n病情指数D i s e a s e i n d e x抗性评价R e s i s t a n c e e v a l u a t i o nD I=0免疫I mm u n i t y(I)0<D IɤD I C K-R抗病R e s i s t a n c e(R)D I C K-R<D IɤD I C K-M R中抗M o d e r a t e r e s i s t a n c e(M R) D I C K-M R<D IɤD I C K-S中感M o d e r a t e s u s c e p t i b i l i t y(M S)D IȡD I C K-S高感H i g h s u s c e p t i b i l i t y(S)1.5数据分析采用S P S S软件进行数据统计和方差分析㊂2结果与分析2.1供试材料赤霉病抗性鉴定与评价供试小麦材料赤霉病抗性鉴定结果显示,抗性对照苏麦3号病情指数最低,2年平均值为0.79;中抗对照鄂恩1号和感病对照安农8455分别为14.03和44.82㊂2021-2022年度不同品种(系)病情指数范围为0.17~66.16,2022-2023年度病情指数范围为1.41~75.00,两年度病情指数平均值范围为0.79~64.87(表2)㊂根据对照品㊃434㊃麦类作物学报第44卷表2供试小麦材料不同年份的赤霉病抗性鉴定结果T a b l e2F H Br e s i s t a n c e o f t h e e v a l u a t e dw h e a tm a t e r i a l s i nd i f f e r e n t y e a r s编号C o d e材料名称M a t e r i a l病情指数D i s e a s e i n d e x20222023平均M e a n抗性类型R e s i s t a n c et y p e1苏麦3号S u m a i3(C K)0.171.420.79R 28106192.512.692.60M R 3长辐麦22C h a n g f u m a i222.328.165.24M R 4华麦8号H u a m a i82.9910.586.78M R 5鄂麦14E m a i144.719.797.25M R 6鄂麦12E m a i126.5810.548.56M R 7金乐1号5.9012.619.26M R 8鄂2133E21331.1618.439.79M R 9荆州66J i n g z h o u6616.174.1210.14M R 10710818-10.6310.63M R 11鄂T45048E T4504812.029.3710.69M R 12鄂麦21E m a i2115.916.4311.17M R 13汉麦008H a n m a i00812.0210.9011.46M R 14荆麦103J i n g m a i1032.5023.4012.95M R 15鄂麦007E m a i00713.0313.1413.09M R 16鄂麦11E m a i119.8717.3413.61M R 17鄂恩6号E e n618.119.9714.04M R 18鄂恩1号E e n1(C K)10.4017.6814.04M R 19鄂麦17E m a i1722.396.8914.64M S 20鄂麦9号E m a i932.323.4417.88M S 21龙麦30L o n g m a i3016.3920.6918.54M S 22鄂麦170E m a i17015.8521.9118.88M S 23鄂麦398E m a i39816.2222.2519.23M S 24宜麦1号Y i m a i116.0722.6019.34M S 25鄂麦596E m a i59622.6816.6519.66M S 26鄂麦006E m a i00616.0223.4719.75M S 27华1609H u a160918.7221.4620.09M S 28810148-20.2320.23M S 29郑麦9023Z h e n g m a i902319.8820.6520.26M S 30华麦211H u a m a i21133.188.3120.75M S 31鄂麦23E m a i2319.6422.2720.96M S 32华麦2668H u a m a i266819.6622.5921.12M S 33鄂T81855E T8185522.7319.9021.31M S 34襄麦D51X i a n g m a iD518.8535.2422.05M S 35810145-22.3622.36M S 36鄂麦805E m a i80526.9218.9022.91M S 37荆州47J i n g z h o u4726.1020.5223.31M S 38鄂恩4号E e n439.028.8923.96M S 39鄂麦580E m a i58028.1720.1524.16M S 40华麦1223H u a m a i122319.9528.4424.20M S 41华1369H u a136917.6830.7224.20M S 42华1337H u a133737.3113.6225.46M S 43鄂麦803E m a i80327.8123.1825.49M S 44鄂麦18E m a i1832.4618.6725.57M S ㊃534㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测(续表2C o n t i n u e d t a b l e2)编号C o d e材料名称M a t e r i a l病情指数D i s e a s e i n d e x20222023平均M e a n抗性类型R e s i s t a n c et y p e45鄂麦6号E m a i625.6027.1126.35M S 46扶麦1369F u m a i136922.4630.2626.36M S 47鄂麦590E m a i59034.5518.8426.69M S 48襄麦25X i a n g m a i2525.0033.3529.18M S 49龙麦176L o n g m a i17642.4016.7229.56M S 50鄂麦608E m a i60837.3422.0029.67M S 51川麦1566C h u a n m a i156629.6230.2329.93M S 52豫麦51Y u m a i5142.7518.5930.67M S 53宛麦369W a n m a i36934.7727.9431.35M S 54鄂麦25E m a i2545.2320.5132.87M S 55鄂麦572E m a i57228.1639.0033.58M S 56鄂麦15E m a i1551.7419.7735.76M S 57G21658.4721.4539.96M S 58荆麦202J i n g m a i20243.5540.2241.88M S 59华麦2152H u a m a i215237.9549.9743.96M S 60襄麦35X i a n g m a i3556.1431.8243.98M S 61安农8455A n n o n g8455(C K)42.9746.6844.82S 62鄂麦426E m a i42644.8046.3245.56S 63鄂麦24E m a i2452.1947.6149.90S 64鄂麦352E m a i35250.3350.7250.53S 65鄂麦251E m a i25152.3354.1953.26S 66鄂麦22E m a i2266.1642.2254.19S 67鄂麦174E m a i17460.8759.4160.14S 68华1607H u a160748.5775.0261.80S 69810416-64.8764.87S -代表无数据;M R㊁M S㊁S㊁R同表1㊂-r e p r e s e n t sm i s s i n g d a t a.M R,M S,S,a n dRa r e t h e s a m e i n t a b l e1.种病情指数,对供试材料进行抗性划分,810619㊁长辐麦22和华麦8号等16个材料抗性达到中抗水平,占比24.2%;鄂麦17㊁鄂麦9号和龙麦30等42个材料(63.6%)赤霉病抗性水平为中感;抗性水平低于感病对照安农8455的品种(系)有8个(12.1%);没有发现抗性水平高于苏麦3号的材料㊂不同类型抗性材料之间病情指数差异达极显著水平(图1)㊂供试材料赤霉病病情指数年度间相关系数为0.58㊂方差分析结果(表3)表明,环境㊁基因型以及环境与基因型互作对该地区赤霉病病性指数的影响均达到显著水平㊂2.2赤霉病抗性相关基因的分子检测分子标记检测结果表明(表4,图2),66份供试小麦材料中,仅T45048携带F h b1;鄂麦18㊁鄂麦398和鄂麦426等18个材料可能携带F h b5基因;鄂麦11㊁鄂麦12和810619等15个材料可能 **表示不同抗性类型间赤霉病病情指数差异极显著(P< 0.01)㊂**r e p r e s e n t ss i g n i f i c a n td i f f e r e n c eb e t w e e nt h e g r o u p s w i t hd i f f e r e n tF H Br e s i s t a n c e(P<0.01).图1供试材料赤霉病不同抗性类型病情指数差异F i g.1D i s e a s e i n d e xd i f f e r e n c e s a m o n g t h eg r o u p sw i t hd i f f e r e n t F H Br e s i s t a n c e㊃634㊃麦类作物学报第44卷表3供试小麦材料在不同年份赤霉病抗性方差分析T a b l e3A n a l y s i s o f t h eF H Br e s i s t a n c e o f t h e s e l e c t e dw h e a tm a t e r i a l s i nd i f f e r e n t y e a r s源S o u r c eⅢ型平方和S u mo f s q u a r e s自由度D e g r e e o f f r e e d o m均方M e a n s q u a r e F值F v a l u e 差异显著性S i g n i f i c a n c e环境E n v i r o n m e n t850.001850.007.620.01基因型G e n o t y p e53505.1369775.446.950.00环境ˑ基因型E n v i r o n m e n tˑG e n o t y p e13239.9763210.161.880.00误差E r r o r14949.02134111.56表4供试材料赤霉病抗性相关基因分子标记检测结果T a b l e4M o l e c u l a r a n a l y s i s o f t h eF H Br e s i s t a n c e g e n e s i n t h e t e s t e dw h e a tm a t e r i a l s基因G e n e/Q T L品种c u l t i v a r sF h b1T45048,苏麦3号,望水白T45048,S u m a i3,W a n g s h u i b a iF h b2苏麦3号,望水白S u m a i3,W a n g s h u i b a iF h b4望水白W a n g s h u i b a iF h b5鄂麦18,鄂麦398,鄂麦23,鄂麦25,豫麦51,金乐1号,华1369,鄂麦426,龙麦176,荆麦202,龙麦30,华1609,荆州47,鄂2133,810619,710818,810148,810145,武汉1号,望水白E m a i18,E m a i398,E m a i23,E m a i25,Y u m a i51,J i n l e1,H u a1369,E m a i426,L o n g m a i176,J i n g m a i202, L o n g m a i30,H u a1609,J i n g z h o u47,E2133,810619,710818,810148,810145,W u h a n1,W a n g s h u i b a iQ F h s.c r c-2D L 鄂麦11,鄂麦12,鄂麦398,鄂麦14,鄂麦22,荆麦103,襄麦D51,汉麦008,川麦1566,华麦211,华麦211,长辐麦22,鄂麦6号,鄂麦9号,810619,710818,苏麦3号,武汉1号E m a i11,E m a i12,E m a i398,E m a i14,E m a i22,J i n g m a i103,X i a n g m a i D51,H a n m a i008,C h u a n m a i1566,H u a-m a i211,C h a n g f u m a i22,E m a i6,E m a i9,810619,710818,S u m a i3,W u h a n1携带Q F h s.c r c-2D L基因㊂其中,华麦211㊁810619和710818等3个材料同时携带F h b5和Q F h s.c r c-2D L基因㊂鉴定为中抗的16个材料中,75%(12个)至少携带1个抗性基因㊂仅鄂麦007㊁鄂麦21㊁华麦8号和鄂恩6号没有检测出已知抗性基因㊂2.3不同年份选育小麦品种(系)赤霉病抗性与株高和小穗密度的相关性分析株高和小穗密度是影响小麦赤霉病抗性的重要农艺性状㊂将供试材料根据选育年份进行划分,分析年代间选育小麦品种(系)株高㊁赤霉病病情指数和小穗密度的变化趋势,以及赤霉病抗性与株高和小穗密度的相关性㊂结果显示,2008年以前选育品种(系)平均株高95.7c m,2009年及以后选育品种(系)株高显著降低,平均株高为81.5c m;赤霉病病情指数和小穗密度年代间差异不显著(表5)㊂性状相关性分析结果显示(表5),2008年以前选育小麦品种(系)赤霉病病情指数与株高呈显著负相关(-0.52),2009年以后选育小麦品种(系)赤霉病病情指数则与株高和小穗密度没有显著相关性㊂以上结果表明,湖北省不同年代间小麦品种(系)小穗密度对赤霉病抗性影响不大㊂小麦株高虽然近15年来显著降低,但是其对赤霉病抗性的影响却并未显著增加㊂表5不同年份供试小麦材料赤霉病病情指数与株高和小穗密度的相关性分析T a b l e5C o r r e l a t i o n s a n a l y s i s b e t w e e nF H Bd i s e a s ei n d e x a n d p l a n t h e i g h t o r s p i k e c o m p a c t n e s s项目I n t e m赤霉病病情指数D i s e a s ei n d e x株高P l a n th e i g h t/c m相关性C o r r e l a t i o n小穗密度S p i k ec o m p a c t n e s s相关性C o r r e l a t i o n2008年及之前品种(系)C u l t i v a r(l i n e)b r e de a r l i e rt h a n20082009年及之后品种(系)C u l t i v a r(l i n e)b r e dl a t e rt h a n200919.6895.7-0.52**2.09-0.0826.0681.5-0.022.1-0.29**表示显著相关(P<0.01)㊂**r e p r e s e n t s s i g n i f i c a n t c o r r e l a t i o n(P<0.01).㊃734㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测(1)F h b 1基因标记H i s -I n D e l 检测结果;(2)和(3)分别为Q F h s .c r c -2D L 基因位点连锁标记G w m 539和Wm c 41检测结果;(4)和(5)分别为F h b 5基因位点连锁标记G w m 186和X b a r c 180检测结果㊂箭头为目标条带位置㊂T h e a m p l i f i c a t i o n s a r e d e r i v e d f r o m (1)F h b 1a m p l i f i e dw i t hm a r k e r H i s -I n D e l ;(2)a n d (3)f o r Q F h s .c r c -2D L a m pl i f i e dw i t hm a r k -e r s G w m 539a n d Wm c 41,r e s p e c t i v e l y ;(4)a n d (5)f o r F h b 5a m p l i f i e dw i t hm a r k e r s G w m 186a n d X b a r c 180,r e s p e c t i v e l y.A r r o w i n d i -c a t e s t h e t a r ge t b a n d .图2 部分参试材料分子标记检测结果F i g .2 M o l e c u l a r d e t e c t i o n f o r F h b 1,QF h s .c r c -2D L a n d F h b 5g e n e s i n s o m e o f t h e t e s t e dw h e a tm a t e r i a l s ㊃834㊃麦 类 作 物 学 报 第44卷3讨论3.1赤霉病抗性鉴定赤霉病抗性是典型的数量性状,抗性鉴定易受环境影响㊂本研究于2021-2023两年度对湖北省不同时期审定的59份小麦品种和7份高代品系进行田间赤霉病抗性鉴定,供试材料年度间赤霉病病情指数显著相关(相关系数0.58,P<0.01),说明本试验参试材料抗性较为稳定,受环境影响有限,抗病对照和感病对照鉴定结果与预期一致,说明试验结果有效㊂本研究筛选出810619㊁长辐麦22等中抗赤霉病材料16份,占比24.2%;鄂麦17等中感材料42份,占比63.6%;感病水平材料8份,占比12.1%,说明湖北省历史和当前主要小麦品种(系)赤霉病抗性水平主要介于中抗到中感之间㊂虽然没有鉴定到赤霉病抗性超过苏麦3号的高抗材料,但是810619㊁长辐麦22和华麦8号等材料的赤霉病病情指数仅略低于苏麦3号,这些材料可作为赤霉病抗性种质进行育种利用㊂3.2抗赤霉病基因/Q T L分析小麦赤霉病抗性受多基因控制,F h b1是目前已知遗传效应最大的抗性基因,已在育种中得到广泛应用,但有研究表明其抗性遗传效应受遗传背景影响㊂本项目对湖北省主要审定品种(系)的F h b1基因进行检测,结果显示仅T45048含有该基因,说明湖北省小麦育种中对F h b1基因的利用并不广泛,不同于扬麦系列品种,其赤霉病抗性可能由其它抗性基因决定㊂对F h b2㊁F h b4㊁F h b5和Q F h s.c r c-2D L位点的检测结果显示鄂麦18号㊁鄂麦398等18份材料(27.2%)可能携带F h b5基因位点;鄂麦11等15个材料(22.7%)可能携带Q F h s.c r c-2D L抗性基因位点,说明这2个基因可能在湖北省小麦的赤霉病抗性育种中得到了较多应用;没有检测到携带F h b2和F h b4位点的材料,说明这2个基因在湖北小麦育种中利用有限㊂进一步分析发现,同时携带F h b5和Q F h s.c r c-2D L 基因位点的3份材料中,2份为中抗(810619和710818),1份为中感(鄂麦398);仅携带F h b5位点的小麦材料有3份材料鉴定为感病,说明不同遗传背景下抗性基因遗传效应的差异,因此,赤霉病抗病育种中,要充分考虑亲本材料的遗传背景,当背景材料抗性较差时,聚合多个抗性基因可能才能达到预期的育种目标㊂同时,本研究鉴定为中抗的16份小麦材料中,75%至少携带一个已知抗性基因(位点),仅鄂麦007㊁鄂麦21㊁华麦8号和鄂恩6号等4份材料没有检测到已知抗性基因,推测可能含有新的抗性基因位点㊂3.3抗性品种(系)抗性来源分析系谱分析结果显示,中抗品系810619和710818均为 扬辐麦5号/荆麦103 杂交组合后代,其亲本之一荆州103在本研究中赤霉病抗性鉴定为中抗;分子标记检测结果显示810619和710818携带F h b5和Q F h s.c r c-2D L基因位点;而荆州103被检测出携带Q F h s.c r c-2D L位点,推测810619和710818携带的Q F h s.c r c-2D L位点可能来自于荆麦103,根据荆州103(扬麦158/90-309)的系谱,其抗性基因可能源于扬麦158㊂鄂麦12系谱为 750025-12/鄂麦6号 ,本研究检测出其携带抗性位点Q F h s.c r c-2D L,与鄂麦6号分子检测结果一致,鄂麦6号赤霉病抗性鉴定为中感,因此鄂麦12的抗性及抗性基因位点可能来源于鄂麦6号㊂汉麦008为 扬麦15/华2566 杂交系选后代,携带Q F h s.c r c-2D L位点,其抗性及抗性基因可能源于扬麦15㊂华麦8号(南大2419/ B91-80//华早2号)和鄂2133(毛颖阿夫/宜麦1号)2个中抗品种的系谱分析显示,华麦8号亲本含有南大2419,鄂2133的亲本之一宜麦1号为南大2419系选品种[36]㊂已有研究表明,南大2419在2B染色体上存在一个稳定的抗赤霉病位点[37],因此这两个品种抗性可能与南大2419相关㊂鄂麦14㊁鄂麦007㊁鄂麦21和鄂恩6号等中抗品种因亲本材料抗性不明,无法推测其抗性来源,需要进一步的遗传研究㊂系谱分析结果说明湖北省赤霉病抗性较好品种(系)以江苏材料和湖北省早期育种材料抗性来源为主,辅以未知抗性新基因㊂3.4赤霉病抗性与农艺性状相关性株高和小穗密度是影响小麦赤霉病抗性的重要农艺性状,高秆和较稀小穗密度可以降低小麦赤霉病的发生,为小麦避病性状[38]㊂现有研究表明,小麦株高与赤霉病抗性呈显著负相关,大约40%的株高Q T L与赤霉病抗性相关Q T L共定位,目前利用较多的矮秆基因R h t-B1㊁R h t-D1㊁R h t8和R h t24中,仅R h t24矮秆基因被报道对赤霉病抗性无负效应[39]㊂徐晴等[40]对中国不同麦区小麦品种矮秆基因分布及其与赤霉病抗性关系的研究中发现,携带R h t2和R h t8矮秆基因的小麦材料赤霉病抗性显著低于不带有该位点的小麦㊃934㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测材料㊂本研究根据选育年代对供试小麦材料进行划分,比较不同年代间赤霉病病情指数㊁株高和小穗密度的变化,结果显示近15年来湖北省小麦品种株高显著降低,平均降低14.2c m,赤霉病病情指数和小穗密度年代间变化不大㊂对不同年代间选育品种的株高与赤霉病抗性相关性分析结果显示,较早期选育小麦品种(2008年及以前)赤霉病病情指数与株高呈显著负相关,而2009年及以后选育小麦品种(系)株高和赤霉病抗性间则没有显著相关性,这种差异说明近十多年来湖北省小麦品种改良可能利用了不同的降秆基因,这些矮秆基因对赤霉病抗性没有或者仅有较小负遗传效应,进一步挖掘这些株高控制基因将为小麦抗赤霉病育种提供帮助㊂参考文献:[1]B A IG.S c a bo fw h e a t:P r o s p e c t s f o r c o n t r o l[J].P l a n tD i s-e a s e,1994,78(8):760.[2]P A R R Y D W,J E N K I N S O N P,M C L E O D L.F u s a r i u m e a rb l i g h t(sc a b)i ns m a l l g r a i n c e r e a l s a r e v i e w[J].P l a n tP a-t h o l o g y,1995,44(2):207.[3]程顺和,张勇,别同德,等.中国小麦赤霉病的危害及抗性遗传改良[J].江苏农业学报,2012,28(5):938.C H E N GSH,Z H A N G Y,B I E T D,e ta l.D a m a g eo fw h e a t F u s a r i u mh e a db l i g h t(F H B)e p i d e m i c sa n d g e n e t i c i m p r o v e-m e n t o fw h e a t f o r s c a b r e s i s t a n c e i nC h i n a[J].J i a n g s uJ o u r-n a l o f A g r i c u l t u r a l S c i e n c e s,2012,28(5):938.[4]张爱民,阳文龙,李欣,等.小麦抗赤霉病研究现状与展望[J].遗传,2018,40(10):858.Z H A N G A M,Y A N G W L,L IX,e ta l.C u r r e n ts t a t u sa n d p e r s p e c t i v eo n r e s e a r c h a g a i n s t F u s a r i u mh e a db l i g h t i nw h e a t [J].H e r e d i t a s,2018,40(10):858.[5]黄冲,姜玉英,吴佳文,等.2018年我国小麦赤霉病重发特点及原因分析[J].植物保护,2019,45(2):160.HU A N GC,J I A N G Y Y,WUJ W,e t a l.O c c u r r e n c e c h a r a c-t e r i s t i c s a n dr e a s o na n a l y s i so fw h e a th e a db l i g h t i n2018i nC h i n a[J].P l a n tP r o t e c t i o n,2019,45(2):160.[6]F E R R I G O D,R A I O L A A,C A U S I N R.F u s a r i u m t o x i n s i nc e r e a l s:O c c u r r e n c e,l e g i s l a t i o n,f a c t o r s p r o m o t i n g t h e a p p e a r-a n c e a n d t h e i rm a n a g e m e n t[J].M o l e c u l e s,2016,21(5):627.[7]J I F,H ED,O L A N I R A NAO,e t a l.O c c u r r e n c e,t o x i c i t y,p r o-d u c t i o na n dde t e c t i o nof F u s a r i u m m y c o t o x i n:Ar e v i e w[J].F o o dP r o d u c t i o n,P r o c e s s i n g a n d N u t r i t i o n,2019,1(1):6.[8]M C MU L L E N M,B E R G S T R OM G,D E WO L FE,e t a l.Au-n i f i e d e f f o r t t o f i g h t a ne n e m y o fw h e a t a n db a r l e y:F u s a r i u mh e a db l i g h t[J].P l a n tD i s e a s e,2012,96(12):1712.[9]M E S T E R HÁZ Y A.T y p e sa n dc o m p o n e n t so fr e s i s t a n c et oF u s a r i u mh e a db l i g h to fw h e a t[J].P l a n tB r e e d i n g,1995, 114(5):377.[10]M I L L E RJD,Y O U N GJC,S AM P S O NDR.D e o x y n i v a l e n o la n dF u s a r i u m h e a db l i g h tr e s i s t a nc e i ns p r i n g c e r e a l s[J]. J o u r n a l o f P h y t o p a t h o l o g y,1985,113(4):359. [11]胡文静,张春梅,吴迪,等.长江中下游小麦抗赤霉病品种的筛选与部分农艺性状分析[J].中国农业科学,2020,53(21): 4313.HU WJ,Z HA N G C M,WU D,e t a l.S c r e e n i n g f o r r e s i s t a n c e t oF u s a r i u mh e a d b l i g h t a n d a g r o n o m i c t r a i t s o fw h e a t g e r m-p l a s m s f r o m Y a n g t z eR i v e r r e g i o n[J].S c i e n t i aA g r i c u l t u r a S i n i c a,2020,53(21):4313.[12]蒋正宁,吕国锋,王玲,等.扬麦品种(系)赤霉病抗扩展性基因分子检测及其抗性评价[J].麦类作物学报,2019,39(12): 1406.J I A N G ZN,LÜG F,WA N G L,e ta l.E v a l u a t i o no fF u s a r i-u mh e a db l i g h t r e s i s t a n c e a n dm o l e c u l a r d e t e c t i o no f t y p eⅡr e s i s t a n c e g e n e si n Y a n g m a i w h e a tc u l t i v a r s(l i n e s)[J]. J o u r n a l o f T r i t i c e a eC r o p s,2019,39(12):1406. [13]C U T H B E R T P A,S OM E R S DJ,T HOMA SJ,e ta l.F i n e m a p p i n g F h b1,a m a j o r g e n e c o n t r o l l i n g F u s a r i u m h e a d b l i g h t r e s i s t a n c ei n b r e a d w h e a t(T r i t i c u m a e s t i v u m L.) [J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2006,112(8):1465.[14]C U T H B E R TPA,S OM E R SDJ,B R U LÉ-B A B E L A.M a p-p i n g o f F h b2o n c h r o m o s o m e6B S:A g e n e c o n t r o l l i n g F u s a r i-u m h e a db l i g h tf i e l dr e s i s t a n c ei n b r e a d w h e a t(T r i t i c u m a e s t i v u m L.)[J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2007, 114(3):429.[15]X U ES,L IG,J I A H,e t a l.F i n em a p p i n g F h b4,am a j o rQ T Lc o nd i t i o n i n g re s i s t a n c e t oF u s a r i u mi nf e c t i o n i nb r e a dw h e a t (T r i t i c u ma e s t i v u m L.)[J].T h e o r e t i c a la n d A p p l i e dG e-n e t i c s,2010,121(1):147.[16]X U ES,X U F,T A N G M,e t a l.P r e c i s em a p p i n g F h b5,am a-j o r Q T L c o n d i t i o n i n g r e s i s t a n c et o F u s a r i u m i n f e c t i o ni n b r e a dw h e a t(T r i t i c u m a e s t i v u m L.)[J].T h e o r e t i c a la n dA p p l i e dG e n e t i c s,2011,123(6):1055.[17]Q ILL,P UM P H R E Y M O,F R I E B EB,e t a l.M o l e c u l a r c y-t o g e n e t i cc h a r a c t e r i z a t i o no fa l i e ni n t r o g r e s s i o n s w i t h g e n e F h b3f o r r e s i s t a n c e t oF u s a r i u mh e a db l i g h t d i s e a s e o fw h e a t [J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2008,117(7):1155.[18]WA N GSL,Q I LL,C H E NPD,e t a l.M o l e c u l a r c y t o g e n e t i ci d e n t i f i c a t i o n o f w h e a t-E l y m u s t s u k u s h i e n s e i n t r o g r e s s i o n l i n e s[J].E u p h y t i c a,1999,107(3):217.[19]WA N G X,L IG,J I A H,e ta l.B r e e d i n g e v a l u a t i o na n d p r e-c i s em a p p i n g o f F h b8f o rF u s a r i u m h e a db l i g h t r e s i s t a n c e i n w h e a t(T r i t i c u m a e s t i v u m)[J].P l a n tB r e ed i n g,2023,h t-t p s://d o i.o r g/10.1111/p b r.13113.[20]S UZ,B E R N A R D O A,T I A NB,e t a l.Ad e l e t i o nm u t a t i o n i nT a H R C c o n f e r s F h b1r e s i s t a n c e t oF u s a r i u m h e a db l i g h t i n w h e a t[J].N a t u r eG e n e t i c s,2019,51:1099.[21]L IG,Z H O UJ,J I A H,e t a l.M u t a t i o no f a h i s t i d i n e-r i c h c a l-c i u m-b i nd i n g-p r o te i n g e n e i nw h e a t c o nf e r s r e s i s t a n c e t o F u-s a r i u m h e a db l igh t[J].N a t u r eG e n e ti c s,2019,51:1106.[22]WA N G H,S U NS,G E W,e t a l.H o r i z o n t a l g e n e t r a n s f e ro fF h b7f r o mf u n g u s u n d e r l i e sF u s a r i u m h e a db l i g h t r e s i s t a n c e㊃044㊃麦类作物学报第44卷i nw h e a t[J].S c i e n c e,2020,368(6493):e a b a5435.[23]MAZ,X I E Q,L IG,e t a l.G e r m p l a s m s,g e n e t i c s a n d g e n o m-i c sf o rb e t t e rc o n t r o lo fd i s a s t r o u s w h e a t F u s a r i u m h e a d b l i g h t[J].T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,2020,133(5): 1541.[24]H.B U E R S TMA Y R,T.B A N,J.A.A N D E R S O N.Q T L m a p p i n g a n d m a r k e r-a s s i s t e ds e l e c t i o nf o r F u s a r i u m h e a d b l i g h t r e s i s t a n c ei n w h e a t:ar e v i e w[J].P l a n tB r e e d i n g, 2009,128:1.[25]S OM E R SDJ,F E D A K G,S A V A R D M.M o l e c u l a rm a p p i n g o fn o v e l g e n e sc o n t r o l l i n g F u s a r i u m h e a db l i g h tr e s i s t a n c e a n dd e o x y n i v a l e n o la c c u m u l a t i o ni ns p r i n g w h e a t[J].G e-n o m e,2003,46(4):555.[26]Y A N H,L IG,S H I J,e t a l.G e n e t i c c o n t r o l o f F u s a r i u mh e a db l i g h tr e s i s t a nc ei nt w o Y a n g m a i158-de r i v e dr e c o m b i n a n t i n b r e d l i n e p o p u l a t i o n s[J].T h e o r e t i c a l a n dA p p l i e dG e n e t-i c s,2021,134(9):3037.[27]Z H A N G P,G U O C,L I U Z,e ta l.Q u a n t i t a t i v et r a i t l o c i f o rF u s a r i u mh e a db l i g h t r e s i s t a n c e i nw h e a t c u l t i v a r sY a n g m a i 158a n dZ h e n g m a i9023[J].T h eC r o p J o u r n a l,2021,9(1): 143.[28]胡文静,张勇,陆成彬,等.小麦品种扬麦16赤霉病抗扩展Q T L定位及分析[J].作物学报,2020,46(2):157.HU WJ,Z HA N G Y,L U CB,e t a l.M a p p i n g a n d g e n e t i c a-n a l y s i so fQ T L s f o rF u s a r i u m h e a db l i g h t r e s i s t a n c e t od i s-e a s e s p r e a di n Y a n g m a i16[J].A c t a A g r o n o m i c aS i n i c a, 2020,46(2):157.[29]L IH,Z H A N G F,Z H A O J,e ta l.I d e n t i f i c a t i o no fan o v e l m a j o rQ T L f r o mC h i n e s ew h e a t c u l t i v a r J i5265f o r F u s a r i u m h e a db l i g h tr e s i s t a n c ei n g r e e n h o u s e[J].T h e o r e t i c a la n dA p p l i e dG e n e t i c s,2022,135(6):1867.[30]朱展望,杨立军,佟汉文,等.湖北省小麦品种(系)的赤霉病抗性分析[J].麦类作物学报,2014,34(1):137.Z HUZ W,Y A N G LJ,T O N G H W,e ta l.A n a l y s i so f t h e r e s i s t a n c e t oF u s a r i u mh e a d b i g h t i nw h e a t v a r i e t i e s a n d l i n e s f r o m H u b e i[J].J o u r n a l o f T r i t i c e a eC r o p s,2014,34(1): 137.[31]E DWA R D SK,J O H N S T O N EC,T H OM P S O N C.As i m p l ea n d r a p i dm e t h o d f o r t h e p r e p a r a t i o no f p l a n t g e n o m i cD N A f o rP C Ra n a l y s i s[J].N u c l e i cA c i d sR e s e a r c h,1991,19(6): 1349.[32]朱展望,徐登安,程顺和,等.中国小麦品种抗赤霉病基因F h b1的鉴定与溯源[J].作物学报,2018,44(4):473.Z HUZ W,X U D A,C H E N GS H,e t a l.C h a r a c t e r i z a t i o no f F u s a r i u mh e a db l i g h t r e s i s t a n c e g e n e F h b1a n di t s p u t a t i v e a n c e s t o r i nC h i n e s ew h e a t g e r m p l a s m[J].A c t aA g r o n o m i c a S i n i c a,2018,44(4):473.[33]廖森,方正武,胡文静,等.59份江苏小麦品种(系)的抗赤霉病评价与农艺性状分析[J].麦类作物学报,2022,42(3): 297.L I A OS,F A N GZ W,HU WJ,e t a l.E v a l u a t i o n o f r e s i s t a n c e t oF u s a r i u m h e a db l i g h t a n da n a l y s i so f a g r o n o m i c t r a i t so f 59w h e a t g e r m p l a s m s i nJ i a n g s uP r o v i n c e[J].J o u r n a lo f T r i t i c e a eC r o p s,2022,42(3):297.[34]J I A H,Z H O U J,X U E S,e ta l.A j o u r n e y t ou n d e r s t a n d w h e a tF u s a r i u mh e a db l i g h t r e s i s t a n c e i n t h eC h i n e s ew h e a t L a n d r a c eW a n g s h u i b a i[J].T h eC r o p J o u r n a l,2018,6(1): 48.[35]MA S,WA N G M,WU J,e ta l.W h e a to m i c s:A p l a t f o r mc o m b i n i n g m u l t i p l eo m i c sd a t at oa c ce l e r a t ef u n c t i o n a lg e-n o m i c ss t u d i e si n wh e a t[J].M o l e c u l a r P l a n t,2021,14 (12):1965.[36]敖立万.湖北小麦[M].武汉:湖北科学技术出版社,2002:61.A OL W.W h e a t i n H u b e i[M].W u h a n:H u b e iS c i e n c e& T e c h n o l o g y P r e s s,2002:61.[37]L I NF,K O N GZX,Z HU HL,e t a l.M a p p i n g Q T La s s o c i a t-e dw i t h r e s i s t a n c e t oF u s a r i u mh e a d b l i g h t i n t h eN a n d a2419ˑW a n g s h u i b a i p o p u l a t i o n.T y p e I I r e s i s t a n c e[J].T h e o r e t i-c a l a n dA p p l i e dG e n e t i c s,2004,109(7):1504.[38]B U E R S T MA Y R M,S T E I N E R B,B U E R S T MA Y R H.B r e e d i n g f o rF u s a r i u m h e a db l i g h tr e s i s t a n c ei n w h e a tP r o g r e s sa n dc h a l l e n g e s[J].P l a n t B r e e d i n g,2020,139(3):429.[39]H E R T E R,C.P.,E B M E Y E R,E.,K O L L E R,S.e t a l.R h t24 r e d u c e sh e i g h t i nt h e w i n t e r w h e a t p o p u l a t i o n S o l i tärˑB u s s a r d w i t h o u t a d v e r s e e f f e c t s o nF u s a r i u mh e a d b l i g h t i n-f e c t i o n[J].T h e o r e t i c a lA p p l l i e dG e n e t i c s,2018,131:1263.[40]徐晴,许甫超,秦丹丹,等.矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响[J].麦类作物学报, 2022,42(7):790.X U Q,X U F C,Q I N D D,e ta l.D i s t r i b u t i o no f t h ew h e a t d w a r f i n gg e n e s i nC h i n aa n dt h e i r e f f e c t so nF u s a r i u m h e a db l i g h t r e s i s t a nc e[J].J o u r n a lo f T r i t i c e a eC r o p s,2022,42(7):790.㊃144㊃第4期徐晴等:湖北省66份小麦品种(系)赤霉病抗性鉴定与分子检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中第 二 阶段 的 环境 气 候 条件 对 病 害 流行 起 决 定性 作用 。温 度
谷镰刀菌菌株 的真 菌又被 确认 分为 2个 新种——, r m “o
vrs 和 F sr m g d ci 。 o i oi uai e a hi u
1 2 发 生 流行 规律 .
和湿度对病菌侵染和病害发展至关重要…。
个 阶段。第一 阶段 在小麦抽穗前 , 天气条件主要影响赤霉病
菌 子囊 和 子 囊 孢 子 的形 成 和 积 累。 第 二 阶段 在 抽 穗 一开 花 期, 天气 条 件尤 其 是 温 湿度 直 接 与 子 囊 孢 子 的 扩 散 和 侵 染 有 关 。第 三 阶段 在 开花 之 后 , 候 影 响 到 病 害 的 发 展 程 度 。 其 气
lm)、 麦镰 刀 菌 ( uaim aeaem)梨 孢 镰 刀菌 ( ua— ' u 燕 F sr v cu 、 u n F sr i oe 和雪 腐镰 刀 菌 ( i oohu i l) 其 中 最 重要 的 u a) mp Mc dcim n a , r ve 病原 菌 是禾 谷镰 刀菌 和 黄 色 镰 刀 菌 … 。 在 我 国 , 谷 镰 刀 菌 禾 ( ga ierm) rm nau 占小 麦 赤 霉 病 病 原 菌 的 9 . % 。 近 年 45 来 , 关 小 麦赤 霉病 的分 类 又有 了新 的发 现 , 经被 鉴 定 为禾 有 曾
摘要 : 综述了小麦赤霉病 的发生流行规律 , 主要 病原菌 、 如 传播途 径和环境 条件对小 麦赤霉病发 生流行 的影 响
等 。并 阐述 了小 麦 赤霉 病 菌 分 泌 产生 的主 要毒 素 脱 氧 雪 腐 镰 刀 菌烯 醇 ( O 的 毒 理 , 国 赤 霉 病 菌 分 泌 D N 毒 素 D N) 我 O 的差 异 和分 布 , 麦 品种 抗 性 对 D N 毒素 产 生 的 影 响等 。 小 O
小 麦 赤霉 病 ( ha ha lh) 广 泛 分 布 于 世 界 温 暖 w et edbi t 是 g
潮 湿地 区 的重 要 病 害 。 。在 我 国赤 霉病 发 生 区域 过 去 主 要 集 中在 长 江 中下 游地 区 、 南冬 麦 区和东 北 春 麦 区 , 华 近年 来 在 黄河 流 域及 其 附 近 区域 也 时 有 发 生 , 渐 向 北 扩 展 蔓 延 。小 逐 麦赤 霉 病 的发 生 区域 面积 已 达 7 0万 h 约 占全 国小 麦 种 0 m, 植 总 面 积 的 14 每 年 因 赤 霉 病 危 害 损 失 小 麦 产 量 20万 ~ /, 0 30万 t 。而且 , 霉 病菌 分 泌 产生 的 脱 氧 雪腐 镰 刀 菌烯 醇 0 赤 ( O ) 毒素 能 污 染 粮 食 , 可 在 食 物 链 中长 期 存 留 , 可 D N等 并 还 能 产 生致 癌 物质 , 重 威胁 着 人 和动 物 的 健康 。 。 严
关键 词 : 麦 ; 霉 病 ; O 研 究 进 展 小 赤 D N; 中 图分 类 号 : 45 11 ¥3 .2 文 献标 志码 : A 文 章 编号 :0 2—10 (0 0 0 0 8 0 10 3 2 2 1 )5— 12— 3 囊孢 子 是 小 麦赤 霉 病 主 要 的初 侵 染 源 。 寄 生 在 小 麦 、 本 科 禾
1 1 我 国小 麦 赤霉 病 的主 要 病原 菌 . 引起 小麦 赤 霉病 的主 要 病 原 菌主 要 是 以 下 5种 : 谷 镰 禾
刀 菌 ( u r m ga nau 、 色 镰 刀 菌 ( u r m clo F s i rmi rm) 黄 au e F s i u — au m
作 物 残 茬 上 发 育 形 成 的 禾 谷 镰 刀 菌 子 2 小 麦 赤霉 病 菌 主要 毒 素 D N O 2 1 D N毒 素 的毒 理 . O 禾 谷镰 刀 菌分 泌产 生 的 次 生代 谢 物 单端 孢 霉 烯 类 等 小麦 赤霉 毒 素 , 泛 存 在 于 发 生 小麦 赤 霉 病 的麦 谷 中 广 。D N O
对赤 霉 病 的初 侵 染 源 和菌 丝 生 长抗 性 最差 的时 刻 。小 麦 开花
期是小麦赤霉病最易感病 时期 , 至小麦灌浆期时病原菌对小
麦 的侵 染 力下 降 。去 除雄 蕊 的 小 麦 能 够 减 轻 赤 霉 病 的 发生 频 率 … 。气 象 条 件 对 小 麦 赤 霉 病 发 生 的 影 响 可 分 为 3
1 小 麦 赤霉 病 的发 生 流行
杂 草 、 豆 、 豆 、 麦种 等上 的病 原 孢 子 也 可 以 侵染 小 麦 引 大 豌 病 起 赤 霉 病 发生 , 是次 要初 侵染 源 … 。
12 2 病 原 菌 的 传播 .. 小 麦赤 霉 病 的 流行 学 研究 表 明 , 气 空
中 的子 囊孢 子 和分 生孢 子 是小 麦 赤霉 病 的 主 要初 浸 染 源和 传 播 源 。禾谷 镰 刀 菌 的子 囊 孢子 和分 生孢 子 可 以通 过 2种 方 法 传 播 : 水 和 风 ’ 在 自然 条 件 下 禾 谷 镰 刀 菌 ga 雨 。 r— m aau 的 子 囊 孢 子 可 弹 射 至 土 表 以上 1 m, 以子 囊 i rm e —2c 所 孢 子 可 以通 过 风或 雨 来 传 播 , 是 分 生孢 子 由 于 密度 太 大 不 但 能 通过 风 来 传播 , 以分 生 孢 子 主要 通 过 雨 水 的进 溅 传 播 到 所 麦 穗上 。 12 3 发 生 规律 .. 赤 霉 病 对 小 麦 侵 染பைடு நூலகம்的最 重 要 时 期 是 小 麦

12一 8
江苏农业科学
21 0 0年第 5期
樊 平 声.小麦 赤霉 病和 D N毒 素 研 究进 展 [ ] O J .江 苏农 业 科 学 ,0 0 5 :8 2 1 ( ) 12—14 8
小麦赤 霉病 和 D N毒 素研究 进展 O
樊平 声
( 苏省 农 业 科学 院蔬 菜研 究 所 , 苏南 京 2 0 1 ) 江 江 10 4
相关文档
最新文档