大学物理 质点运动学动力学习题课(1)
大学物理习题课件2.质点动力学1

当它从静止开始沉降时,受到水的粘滞阻力为f=kv(k
为常数),证明小球在水中竖直沉降的速度v与时间t
的关系为
v
mg
F
(1
kt
em
)
k
F
式中t为从沉降开始计算的时间
证明:作受力图,取坐标。
f
根据牛顿第二定律,有
mg kv F ma m dv dt
a x
mg
mg kv F ma m dv dt
静摩擦力: 0 f N
摩
0
0
擦
方向:与物体相对滑动趋势的方向相反
力 滑动摩擦力: f N
方向:与物体相对运动的方向相反
判断下列情况中的摩擦力的方向:
F
F
四、牛顿运动定律的应用
1、动力学的两大类问题
(1)已知运动求力:
r r t v t
dr
at
dv
F
ma
(2)已知力求运动:
dt
dt
直角坐标系:
Fx
max
m
dvx dt
,
自然坐标系:
F
ma
m
dv , dt
Fy
may
m
dvy dt
Fn
man
m
v2
例2-1:升降机内有一固定光滑 斜面,倾角为,如
图物A所体对解示A地:沿。设的斜当A加面相升速滑对降度下于机为,斜以求面a匀 A的加对a加速地速a面a度0 0上的为升加a时速'Y,度质。量为Am的aN0
ax=ax=a cos
a'
mg
ay=ay a0=a0 a sin
根据牛顿第二定律,有
N sin =macos
第一章质点运动学习题课

质点运动学
30
物理学
第五版
第一章习题课
9 一质点在半径为0.10m的圆周上运动,设t=0时 质点位于x轴上,其角速度为ω=12t2。试求
质点运动学
23
物理学
第五版
第一章习题课 5 一小轿车作直线运动,刹车时速度为v0,刹车 后其加速度与速度成正比而反向,即a=-kv,k 为正常量。
试求
(1)刹车后轿车的速度与时间的函数关系
(2)刹车后轿车最多能行多远?
解:
dv 1 kt 由 a kv kv dv kdt v Ce (1) dt v
(3) v R 25 1 25m s
1
a R m s 2
质点运动学
29
物理学
第五版
第一章习题课 8 一质点沿半径为R的圆周运动,质点所经过的弧 长与时间的关系为s=bt+ct2/2,其中b,c为常量, 且Rc>b2。 求切向加速度与法向加速度大小相等之前所经历的 时间 解:
答案:B
质点运动学
4
物理学
第五版
第一章习题课
4 如图所示,湖中有一小船,有人用绳绕过岸上一 定高度处的定滑轮拉湖中的船向岸边运动.设该人 以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率 为v,则小船作( )
质点运动学
5
物理学
第五版
第一章习题课
v0 (A) 匀加速运动, v cos
(B) 匀减速运动,
第一章习题课
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
大学物理第二章质点动力学课后答案 ppt课件

m1
k
m2
A
B
大学物理第二章质点动力学课后答
20
案
解:设弹簧恢复原长时B 物体的速度为v B 0
12kx02 12m2vB20
vB0
k 3m
x0
此后系统动量守恒 m 2vB0(m 1m 2)v
v
3 4
vB0
3 4
x0
k 3m
A、B两物体速度相等时,弹簧伸长最大。
1 2m 2vB 201 2(m 1m 2)v21 2km 2 xax
(A) 2 E k
(B)
1 2
Ek
(C)
1 3
Ek
Ek
1 2
mAv2A
✓(D)
2 3 Ek
mAvA (mA mB )v
v
2mB 3mB
vA
2 3
vA
E k 总 1 2(m Am B )v 22 3m B v 2 A2 3E k
大学物理第二章质点动力学课后答
14
案
2-5 有一倔强系数为k的轻弹簧,竖直放置,下端 悬一质量为m的小球。先使弹簧为原长,而小球恰好 与地接触。再将弹簧上端缓慢地提起,直到小球刚能
vB
F t2 m2
vA
Ft2 Ft1 m2 m1m2
大学物理第二章质点动力学课后答
17
案
2-8
量为
r 一 质a 量c 为mo t的i 质b s 点s 在xi t oy j 平n (S面I)上。运式动中,a,其b位,置 是矢
正值常数, 且a > b。
(1) 求质点在A点(a,0) 和B点(0,b) 时的动能。
ABC的水平光滑轨道运动。质点越过A角时,轨道作
第一章质点运动学及动力学习题

(2)他在东边落地时的速度多大?速度与 水平的夹角多大?
Z3
解: (1) 建立坐标系,由题得
70
x
65cos 22.5 65sin 22.5 t
t
1 2
gt
解得,t=7s,
2
x=420m
(2) 速度 v
xx2
y
2 y
式中 vx v0 cos 22.5, vy v0 sin 22.5 gt
算出这一距离。
Z2
解: (1)位置矢量
;
r xi yj 2ti (19 2t2 ) j
rt 1s 2i 17 j
rt 2s 4i 11 j
1s-2s内平均 速度 v r2s r1s 2i 6 j t
大小 6.32m/s,方向 与x轴约成-71.5°
Z5 一 质 量 mB=0.1kg 的 物 块 B 与 质 量
mA=0.8kg的物体A,用跨过轻滑轮 的细绳连接,如下图所示,滑轮与
绳间的摩擦不计,物体B上另放一
质量为mC=0.1kg的物块C,物体A 放在水平桌面上。它们由静止开始
运动,物块B下降一段距离 h1=50cm后,通过圆环D将物块C卸 去,又下降一段距离h2=30cm,速 度变为零。试求物体A与水平桌面
v vx2 vy2 5m / s
T3 一质点沿x轴运动,它的速度v和时间t的关 系 )质向负如点作下沿( 图x轴所(匀示加,)速在向负直)作0运线-t(1动时,间在内匀t,减1-t速质2 )时直点运间线沿动内x。轴,(
v
O
t1
t2
0-t1 :v方向为负向,大 小为增加;
大学物理质点运动学、动力学习题

单击此处添加副标题
演讲人姓名
CONTENTS
目录
contents
质点运动学基础 动力学基础 质点运动学习题解析 动力学习题解析 综合习题解析
质点运动学基础
单击此处添加文本具体内容
PART.01
质点速度矢量随时间的变化率,记作a=dv/dt。
加速度
在研究物体运动时,如果物体的大小和形状对所研究的问题没有影响或影响很小,可以忽略,则物体可视为质点。
实际应用问题解析
这类问题涉及实际生活中常见的物理现象,如抛体运动、弹性碰撞、摩擦力和流体动力学等。
总结词
这类问题通常要求运用质点运动学和动力学的知识解决实际问题,如分析投篮过程中篮球的运动轨迹、研究碰撞过程中动量和能量的变化等。解题时需要将实际问题抽象为物理模型,运用相关物理原理进行分析,得出符合实际情况的结论。
详细描述
这类习题通常涉及到质点系的整体机械能守恒,需要应用机械能守恒定律建立数学模型,进而求出质点系的势能和动能。
举例
一质量为m的质点在重力作用下沿竖直方向做匀加速运动,求质点的势能和动能。
解析过程
根据机械能守恒定律,质点的势能和动能之和保持不变。通过求解,可以得到质点的势能和动能。
综合习题解析
单击此处添加文本具体内容
PART.05
质点运Байду номын сангаас学与动力学的结合习题
这类习题通常要求分析质点的运动轨迹、速度和加速度的变化,以及力对质点运动的影响。解题时需要综合考虑运动学和动力学的原理,建立质点运动的动力学方程,并求解方程得出结果。
这类习题涉及质点运动学和动力学的综合知识,需要运用速度、加速度、力和动量等概念进行解析。
大学物理3习题湘潭大学

练习1 质点运动学(一) 班级 学号 姓名 成绩 . 1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ B ] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v (B )v v v,v(C )v v v,v (D )v v v,v [ D ]3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________.4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向.5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒内的路程.6. 什么是矢径矢径和对初始位置的位移矢量之间有何关系怎样选取坐标原点才能够使两者一致x (m) t (s) O练习2 质点运动学(二) 班级 学号 姓名 成绩 .1. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1) a t d d /v , (2) v t r d d /, (3) v t d d /S , (4) t a t d d /v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]2. 一物体作如图所示的斜抛运动,测得在轨道A 点处速度 的大小为,其方向与水平方向夹角成30°.则 物体在A 点的切向加速度a t =__________________,轨道的曲率半径 =__________________.3.一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是=12t 2-6t (SI), 则质点的角速 =__________________;切向加速度 a t =_________________.4.当一列火车以10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向30°,则雨滴相对于地面的速率是________________;相对于列车的速率是________________.5. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t =0时,质点位于x 0=10 m 处,初速度0=0.试求其位置和时间的关系式.6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt (k 为常量).已知s t 2 时,质点P 的速度值为32 m/s .试求1 t s 时,质点P 的速度与加速度的大小.0v30°A ORP练习3 质点动力学(一) 班级 学号 姓名 成绩 .1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 (A) a A =0 , a B =0. (B) a A >0 , a B <0. (C) a A <0 , a B >0. (D) a A <0 , a B =0.[ ]2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]3. 分别画出下面二种情况下,物体A 的受力图. (1) 物体A 放在木板B 上,被一起抛出作斜上抛运动,A 始终位于B 的上面,不计空气阻力; (2) 物体A 的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C 上.把物体B 轻轻地放在A 的斜面上,设A 、B 间和A 与桌面C 间的摩擦系数皆不为零,A 、B 系统静止.4.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________.5. 如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m=m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
第一、二章习题课
四、质点运动学两类基本问题
1、由质点的运动方程可以求得质点在任一
时刻的位矢、速度和加速度;
2、已知质点的加速度以及初始速度和初始位
置, 可求质点速度及其运动方程.
r(t) 求导 v(t) 求导 a(t)
积分
积分
6
以直线运动为例
第一、二章习题课
1) a a(t)
dv a(t)
t
vx v0x 0 ax (t )dt
t
x x0 0 vx (t )dt 9
2)在自然坐标下
第一、二章习题课
在前述关系式中,将 a 、 x 用其 a 、s 替换
即可,如
dv dt
a
(t)
v
t
dv
v0
0 a (t )dt
t
v v0 0 a (t )dt
t
s s0
v(t )dt
0
10
第一、二章习题课
五、牛顿定律的应用举例
隔离物体 受力分析 建立坐标 列方程 解方程 结果讨论
两类常见问题
已知力求运动方程 已知运动方程求力
rF
aa
r F
11
讨论题
第一、二章习题课
1、一质点做抛体运动(忽略空气阻力),如图所示
主要内容回顾 第一、二章习题课
一、质点运动的矢量描述
位矢和位移
r 运动方程:r r(t) O
位移:
r
r2
r1
r (t2
)
r (t1)
P
Γ
r(t)
速度和速r率 v t
v
lim
r(t
t )
r(t)
lim
r
dr
t 0
t
v
dv
t
a(t )dt
dt
v0
0
t
v v0
a(t )dt
0
dx
x
t
v(t) dx v(t)dt
dt
x0
0
t
x x0
v(t )dt
0
7
2) a a(v)
第一、二章习题课
dv
v dv
t
a(v)
dt
dt
v0 a(v) 0
v dv
t t0 v0 a(v)
三、相对运动
伽利略变换
第一、二章习题课
vr
vr
r0
u
a a'a0
A,B,C三个质点 相互间有相对运动
vAC vAB
vvAAB
vBC vB
力学的相对性原理 动力学定律在一切惯性系
中都有相同的数学形式。这个结论进一步推广为:
对于力学规律来说,一切惯性系都是等价的。
t0 t dt
v s v lim s ds
t
t0 t dt
1
加a速 度v
v(t2 )
v (t1 )
t
t2 t1
第一、二章习题课
a(t) lim v dv d 2r t0 t dt dt2
直角坐标系中的位置矢量、速度和加速度
的直线运动的叠加(矢量加法)。
——运动的独立性原理或运动叠加原理
2
第一、二章习题课
自然坐标系中的速度和加速度
v
v
ds
dt
a
a
an
dv
dt
v2
n
a
a
an
圆周运动中的切向加速度和法向加速度
a dv v2 n
dt R
3
二、圆周运动的角量描述 t A 角位置 t t B 角位移
t
4tdt
v 2t 2
0
0
v dx 2t 2 dx 2t 2dt
dt
x dx
10
t 2t 2dt
0
x 2 t 3 10 3
15
第一、二章习题课
2水、平路路灯面离上地以面匀高速度度为vH0,步一行个。身如高图为所h示的。人求,当在人灯与下
灯的水平距离为x时,他的头顶在地面上的影子移动
在最高点an值最大,v=v0cos0最小。
因此在起点和终点曲率半径的值一定最大, 在最高 点值最小。
最大值 v2 v02
an g cos 0
13
第一、二章习题课
2. dv 0的运动是什么运动?
dt d v 0的运动是什么运动? dt
dv a 0 dt
dv dt a 0
请回答下列问题: 质点在运动过程中
y v0
(1) dv 是否变化? dt
O 0
x
(2) dv 是否变化?
dt
(3)法向加速度是否变化?
(4)轨道何处曲率半径最大?其数值是多少? 12
法向加速度
an
v2
g cos v2an第一、二章习题课
y v0
O 0
x
在轨道起点和终点 最大,an值最小,v=v0值最大。
36.90
22
19
第一、二章习题课
精品课件!
20
第一、二章习题课
精品课件!
21
vA vA
第一、二章习题课
vB
v2
v
2 A
32 42 5m / s
v
vB tg vA 3 36.90
v4
vA
vA
v
vB
vA 6m / s v vB 5m / s
r
v
a
dxri
yj
dx
i
zk
dy
dt
dv
dt
dv x
i
dt
dv y
dt dt dt
j
j
dz dt
dvz dt
k
k
vxi vy j vzk
axi ay j azk
任意曲线运动都可以视为沿x,y,z轴的三个各自独立
解: v 2 m dv
dt
t
v dv
dt
m0
v v0 2
v dx
1
dt 1 v0 t m
得:
x
t
dx
dt
0
0 1 v0 t m
x m ln( 1 v0t )
m
18
第一、二章习题课
4.在湖面上以3m/s的速度向东行驶的A船上看到B船以
角速度
v第2 一、B二v1章习题课
R s A
O
X
lim d t0 t dt
角加速度
lim
t0 t
d
dt
d 2
dt 2
v
ds dt
R d dt
R
a
dv dt
R
d dt
R
an
v2 R
R2
4
3.
r
at2i bt2 j
是什么运动
是变速直线运动
14
典型例题
第一、二章习题课
1、一质点沿x轴运动,其加速度为a=4t(SI制),当t=0时, 物体静止于x=10m处。试求质点的速度,位置与时间 的关系式。
解: a dv 4t dv 4tdt dt
v dv
的速度的大小。
y
H Ox
解:建立如图坐标,t时刻头顶
影子的坐标为X
v0
h
dx
x
v0 dt
dX
X
v dt
16
H Hh Xx
X Hx H h
dX Hv0 dt H h
第一、二章习题课
y
v0
H
Ox h
x
X
v
H H
h v0
17
第一、二章习题课
3. 一质点从坐标原点出发沿x轴作直线运动,初速度为v0 ,它受到一阻力-av2作用,试求:v = v (t ), x = x (t )
4m/s的速率从北面驶近A船。
(1)在湖岸上看,B船的速度如何?
(2)如果A船的速度变为6m/s(方向不变),在A船上看B
船的速度又为多少?
解:(1)设B船岸的上速的度人为看v到BA船A的船速看度到为B船v的A 速度为 v
vA
vA
由伽利略速度变换,可有
v
vB
v vB vA
3) a a(x)
dv a(x) dv v a(x)
dt
dx
v
t
vdv a(x)dx
v0
0
8
对一般曲线运动
第一、二章习题课
1)在直角坐标下
在前述关系式中,将 a 、v 用其分量 ax 、vx
替换即可,如
dvx
dt