材料基础固体中的扩散
材料科学基础-第4章-扩散

边界条件:t>0时,若x=0,则ρ=ρs
ρ0
若x=∞,则ρ=ρ0
由
x
ρ A 1 exp( β )dβ A 2
2 0 β
ρ
ρs ρ0 0
得解为:
)
ρ ρ s (ρ s - ρ 0 )erf(
x 2 Dt
11
第二章
固体结构
例题:在930℃对原始含碳量为ρ0的钢制工件进行渗碳,其表 面含碳量维持为ρs。渗碳t1 时,距表面深度0.2mm处含碳量为 ρc,求渗碳t2 时,含碳量为ρc处距离表面的深度。
散物质量。 D -扩散系数;ρ-扩散物质质量浓度;x -沿扩散方向距离 式中负号表示物质扩散方向与浓度梯度方向相反。 菲克第一定律反映稳态扩散,即扩散过程中,各处浓度不 随时间变化(
ρ t 0
)。
J x
2
第二章
固体结构
二、菲克扩散第二定律
通常扩散为非稳态扩散,即扩散过程中,各处浓度随时间 而变化(
若知各β值,查误差函数表可得erf(β) 值,若知 erf(β) 值,反查误差函数表可得β值。
7
第二章
固体结构
8
第二章 对(4)式
ρ A 1 exp( β
0 β 2
固体结构
)d β A 2
由初始条件确定积分常数,当t=0时: 若x>0,则ρ=ρ1,β 代入ρ
A1
x 2
2
ρ 2 M πDt exp(2
lnρ
x
2
)
4Dt
x2
示踪原子
有: ln ρ A
x
4Dt
由lnρ-x2 曲线斜率可计算出D。
24
《材料科学基础》第四章 固体中的扩散

第四章固体中的扩散物质传输的方式:1、对流--由内部压力或密度差引起的2、扩散--由原子性运动引起的固体中物质传输的方式是扩散扩散:物质中的原子或分子由于热运动而进行的迁移过程本章主要内容:扩散的宏观规律:扩散物质的浓度分布与时间的关系扩散的微观机制:扩散过程中原子或分子迁移的机制一、扩散现象原子除在其点阵的平衡位置作不断的振动外,某些具有高能量的单个原子可以通过无规则的跳动而脱离其周围的约束,在一定条件下,按大量原子运动的统计规律,有可能形成原子定向迁移的扩散流。
将两根含有不同溶质浓度的固溶体合金棒对焊起来,形成扩散偶,扩散偶沿长度方向存在浓度梯度时,将其加热并长时间保温,溶质原子必然从左端向右端迁移→扩散。
沿长度方向浓度梯时逐渐减少,最后整个园棒溶质原子浓度趋于一致二、扩散第一定律(Fick第一定律)Fick在1855年指出:在单位时间内通过垂直于扩散方向某一单位截面积的扩散物质流量(扩散通量)与该处的浓度梯度成正比。
数学表达式(扩散第一方程)式中 J:扩散通量:物质流通过单位截面积的速度,常用量钢kg·m-2·s-1D:扩散系数,反映扩散能力,m2/S:扩散物质沿x轴方向的浓度梯度负号:扩散方向与浓度梯度方向相反可见:1), 就会有扩散2)扩散方向通常与浓度方向相反,但并非完全如此。
适用:扩散第一定律没有考虑时间因素对扩散的影响,即J和dc/dx不随时间变化。
故Fick第一定律仅适用于dc/dt=0时稳态扩散。
实际中的扩散大多数属于非稳态扩散。
三、扩散第二定律(Fick第二定律)扩散第二定律的数学表达式表示浓度-位置-时间的相互关系推导:在具有一定溶质浓度梯度时固溶体合金棒中(截面积为A)沿扩散方向的X轴垂截取一个微体积元A·dx,J1,J2分别表示流入和流出该微体积元的扩散通量,根据扩散物质的质量平衡关系,流经微体积的质量变化为:流入的物质量—流出的物质量=积存的物质量物质量用单位时间扩散物质的流动速度表示,则流入速率为,流出速率为∴积存率为积存速度也可以用体质C的变化率表示为比较上述两式,得将Fick第一定律代入得=(D) ——扩散第二方程若扩散系统D与浓度无关,则对三维扩散,扩散第二方程为:(D与浓度,方向无关)1、晶体中原子的跳动与扩散晶体中的扩散是大量原子无规则跳动的宏观统计结果。
【材料科学基础】必考知识点第六章

2020届材料科学基础期末必考知识点总结第六章固体中的扩散第一节概述1 扩散的现象与本质(1)扩散:热激活的原子通过自身的热振动克服束缚而迁移它处的过程。
(2)现象:柯肯达尔效应。
(3)本质:原子无序跃迁的统计结果。
(不是原子的定向移动)。
2 扩散的分类(1)根据有无浓度变化自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大。
无浓度变化。
)互扩散:原子通过进入对方元素晶体点阵而导致的扩散。
(有浓度变化)(2)根据扩散方向下坡扩散:原子由高浓度处向低浓度处进行的扩散。
上坡扩散:原子由低浓度处向高浓度处进行的扩散。
(3)根据是否出现新相原子扩散:扩散过程中不出现新相。
反应扩散:由之导致形成一种新相的扩散。
3 固态扩散的条件(1)温度足够高;(2)时间足够长;(3)扩散原子能固溶;(4)具有驱动力:化学位梯度。
第二节扩散定律1 菲克第一定律(1)第一定律描述:单位时间内通过垂直于扩散方向的某一单位面积截面的扩散物质流量(扩散通量J)与浓度梯度成正比。
(2)表达式:J=-D(dc/dx)。
(C-溶质原子浓度;D-扩散系数。
)(3)适用条件:稳态扩散,dc/dt=0。
浓度及浓度梯度不随时间改变。
2 菲克第二定律一般:∂C/∂t=∂(D∂C/∂x)/ ∂x二维:(1)表达式特殊:∂C/∂t=D∂2C/∂x2三维:∂C/∂t=D(∂2/∂x2+∂2/∂y2+∂2/∂z2)C稳态扩散:∂C/∂t=0,∂J/∂x=0。
(2)适用条件:非稳态扩散:∂C/∂t≠0,∂J/∂x≠0(∂C/∂t=-∂J/∂x)。
3 扩散第二定律的应用(1)误差函数解适用条件:无限长棒和半无限长棒。
表达式:C=C1-(C1-C2)erf(x/2√Dt) (半无限长棒)。
在渗碳条件下:C:x,t处的浓度;C1:表面含碳量;C2:钢的原始含碳量。
(2)正弦解C x=Cp-A0sin(πx/λ)Cp:平均成分;A0:振幅Cmax- Cp;λ:枝晶间距的一半。
材料科学基础课件 6.固体中的扩散

6.1.2 扩散分类
(1)根据有无浓度变化 自扩散(self-diffusion):原子经由自身元素的晶
体点阵而迁移的扩散。 (如纯金属或 固溶体的晶粒长大。无浓度
(1)稳态扩散 (steady state diffusion) :扩散过程中 各处的浓度及浓度梯度(concentiontration gradient)不 随时间变化(∂C/∂t=0,∂J/∂x=0) 。
Fig. 7.4 (a) Steady-state diffusion across a thin plate. (b) A linear concentration profile for the diffusion situation in (a).
(3)根据是否出现新相 原子扩散(atomic diffusion):扩散过程中
不出现新相。 反应扩散(reaction diffusion):由之导致
形成一种新相的扩散。
6.2 扩散机制
6.2.1 空位扩散机制
(vacancy diffusion)
6.2.2间隙扩散机制
(interstitial diffusion)
第六章 固体中的扩散
第六章 固体中的扩散
6.1 扩散现象及分类
扩散(diffusion)是物质中原子(分子或离子)的 迁移现象,是物质传输的一种方式。扩散是一种由 热运动引起的物质传递过程。扩散的本质是原子依 靠热运动从一个位置迁移到另一个位置。扩散是固 体中原子迁移的唯一方式。
扩散会造成物质的迁移,会使浓度均匀化,而 且温度越高,扩散进行得越快。
固体中的扩散材料科学基础

纯铁渗碳,C0=0,则上式简化为 (3.16)
CCs1erf2 xDt
由以上两式能够看出,渗碳层深度与时间旳关系一样满足式 (3.13)。渗碳时,经常根据式(3.15)和(3.16),或者式(3.13) 估算到达一定渗碳层深度所需要旳时间。
Cs=1.2%,C0=0.1%,C=0.45% t1/2=224/0.71=315.5; t=99535(s)=27.6h
C2 2
表白界面浓度为扩散偶原始浓度旳平均值,该值在扩散过程中一直保
持不变。若扩散偶右边金属棒旳原始浓度C1=0,则式(3.11)简化为
CC2 2
1erf2
xDt
(3.12)
而焊接面浓度Cs=C2/2。 在任意时刻,浓度曲线都相对于x=0,Cs=(C1﹢C2)/2为中心
对称。伴随时间旳延长,浓度曲线逐渐变得平缓,当t→∞时,扩散偶 各点浓度均到达均匀浓度(C1﹢C2)/2。
二、高斯函数解(略)
3.2 扩散微观理论与机制
从原子旳微观跳动出发,研究扩散旳原子理论、扩散旳微观机制以 及微观理论与宏观现象之间旳联络。
3.2.1 原子跳动和扩散距离
设原子在t时间内总共跳动了n次,每次跳动旳位移矢量为
ri
,则
原子从始点出发,经过n次随机旳跳动到达终点时旳净位移矢量 Rn
应为每次位移矢量之和,如图3.4。
扩散第一定律: ① 扩散第一方程与经典力学旳牛顿第二方程、量子力学 旳薛定鄂方程一样,是被大量试验所证明旳公理,是扩 散理论旳基础。
② 浓度梯度一定时,扩散仅取决于扩散系数,扩散系数是 描述原子扩散能力旳基本物理量。扩散系数并非常数,而 与诸多原因有关,但是与浓度梯度无关。
③ 当 C/x时,0J = 0,表白在浓度均匀旳系统中,尽管
上海交大材料科学基础3固体中的扩散PPT课件

扩散的分类
(1)根据有无浓度变化 自扩散:原子经由自己元素的晶体点阵而迁移的扩散。 (如纯金属或固溶体的晶粒长大。无浓度变化。) 互扩散:原子通过进入对方元素晶体点阵而导致的扩散。 (有浓度变化)
(2)根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 造成浓度均匀化 上坡扩散:原子由低浓度处向高浓度处进行的扩散。 造成浓度差异
t3 t2 t1 C2
限 长
不同时刻
问
边 界 条 件 : t≥0 时 ,
扩散元素
题
浓度分布曲线
及
x=∞,C=C1,
t1< t2< t3
其 解
C1
x=-∞, C=C2
0
x
令 则
,x 代入
Dt c dc
c D 2 c
t
x 2
x dc
t dt 2 Dt3/2 d
c x
ddcxddc
1 Dt
2c ;;;;;;x2
(3) Fick第二定律的解
非稳态扩散方程是偏微分方程,解的形 式与边界条件、初始条件等有关。 一般需要数值求解; 但是,在边界条件、初始条件较简单时, 可以求出解析解。
误差函数解
设扩散系数D是常数;
初始条件:t=0时,
C 2>C 1的 扩 散 偶
A
C2
C1
B
x>0,C=C1,
扩散方向
一
维
C
无
x<0, C=C2
均匀化退火
C
若要将浓度起伏降低 C max
到原来的1/100,
C m ean
即
材料科学基础--扩散
设晶面间距为,则1、2面附近的溶质 体积浓度为 n n
C1
1
; C2
2
;
由于两晶面距离很近
dC C C2 C1 n2 n1 ; 2 dx x dC n2 n1 2 dx
替换n1-n2得
dC J p dx
2
与扩散第一定律比较,得
D p
2 2
间隙扩散激活能是溶质原子跳动时所需的额外 内能。
(3)柯肯达尔效应
Mo 丝 标 记
在黄铜表面,敷上一 750oC加热 Cu+30%Zn 些很细的钼丝,然后 d Cu 在黄铜上镀铜。钼丝 就被包围在铜和α 黄 0.14 铜的分界面上。 将它们放在750℃保温,0.10 使Zn和Cu发生互扩散。0.06 发现钼丝向内移动, 扩散后黄铜界面上有 0.02 0 1 2 3 4 5 6 7 8 9 微孔 加 热 时 间 t1/2 / 天 1/2
2
0
令
0
2
4
x 2 Dt
x 2 Dt 0
c A exp(
2
)d B A
exp( 2 )d B
(3)成为
x C A erf B 2 Dt
利用边界条件,定出积分参数
C1 C2 C1 C2 x C erf 2 2 2 Dt
固态扩散的条件
扩散与原子热运动(点缺陷的运动)相关,因此必须 在满足以下条件才能实现 (1)温度足够高; (2)时间足够长; 对于互扩散,还要满足 (3)扩散原子能固溶; (4)具有驱动力:化学位梯度。
本章主要内容
扩散方程 扩散的微观机制 扩散的热力学 反应扩散 影响扩散系数的因素
第三章固体中的扩散(材料科学基础)
第三章 固体中的扩散物质中的原子随时进行着热振动,温度越高,振动频率越快。
当某些原子具有足够高的能量时,便会离开原来的位置,跳向邻近的位置,这种由于物质中原子(或者其他微观粒子)的微观热运动所引起的宏观迁移现象称为扩散。
在气态和液态物质中,原子迁移可以通过对流和扩散两种方式进行,与扩散相比,对流要快得多。
然而,在固态物质中,扩散是原子迁移的唯一方式。
固态物质中的扩散与温度有很强的依赖关系,温度越高,原子扩散越快。
实验证实,物质在高温下的许多物理及化学过程均与扩散有关,因此研究物质中的扩散无论在理论上还是在应用上都具有重要意义。
物质中的原子在不同的情况下可以按不同的方式扩散,扩散速度可能存在明显的差异,可以分为以下几种类型。
① 化学扩散和自扩散:扩散系统中存在浓度梯度的扩散称为化学扩散,没有浓度梯度的扩散称为自扩散,后者是指纯金属的自扩散。
② 上坡扩散和下坡扩散:扩散系统中原子由浓度高处向浓度低处的扩散称为下坡扩散,由浓度低处向浓度高处的扩散称为上坡扩散。
③ 短路扩散:原子在晶格内部的扩散称为体扩散或称晶格扩散,沿晶体中缺陷进行的扩散称为短路扩散,后者主要包括表面扩散、晶界扩散、位错扩散等。
短路扩散比体扩散快得多。
④ 相变扩散:原子在扩散过程中由于固溶体过饱和而生成新相的扩散称为相变扩散或称反应扩散。
本章主要讨论扩散的宏观规律、微观机制和影响扩散的因素。
3.1 扩散定律及其应用3.1.1 扩散第一定律在纯金属中,原子的跳动是随机的,形成不了宏观的扩散流;在合金中,虽然单个原子的跳动也是随机的,但是在有浓度梯度的情况下,就会产生宏观的扩散流。
例如,具有严重晶内偏析的固溶体合金在高温扩散退火过程中,原子不断从高浓度向低浓度方向扩散,最终合金的浓度逐渐趋于均匀。
菲克(A. Fick )于1855年参考导热方程,通过实验确立了扩散物质量与其浓度梯度之间的宏观规律,即单位时间内通过垂直于扩散方向的单位截面积的物质量(扩散通量)与该物质在该面积处的浓度梯度成正比,数学表达式为x CD J ∂∂-= (3.1)上式称为菲克第一定律或称扩散第一定律。
工程材料基础-4. 固体中的扩散
4.1.1 扩散的微观机制及扩散激活能
扩散机制:原子如何在晶格内迁移, 主要包括有空位扩散机制和间隙扩散机 制。
1. 空位机制
定义:处于晶体点阵结点位置的原子与近 邻空位交换位置而实现原子迁移,这种 扩散机制为空位扩散机制。 条件:扩散原子近邻存在空位;扩散原子 具有扩散激活能。 空位扩散激活能:空位形成能和跳动激活 能。
4.3
4.3.1
影响扩散的因素
温度的影响
4.3.2 晶体结构的影响
4.3.3 固溶体类型对扩散的影响
4.3.4 固溶体浓度对扩散的影响
4.3.5 晶体缺陷的影响
4.3.1
温度的影响
温度影响扩散系数:
Q D D0 exp RT
式中:D0为扩散常数(cm2/s); Q为扩散激活能(J/mol); R为气体常数(8.31J/mol · K), T为绝对温度(K) 温度高,原子热振动剧烈,易发生迁移,扩散系 数大。
对于非稳态扩散,可根据边
界条件求解扩散微分方程,对于 气体进入固体的扩散过程,这个 方程的一个特解可用来解决生产 中的一些实际问题。
图4-6 气体在固体中的扩散
2、扩散第二定律的应用举例
假定气体A在固体B中进行扩散,随着扩散时间的 增加,沿x轴方向任一点的溶质原子浓度也要增加,图 4-6 (b)给出两个时间(t1和t2)的溶质原子浓度分布。 如果气体A在固体B中的扩散系数与位置无关,则Fick 第二定律的解为 : Cs Cx x erf Cs C0 2 Dt 式中:cs为气体元素在表面的浓度;co为固体的原始浓 度;cx为时间t时、距表面x处的元素浓度;x为距表面 距离; D为溶质元素的扩散系数;t为时间。
设扩散沿x轴方向进行,且浓度梯度为 dc , 则可表 dx 述为:
第4章固体材料中的原子扩散
一、 无规则行走扩散
模型: 1、 无外场推动力,浓度差极小;
2、 质点由于热运动获得活化能,从而引起迁移;
3、 就一个质点来说,其迁移是无序的,随机的,各方面几率相同, 迁移结果不引起宏观物质流,而且每次迁移与前次无关。
在晶格中取两个相邻的点阵面,
n1--第一点阵面密度 ; n2--第二点阵面密度; --两原子间距;
第一定律仅适用于稳态扩散,即 在扩散过程中,合金各处的浓度 及浓度梯度都不随时间改变的。
当固体中存在着成分差异时,原子将从浓度高处向浓度低处扩散。如何描 述原子的迁移速率,阿道夫·菲克(Adolf Fick)对此进行了研究,并在1855 年就得出:扩散中原子的通量与质量浓度梯度成正比,即
J D d
3.空位机制
晶体中存在着空位。这些空位的存在使原子迁移更容易,故 大多数情况下,原子扩散是借助空位机制。空位机制产生 Kirkendall效应。
由于原始界面的移动,界面移向原子扩散速率 较大的一方,这种现象称为柯肯达尔效应。
4.晶界扩散及表面扩散 对于多晶材料,扩散物质可沿三种不同路径进行,即晶体
内扩散(或称体扩散),晶界扩散和样品自由表面扩散,并分 别用DL和DB和DS表示三者的扩散系数。
晶体内扩散DL < 晶界扩散Db < 表面扩散Ds 5. 位错扩散
原子通过位错扩散。温度越低,原子在位错中的时间越长, 在点阵中跳动的时间越短。
把 原 子 在 缺 陷 中 的 扩 散 称 为 短 路 扩 散 ( short-circuit diffusion)。固态金属或合金中的扩散主要依靠晶体缺陷来进 行。
大的电场或温度场也促使晶体中原子按一定方向扩散,造成 扩散原子的不均匀性。
4.3 扩散的原子理论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗层中无两相区的热力学解释: 如果渗层中出现两相共存区,则两平衡相的化学位相等,
这段区域中就没有扩散驱动力,扩散将在两相区中断,扩散 不能进行。因此,在渗层组织中不可能出现两相区。
退一步讲,即使在扩散过程中出现两相区也会因系统自由 能升高而使其中某一相逐渐消失,最终由两相演变为单相。
因此得到这样的结论,在二元系(含渗入元素)的渗层中 没有两相共存区,在三元系的渗层中没有三相共存区,依次 类推。
由于分开一对异类离子将使静电能大大增加, 为了保持局部电荷平衡,需要同时形成不同电荷的 两种缺陷。
如一个阳离子空位和一个阴离子空位 ——肖特基空位缺陷
或一个间隙离子和一个离子空位——弗兰克儿空位缺陷。
中国计量学院
7
( 1 ) 肖特基缺陷 由一个阳离子空位和一个阴离子空位组成,实
际上是一个电荷相反的(空位—空位)对。
(4)评价温度对扩散的影响。
R为气体常数( 8.314J/mole·K)
中国计量学院
16
3、在900℃对一批钢齿轮成功渗碳需要10个小时,此温度下铁为FCC晶体。 如果渗碳炉在900℃运行1个小时需要耗费1000元,在1000℃运行1小时需要 耗费1500元,若将渗碳温度提高到1000℃完成同样渗碳效果,是否可以提高 其经济效益?(已知碳在奥氏体铁中的扩散激活能为137.52 KJ/mole )
肖特基空位浓度
∆GS为形成一对肖特基空位所需的能量,A为振动熵所 决定的系数
中国计量学院
8
( 2 ) 弗兰克儿缺陷 当形成一个间隙阳离子所需能量比形成一个
阳离子空位小很多时,则形成阳离子空位的电荷 可以通过形成间隙阳离子来补偿,即弗兰克缺陷 由一个间隙离子和一个离子空位组成,实际上是 一个电荷相同的(间隙—空位)对。
持电中性,必须出现一些
氧离子空位。
中国计量学院
10
2. 离子晶体的扩散机制
图(参考2 P479)
(a)空位扩散:肖特基缺陷类型的离子晶体,类似于金属
中的空位扩散机制;√
(b)间隙扩散:如果直接从一个间隙位到另一个间隙位, 扩散离子必须挤过相邻带相反电荷的离子区域,较难进行。
(c)自间隙扩散(推填):弗兰克缺陷类型的离子晶体中
中国计量学院
5
6.6 离子晶体中的扩散
金属和合金中的原子可以通过近邻的任何点阵 空位或间隙进行扩散;
离子晶体中的扩散比金属中的扩散多了一个电 荷平衡的要求。
离子晶体为了维持局部的电中性,必须产生成 对的缺陷。扩散离子只能进入具有相同电荷的近 邻位置,而不能进入相邻异类离子的位置
中国计量学院
6
1. 离子晶体中的本征热缺陷
2. 在930℃对原始碳浓度为0.1%的碳钢进行渗碳,希望在0.05cm的深 度碳浓度达到0.45%,若渗碳气氛保持表面成分为1%,碳的扩散常数 D0为2*10-5m2/s,激活能为140KJ/mol,求:
(1)渗碳时间; (2)若渗碳温度不变,要将渗层加深1倍,则渗碳时间是原来几倍? (3)若采用870℃渗碳,则达到相同渗碳要求的渗碳时间是原来几倍 ?
J1和J2是反向的,当热平 衡时,J1=J2
电场中的载流子浓度符合
波尔兹曼分布
中国计量学院
13
4. 离子迁移率μ、电导率σ与扩散系数D的关系 电导率与扩散系 数
定义μ为单位电场 的载流子迁移率
迁移率与扩散系数
中国计量学院
14固溶体中的扩散源自唯象理论Fick 第一定律
Fick 第二定律
原子迁移率和 热力学因子
弗兰克空位浓度
∆GF为同时生成一个填隙离子和一个离子空位所需要
的能量。
中国计量学院
9
<< <<
例如:
FeO中部分Fe2+离子被氧化为Fe3+,为了使电荷平衡,必须
出现一些
阳离子空位——即氧过量
TiO2中部分Ti4+离子被还原为Ti3+,为了使电荷平衡,必须
出现一些
阴离子空位——即缺氧;
ZrO2中添加CaO,低价的Ca2+离子置换高价的Zr4+,为了保
材料基础固体中的扩散
6.5 反应扩散
单相固溶体中,一般溶质原子浓度低于固溶体的溶解度。 若在温度适宜、保温时间足够的情况下,扩散元素的含量超 过基体的溶解度,会由于过饱和而反应生成一种或几种新的
合金相(中间相或者固溶体)。
习惯上将伴随有相变过程的扩散,或者有新相产 生的扩散称为反应扩散或者相变扩散。
,间隙离子往往会取代邻近正常点位的晶格离子,被取代的
晶格离子进入间隙。 √
中国计量学院
11
3. 离子晶体的扩散特点
1)为了满足电荷平衡的要求,离子晶体的 扩散离子只能进入具有相同电荷的近邻位置
2)由于键结合能以及电荷平衡的要求,离 子晶体的扩散激活能比金属高,且扩散离子 只能进入具有相同电荷的位置,迁移距离长 ,扩散速率通常比金属小很多。
4、某单位用10号钢钢板含碳量为0.1%制作止推轴承。为了保证必要的硬度, 需要进行渗碳淬火,要求淬火后深度为1mm的表层硬度均应大于HRC60.淬火 钢硬度与碳含量的关系如图所示。碳含量超过一定含量后,硬度下降的原因 是残余奥氏体增多。碳在FCC铁中扩散系数为D=0.12×exp(-32000/RT),试 利用扩散公式及铁碳合金相图求1050℃固体渗碳2.4后渗层各点的碳含量。计 算时由表面开始,每隔0.02cm求一个数据,计算至深度为1mm为止,根据计 算结果画出硬度分布曲线。(硬度与碳含量关系见图)
微观理论
扩散方程的解
扩散机制
间隙扩散 置换扩散
扩散系数D的微 观本质,G
影响扩散 的因素
激活能
点阵平面迁移和
Kirkend中a国l计l量效学院应
Darken方程
15
作业:
1、设有一条内径为30 mm的厚壁管道,被厚度为0.1 mm 的铁膜隔开,在700℃通过管子的一端向管内输入氮气 保持膜片两侧浓度稳定,管道的氮气流量为2.8*10-8 mol/s.其中铁膜片一侧的氮气浓度为1200 mol/m3,另 一侧的氮气浓度为100 mol/m3。求此时氮气在铁中的 扩散系数。
中国计量学院
2
反应扩散的过程
反应扩散包括两个过程:
1)在渗入元素渗入到基体的表层,但是还未达 到基体的溶解度之前的扩散过程;
2)当基体的表层达到溶解度以后发生相变而形 成新相的过程。
反应扩散时,基体表层中溶质原子的浓度分布随 扩散时间和扩散距离的变化,以及在表层中出现 何种相、相的数量,这些均与基体和渗入元素间 组成的合金相图有关。
中国计量学院
3
A、B组成共析相图,在T0温度 下的反应扩散过程 γ固溶体的饱和浓度
与α平衡的γ固溶体的平衡浓度
α固溶体的饱和浓度
对应的浓度分布
反应扩散时的相图
随着扩散进行,已形成的α、γ及β
固溶体层不断增厚,每个单相层内
的浓度梯度也在随时间而变化。中国计量学院 对应的相分布
4
反应扩散的特点
值得注意的是,在T0温度下,在二元相图中存在α+γ和 γ+β两相区,但是在渗层组织中任何两相之间却不存在两相 共存区,两相之间仅以界面的形式存在,在界面处浓度发生 突变。 它对应于该相在一定温度下的极限溶解度。
3)阳离子的扩散速率比阴离子大。
中国计量学院
12
4. 离子迁移率μ、电导率σ与扩散系数D的关系
离子晶体的导电现象基于载流子在电场作用下的定向迁移 ,因此与扩散过程密切相关,如果知道电导率和扩散系数 的关系,则可以通过测量材料的电导率得到扩散系数。
由于载流子漂移形成的电 流密度J1
由于外加电场作用形成的 电流密度J2可由欧姆定律 的微分形式表示
中国计量学院
17
5、为什么钢铁零件渗碳温度一般要选择在Υ-Fe相区进行?若不在Υ-Fe相区 进行会有什么结果?
6、在纯铜圆柱体一个顶端电镀一层薄的放射性同位素铜。在高温退 火20h后,对铜棒逐层剥层测量放射性强度α(α正比于浓度),数据 如下,求铜的自扩散系数。
7、纯Cr和纯Fe组成扩散偶,一个小时后界面移动了15.2μm。已知界 面处Cr的摩尔分数 x(Cr)=0.478时,有 =126/cm,(l为扩散距离), 互扩散系数为1.43*10-9 cm2/s。求标记界面的移动速度和 Cr、Fe的 本征扩散系数。(界面移动距离的平方和扩散时间之比为常数)
8、 在MgO中引入高价的W6+,将产生什么离子空位?比较MgO和 掺W6+的MgO(即MgO –WO3)的抗氧化性哪个好些?
中国计量学院
18