一次函数知识点与常见题型

一次函数知识点与常见题型
一次函数知识点与常见题型

一次函数知识点总结与常见题型

基本概念

1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________.

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应

例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21

-3x (5)y =x 2-1中,是一次

函数的有( )

(A )4个 (B )3个 (C )2个 (D )1个

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( )

A .y

B .y

C .y

D .y

函数y =

x 的取值范围是___________. 已知函数22

1

+-=x y ,当11≤<-x 时,y 的取值范围是 ( )

A .2325≤<-y

B .2523<

C .2523<≤y

D .2

523≤

5、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

9、正比例函数及性质

一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零

当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时, 直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )

(3) 走向:k >0时,图像经过一、三象限;k <0时, 图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴

例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B .

23 C .23- D .32

- .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( )

A .0

B .1>k

C .1≤k

D .1

(4)东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______________.

(5)平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________. 10、一次函数及性质

一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数

一次函数y =kx +b 的图象是经过(0,b )和(-

k

b

,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)

(1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-

k

b

,0) (3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限

??

??>>00

b k 直线经过第一、二、三象限 ????<>00

b k 直线经过第一、三、四象限 ???

?><00

b k 直线经过第一、二、四象限 ????<<0

b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.

(5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴.

(6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位. 例题:若关于x 的函数1

(1)m y n x -=+是一次函数,则m = ,n . .函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )

将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 .

若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________. 已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( ) A.3m +1 B.3m C.m D.3m -1 11、一次函数y =kx +b 的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(k

b

-,0).即横坐标或纵坐

b >0

b

<0

b

=0

k >0

经过第一、二、三象限

经过第一、三、四象限

经过第一、三象限

图象从左到右上升,y 随x 的增大而增大

k <0

经过第一、二、四象限

经过第二、三、四象限

经过第二、四象限

图象从左到右下降,y 随x 的增大而减小

☆k 、b 的符号对直线位置的影响☆

图像过一、二、三象限 图像过一、三、四象限 图像过一、二、四象限 图像过二、三、四象限

(大大不过四) (大小不过二) (小大不过三) (小小不过一)

思考:若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )

A .第一象限

B . 第二象限

C .第三象限

D .第四象限 12、正比例函数与一次函数图象之间的关系

一次函数y =kx +b 的图象是一条直线,它可以看作是由直线y =kx 平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).

13、直线y =k 1x +b 1与y =k 2x +b 2的位置关系

(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –1 14、用待定系数法确定函数解析式的一般步骤:

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 15、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值. 16、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax +b >0或ax +b <0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 17、一次函数与二元一次方程组

(1)以二元一次方程ax +by =c 的解为坐标的点组成的图象与一次函数y =b

c

x b a +-的图象相同.

(2)二元一次方程组??

?=+=+2

22111c y b x a c y b x a 的解可以看作是两个一次函数y =1111b c

x b a +-和y =

2

222b c

x b a +-

的图象交点.

18、一次函数的图像与两坐标轴所围成三角形的面积

一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(k

b

-,0). 直线

(b ≠0)与两坐标轴围成的三角形面积为s =k

b b k b 2212

=

??

知识点答案:

1.s 与t,v;c 与r,2π。

2.B

4.D;x ≥5;C 9.>﹣

3

5

;B;D;y=0.4x;y=-x+15 10.M=2,n ≠-1;C;y=3x-5,y=-x;16;A 11.C

常见题型

一、考察一次函数定义

1、若函数是y关于x的一次函数,则的值为;解析式为.

2、要使y=(m-2)x

n-1

+n是关于x的一次函数,n,m应满足, .

二、考查图像性质

1、已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.

2、若一次函数y=(2-m)x+m的图像经过第一、二、四象限,则m的取值范围是______

3、已知m是整数,且一次函数(4)2

y m x m

=+++的图象不过第二象限,则m 为.

4、直线y kx b

=+经过一、二、四象限,则直线y bx k

=-的图象只能是图4中的()5、直线0

px qy r

++=(0)

pq≠如图5,则下列条件正确的是()

.,1

A p q r

==.,0

B p q r

==

.,1

C p q r

=-=.,0

D p q r

=-=

6、如果0

ab>,0

a

c

<,则直线

a c

y x

b b

=-+不通过()

A.第一象限B.第二象限C.第三象限D.第四象限

7、如图6,两直线

1

y kx b

=+和

2

y bx k

=+在同一坐标系内图象的位置可能是()8、如果0

ab>,0

a

c

<,则直线

a c

y x

b b

=-+不通过()

A.第一象限B.第二象限C.第三象限D.第四象限

9、b为时,直线2

y x b

=+与直线34

y x

=-的交点在x轴上.

10、要得到y=-

3

2

x-4的图像,可把直线y=-

3

2

x().

(A)向左平移4个单位(B)向右平移4个单位

(C)向上平移4个单位(D)向下平移4个单位

()2

13

m

y m x

=-+m

11、已知一次函数y =-kx +5,如果点P 1(x 1,y 1),P 2(x 2,y 2)都在函数的图像上,且当x 1

12、已知点(-4,y 1),(2,y 2)都在直线y =- 1

2 x +2上,则y 1 、y 2大小关系是( )

(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1

三、交点问题

1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ).

(A )k <

13 (B )131 (D )k >1或k <13

2、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .

3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值

范围是 .

4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )

A . 0,0k b >> .0,0

B k b >< .0,0

C k b <> .0,0

D k b << 5、如图所示,已知正比例函数和一次函数,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。 (1)求a 、b 的值;(2)求△PQO 的面积。

四、面积问题

1、若直线y =3x +6与坐标轴围成的三角形的面积为S ,则S 等于( ). A .6 B .12 C .3 D .24

2、若一次函数y =2x +b 的图像与坐标轴围成的三角形的面积是9,则b =_______.

3、已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ?的面积为( )

A .4

B .5

C .6

D .7

4、已知一次函数y =kx +b 的图像经过点(-1,-5),且与正比例函数1

y=

x 2

的图像相交于点(2,a ),

求(1)a 的值;(2)k 、b 的值;(3)这两个函数图像与x 轴所围成的三角形面积。

x y 2

1

-

=b x y +=

五、一次函数解析式的求法

(1) 定义型 例1. 已知函数y m x m =-+-()3328

是一次函数,求其解析式。

(2)点斜型 例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。

(3)两点型 例3.已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。 (4)图像型 例 4. 已知某个一次函数的图像如图所示,则该函数的解析式为

__________。

(5)斜截型 例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为 。

(6)平移型 例 6.①把直线y x =+21向上平移2个单位得到的图像解析式为 。

②把直线y x =+21向下平移2个单位得到的图像解析式为 。

③把直线y x =+21向左平移2个单位得到的图像解析式为 。

④把直线y x =+21向右平移2个单位得到的图像解析式

为 。

规律: (7) 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为 。 (8)面积型 例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,则直线解析式为 。

(9)对称型 例9. 若直线l 与直线y x =-21关于y 轴对称,则直线l 的解析式为____________。

知识归纳: 若直线l 与直线y kx b =+关于

(1)x 轴对称,则直线l 的解析式为y kx b =-- (2)y 轴对称,则直线l 的解析式为y kx b =-+

(3)直线y =x 对称,则直线l 的解析式为y k x b k =

-1 (4)直线y x =-对称,则直线l 的解析式为y k x b

k

=+1

(5)原点对称,则直线l 的解析式为y kx b =-

(10)开放型 例10.一次函数的图像经过(-1,2)且函数y 的值随x 的增大而增大,请你写出一个符合上述条件的函数关系式 .

(11)比例型 例11..已知y 与x +2成正比例,且x =1时y =-6.求y 与x 之间的函数关系式

六、分段函数

1、某自来水公司为鼓励居民节约用水,采取按月用水量收费办法,若某户居民应交水费

y

(元)与用水量

x (吨)的函数关系如图所示。

(1)写出y 与x 的函数关系式;

(2)若某户该月用水21吨,则应交水费多少元?

2、果农黄大伯进城卖菠萝,他先按某一价格卖出了一部分菠萝后,把剩下的

菠萝全部降价卖完,卖出的菠萝的吨数x 和他收入的钱数y

(万元)的关系

如图所示,结合图象回答下列问题:

(1)降价前每千克菠萝的价格是多少元? (2)若降价后每千克菠萝的价格是1.6元,他这次卖菠萝的总收入是2万元,问他一共卖了多少吨菠萝? 3、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.

(1)设用电x 度时,应交电费y 元,当x ≤100和x >100时,分别写出y 关于x 的函数关系式.

(2)小王家第一季度交纳电费情况如下:

月份 一月份 二月份 三月份 合计 交费金额 76元 63元 45元6角 184元6角

问小王家第一季度共用电多少度?

0 y x

15 20 27 39.

8 2 1.92

七、一次函数与方案设计问题

一次函数是最基本的函数,它与一次方程、一次不等式有密切联系,在实际生活中有广泛的应用。例如,利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策。近几年来一些省市的中考或竞赛试题中出现了这方面的应用题,这些试题新颖灵活,具有较强的时代气息和很强的选拔功能。

1.生产方案的设计

例1某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。

(1)要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;

(2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?

2.调运方案设计

例2北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台。求:

(1)若总运费为8400元,上海运往汉口应是多少台?

(2)若要求总运费不超过8200元,共有几种调运方案?

(3)求出总运费最低的调运方案,最低总运费是多少元?

例3 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元。由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2。

商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)、z(万元)(x,y,z都是整数)。

(1) 请用含x的代数式分别表示y和z;

(2) 若商场预计每日的总利润为C(万元),且C满足19≤C≤19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?

3.优惠方案的设计

例4某校校长暑假将带领该校市级“三好生”去北京旅游。甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待。”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠。”若全票价为240元。

(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);

(2)当学生数是多少时,两家旅行社的收费一样;

(3)就学生数x讨论哪家旅行社更优惠。

练习

1.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元)。

(1)写出y(元)关于x(套)的函数解析式;并求出自变量x的取值范围;

(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?

2.A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?

3.下表所示为装运甲、乙、丙三种蔬菜的重量及利润。某汽车运输公司计划装运甲、

)

(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?

(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?

4.有批货物,若年初出售可获利2000元,然后将本利一起存入银行。银行利息为10%,若年末出售,可获利2620元,但要支付120元仓库保管费,问这批货物是年初还是年末出售为好?

常见题型答案:

一.

1.-1,y=-2x+3

2.n=2,m≠2

二.

1.2

2.2

3.-4

4.B

5.B

6.A

7.A

8.A

8

9.-

3

10.D

11.K<0

12.A

三.

1.B

2.16

3.-1,b>2

4.C

5.(1)a=-2,b=3;(2)3

四.

1.A

2.±6

3.C

3

4.a=1,k=2,b=-3,

4

五.

(1)y=-6x+3

(2)y=x-3

(3)y=2x+4

(4)y=-2x+2

(5)Y=-2x±2

(6)Y=2x+3,y=2x-1,y=2x+5,y=2x-3

(7)Q=20-0.2t

(8)Y=2x-4,y=-2x-4

(9)Y=-2x-1

(10)Y=x+3

(11)Y=-2x-4

六.

(1)①当0≤x ≤15,y=

59x,当>15.y=512x-9.②5

207 (2)①2.4元,②8.5吨

(3)①x ≤100,y=0.57x ②当x >100时,y=0.5x+7,②330度。

七.例1.(1) 9x+(50?x)×4≤360 3x+(50?x)×10≤290

(2)解第一个不等式得:x ≤32, 解第二个不等式得:x ≥30, ∴30≤x ≤32, ∵x 为正整数, ∴x=30、31、32, 50-30=20, 50-31=19, 50-32=18,

∴符合的生产方案为①生产A 产品30件,B 产品20件; ②生产A 产品31件,B 产品19件; ③生产A 产品32件,B 产品18件;

(3)总获利=700×x+1200×(50-x )=-500x+60000, ∵-500<0,而30≤x ≤32, ∴当x 越小时,总利润最大,

即当x=30时,最大利润为:-500×30+60000=45000元.

∴生产A 产品30件,B 产品20件使生产A 、B 两种产品的总获利最大,最大利润是45000元

例2.(1)根据题意可知,上海运往汉口x 台,上海运往重庆(4-x )台,北京运往汉口(6-x )台,北京运往重庆(4+x )台

y=300x+500(4-x )+400(6-x )+800(4+x )=200x+7600(0≤x ≤4的整数); (2)当y=200x+7600≤8000时,x ≤2,即x=0,1,2,对应三种方案;

(3)当x 取最小值0时,y 最小=7600,即上海运往汉口0台,上海运往重庆4台,北京运往汉口6台,北京运往重庆4台.最低费用7600元

例3.(1)依题意列方程组:,

②﹣①×2得:③;

①×4﹣②得:④;

(2)C=0.3x+0.5y+0.2z,

把③④式代入C:C=0.3x+0.5(35﹣)+0.2(25+)=﹣0.35x+22.5,

∵19≦C≦19.7,

∴19≦﹣0.35x+22.5≦19.7,

解此不等式得:8≦x≦10,

∴x=8、9、10,

y=23、21.5、20,

z=29、29.5、30,

∵x,y,z都是整数.

∴x,y,z的解分别为(8,23,29)或(10,20,30).

答:这个商场分配日营业额方案为百货部8万元(40人),服装部23万元,售货员为92人,家电部为29万元,售货员为58人;或者是百货部营业额10万元,用人50,服装部20万元,80人,家部电30万元,60人.

例4

解:(l) y甲=120x+240,

y乙=144x+144;

(2)由y甲= y乙,则120x+240=144x+144,

解得x=4;

(3)若y甲>y乙,即120x+240>144x+144,解得x<4,

若y甲4,

所以当学生数少于4人时,乙旅行社更优惠;

当学生数大于4人时,甲旅行社更优惠。

练习答案:

1. (1) y=15x+1500;自变量x的取值范围是18、19、20。

(2) 当x=20时,y的最大值是1800元。

2. 设A城化肥运往C地x吨,总运费为y元,则y=2x+10060 (0≤x≤200),

当x=0时,y的最小值为10060元。

3. (1) 应安排2辆汽车装运乙种蔬菜,6辆汽车装运丙种蔬菜。

(2) 设安排y辆汽车装运甲种蔬菜,z辆汽车装运乙种蔬菜,则用[20-(y+z)]辆汽车装运丙种蔬菜。

得 2y+z+1.5[20-(y+z)]=36,化简,得 z=y-12,所以 y-12=32-2y。

因为 y≥1, z≥1, 20-(y+z)≥1,所以 y≥1, y-12≥1, 32-2y≥1,

所以 13≤y≤15.5。

设获利润S百元,则S=5y+108,

当y=15时,S的最大值是183,z=y-12=3, 20-(y+z)=2。

4. (1) 当成本大于3000元时,年初出售好;

(2) 当成本等于3000元时,年初、年末出售都一样;

(3) 当成本小于3000元时,年末出售好。

八年级数学上册 一次函数解析式常见题型分析 人教新课标版

求一次函数解析式常见题型解析 一次函数解析式的求法在初中数学教学内容中占有举足轻重的作用,如何把这一部分内容学的扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学门有所帮助。 一:定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 ,故一次函数的解析式为 注意:利用定义求一次函数解析式时,要保证。如本例中应保证 二. 点斜型 例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。 解:一次函数的图像过点(2,-1) ,即 这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。 三. 两点型 已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为 由题意得 故这个一次函数的解析式为 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为 由图可知一次函数的图像过点(1,0)、(0,2) 有 故这个一次函数的解析式为 五. 斜截型

例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线:;:。当,时, 直线与直线平行,。 又直线在y轴上的截距为2, 故直线的解析式为 六. 平移型 例6. 把直线向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为,直线向下平移2个单位得到的直线 与直线平行 直线在y轴上的截距为,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得,即 故所求函数的解析式为() 注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

(完整word版)指数函数题型归纳

指数函数及其性质应用 1.指数函数概念 叫做指数函数,其中是自变量,函数的定义域为. 一般地,函数 2. 函数 名称 指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数 函数值的 变化情况 变化对图 象的影响 在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针 方向看图象,逐渐减小.

指数函数题型训练 题型一 比较两个值的大小 1、“同底不同指”型 (1)21 51- ? ?? ?? 3 251?? ? ?? (2) 2.51.7 3 1.7 (3)0.8 14?? ? ?? 1.8 12?? ??? (4) 0.5 a ()0.6 0,1a a a >≠ 归纳: 2、“同指不同底”型 (1)5 6 311?? ? ?? 5 6 833?? ? ?? (2)9 2 4 归纳: 3、“不同底不同指”型 (1)0.3 1.7 3.1 0.9 (2) 2.5 1.7 30.7 (3)0.1 0.8 - 0.2 9 - (4)b a (01)a b a b <<< (5) 1 23-?? ? ?? 13 3 归纳: 综合类:(1)已知232()3 a =,132()3 b =,232 ()5c =则a 、b 、c 的大小关系为 (2)如果0m <,则2m a =,1 ()2 m b =,0.2m c =则a 、b 、c 的大小关系为 题型二 过定点问题 1、函数33x y a -=+恒过定点 2、函数()150,1x y a a a +=->≠图像必过定点,这个定点是 3、已知对不同的a 值,函数()()120,1x f x a a a -=+>≠的图像恒过定点P ,则P 点的坐标 是 归纳: 题型三 解指数函数不等式 1、2212 2≤?? ? ??-x 2、 8 21()33 x x --< 3、0.225x < 4、221(2)(2)x x a a a a -++>++

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

(完整版)一次函数题型总结归纳

a a t 精心整理 一次函数题型总结 函数定义 1、判断下列变化过程存在函数关系的是() A.是变量, B.人的身高与年龄 C.三角形的底边长与面积 y x ,x y 2±=A 、1B 、2C 、3D 、42、若函数y=(3-m)x m-9是正比例函数,则m=。 3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数(2)是正比 例函数 一次函数与坐标系 1.一次函数y=-2x+4的图象经过第象限,y 的值随x 的值增大而(增大或减少)

2.已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= . 3.已知k >0,b >0,则直线y=kx+b 不经过第 象限. 4、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. B. C. D. 1-14 1-4 1(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度 是多少? 4、东从A 地出发以某一速度向B 地走去,同时小明从B 地 出发以 另一速度向A 地而行,如图所示,图中的线段、B 地的 1y 距离(千米)与所用时间(小时)的关系。 2

a t s ⑵试求出A 、B 两地之间的距离。 函数图像的平移 1.把直线向上平移3个单位所得到的直线的函数解析式为 .13 2+=x y 2、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是()。 A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2) 的增大而,当. 函数图像与坐标轴围成的三角形的面积 1、函数y=-5x+2与x 轴的交点是与y 轴的交点是与两坐标轴围成的三角形面积是。 2.已知直线y =x +6与x 轴、y 轴围成一个三角形,则这个三角形面积为___。3、已知:在直角坐标系中,一次函数y=的图象分别与x 轴、y 轴相交于23

一次函数知识点及常见题型

一次函数知识点及常见类型 1、变量:在一个变化过程中不断发生变化的量;常量:在一个变化过程中保持不变的量。 例:在匀速运动公式vt s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是________. 2、函数:一般地,设在一个变化过程中有两个变量x和y,如果对于x允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么我们就说x是自变量,(y称为因变量,)称y是x的函数,如果x=a时,y=b,那么b叫做当自变量的值为a时函数值。 注意:函数不是数,它是指某一变化过程中两个变量之间的关系。 判断x是否为y的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应 例:下列函数(1)y=πx (2)y=2x-1 (3)y=1 x(4)y=2 -1-3x (5)y=x2-1中是一次函 数的有()(A)4个(B)3个(C)2个(D)1个3、自变量的取范围:确定自变量的取范的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,自变量的取范围还要和实际情况相符合,使之有意义。 例:1、下列函数中,自变量x的取值范围是x≥2的是() A. B. y=C. D. 2 、函数y=中的自变量x的取值范围是. 4、函数的图象 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵

坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 5、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。 6、描点法画函数图象的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 注意:根据“两点确定一条直线”的道理(也叫 两点法)。 一般的,一次函数y=kx+b(k≠0) 的图象过(0,b )和(-k b ,0)两点画直线即可;正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k )两点。 7、函数的表示方法 1.列表法 2.图象法 3.解析式法 例:1、东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是______________. 2、平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________. 3、小亮从家步行到公交车站台,等公交车去学校. 图中的 折线表示小亮的行程s (km)与所花时间t (min)之间的函 数关系. 下列说法错误.. 的是 ( ) A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 8、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数 叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k ≠0) (第3题图)

一次函数知识点总结与常见题型

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯 一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =2 1-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值围是x ≥2的是( ) A .y B .y C .y D .y 函数y =x 的取值围是___________. 已知函数22 1+-=x y ,当11≤<-x 时,y 的取值围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线 y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1)解析式:y =kx (k 是常数,k ≠0) (2)必过点:(0,0)、(1,k ) (3)走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4)增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小

精华指数函数经典题型练习题不含答案

本节知识点 1、 (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.) 0的任何次方根都是0 2 3、 分数指数幂 4、 有理指数幂运算性质 ① (0,,)r s r s a a a a r s Q +=>∈ ② ()(0,,)r s rs a a a r s Q =>∈ ③()(0,0,)r r r ab a b a b r Q =>>∈ 5、 指数函数的概念 一般的,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R . 6、指数函数x y a =在底数 及这两种情况下的图象和性质: 指数与指数函数试题归纳精编 (一)指数 1、化简[32)5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将322-化为分数指数幂的形式为( ) A .212- B .312- C .212 -- D .6 52- 3、化简 4 216132332)b (a b b a ab ??(a, b 为正数)的结果是( ) A .a b B .ab C .b a D .a 2b

4、化简1111132168421212121212-----??????????+++++ ?????????? ?????????,结果是( ) A 、11321122--??- ??? B 、1 13212--??- ??? C 、13212-- D 、1321122-??- ??? 5、13256)71(027 .0143231+-+-----=__________. 6、32 11321 3 2 )(----÷a b b a b a b a =__________. 7、21203271037(2)0.1(2)392748 π-++-+—=__________。 8、)31()3)((65 6131212132b a b a b a ÷-=__________。 9 、41 60.2503 21648200549-+---)()() =__________。 10、若32121=+-x x ,求23222323-+-+--x x x x 的值。 11、已知1 1 22a a -+=3,求(1)1a a -+; (2)22a a -+; (二)指数函数 题型一:与指数有关的复合函数的定义域和值域 1、 含指数函数的复合函数的定义域 (1) 由于指数函数()1,0≠>=a a a y x 且的定义域是R ,所以函数()x f a y =的定义域与()x f 的定义域相同. (2) 对于函数()()1,0≠>=a a a f y x 且的定义域,关键是找出x a t =的值域哪些部分()t f y =的定义域中. 2、 含指数函数的复合函数的值域 (1) 在求形如()x f a y =()1,0≠>a a 且的函数值域时,先求得()x f 的值域(即()x f t =中t 的范围),再根据t a y =的单调性列出指数不等式,得出t a 的范围,即()x f a y =的值域. (2) 在求形如()x a f y =()1,0≠>a a 且的函数值域时,易知0>x a (或根据()x a f y =对x 限定的更加具 体的范围列指数不等式,得出x a 的具体范围),然后再()+∞∈,0t 上,求()t f y =的值域即可.

一次函数题型归纳解析

一次函数题型归纳解析 1.判断k 、b 的符号 在不作出函数图象的情况下,根据函数图象经过的象限,可判断出k 、b 的符号,反之亦然. 例1 正比例函数或一次函数(y=kx+b)的图象如图所示,则k 、b 的符号 ( ) A 、k <0,b >0. B 、k >0,b >0. C 、k <0,b <0. D 、k >0,b <0. 【评析】 注意到图象自左向右上升,函数值y 随着x 的增大而增大,图象自左向右下降,函数值y 随着x 的增大而减小;直线与y 轴正方向相交,k 为正,直线与y 轴的负方向 相交,k 为负.反之亦然. 2.判断直线经过的象限 例2下列图象中,表示直线y=x-1的是 ( ) (A)11O y x (B)-11 O y x (C)-1-1O y x (D)1-1O y x 3.确定函数的解析式 此类问题主要是考查考生利用待定系数法来求出有关函数一般解析式中的未知系数,从而确定该函数解析式的能力. 例3 某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下: 印数x (册) 5000 8000 10000 15000 …… 成本y (元) 28500 36000 41000 53500 …… (1)经过对上表中数据的探究,发现这种读物的投入成本y (元)是印数x (册)的一次函数,求这个一次函数的解析式(不要求写出x 的取值范围);

(2)如果出版社投入成本48000元,那么能印该读物多少册?分析(1)设所求一次函数的解析式为y=kx+b, 则 500028500, 800036000. k b k b += ? ? += ? 解得k=5 2 ,b=16000。 ∴所求的函数关系式为y=5 2 x+16000。 (2)∵48000=5 2 x+16000。 ∴x=12800。 答:能印该读物12800册. 评析此题主要考查待定系数法以及解方程(组)的运算能力.解题时应根据函数图象上的点的坐标与函数解析式之间的关系列出方程或方程组,然后再求解. 4.图表信息 例4某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如右下图所示,其中BA是线段,且BA∥x轴,AC是射线。 (1)当x≥30,求y与x之间的函数关系式; (2)若小李4月份上网20小时,他应付多少元的上网费用? (3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少? 分析:观察图象,求出函数解析式,确定函数的值。 解:(1)当x≥30时,设函数关系式为y=kx+b 则 3060 4090 k b k b += ? ? +=? 解得 3 30 k b = ? ? =- ? 所以y=3x-30。 (2)4月份上网20小时,应付上网费60元。 (3) 由75=3x-30解得x=35,所以5月份上网35个小时。 A C B 60 90 30 40 X小时 Y(元)

(完整版)一次函数解析式练习题

一次函数解析式练习题 一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。其中求一次函数解析式就是一类常见题型。 例1. 已知函数y m x m =-+-()3328是一次函数,求其解析式。 例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。 例3. 已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),求这个函数的解析式。 例4. 已知某个一次函数的图像如图所示,求函数的解析式。 例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为___________。 例6. 把直线y x =+21向下平移2个单位得到的图像解析式为___________。 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。 例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,求此直线的解析式。

练习题: 1. 已知直线y=3x -2, 当x=1时,y= 2. 已知直线经过点A (2,3),B (-1,-3),则直线解析式为________________ 3. 点(-1,2)在直线y=2x +4上吗? (填在或不在) 4. 当m 时,函数y=(m-2) +5是一次函数,此时函数解析式为 。 5. 已知直线y=3x+b 与两坐标轴所围成的三角形的面积为6,则函数的解析式为 . 6. 已知变量y 和x 成正比例,且x=2时,y=-2 1,则y 和x 的函数关系式为 。 7. 直线y=kx +2与x 轴交于点(-1,0),则k= 。 8. 若直线y=kx +b 平行直线y=3x +4,且过点(1,-2),则k= . 9. 已知A(-1,2), B(1,-1), C(5,1), D(2,4), E(2,2),其中在直线y=-x+6上的点有_________,在直 线y=3x-4上的点有_______ 10. 某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费2.4元, 以后每超过1分钟加收1元,若此人第一次通话t 分钟(3≤t ≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 . 11. 某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表 由上表得y 与x 之间的关系式是 12. 已知:一次函数的图象与正比例函数y=-3 2x 平行,且通过点(0,4), (1)求一次函数的解析式. (2)若点M(-8,m)和N(n,5)在一次函数的图象上,求m,n 的值 13. 已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 12 x 的图象相交于点(2,a),求 (1)a 、k 、b 的值 (2)这两个函数图象与x 轴所围成的三角形面积. 32 m x

指数函数题型汇总

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25) x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2 (25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14 x > .∴x 的取值范围是1 4 ?? + ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题

一次函数知识点总结

一次函数知识点总结 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

一次函数 一、函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应, 那么我们就把x称为自变量,把y称为因变量,y是x的函数。 *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数(函数关系)的表示方法 ①列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 画法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值) ②解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 用含有表示自变量字母的代数式表示因变量的式子叫做解析式。一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。 ③图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

必修一指数函数各种题型大全最新版

指数函数 【知识点梳理】 要点一、指数函数的概念: 函数y=ax(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?, 1 2x y =,31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x ==???时,在实数范围 内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:

要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)①x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2, 3, (), ()2 3 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可

一次函数知识点总结与常见题型

一次函数知识点总结与常见题型

x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过 二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减 小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B .23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0k C .1≤k D .10时,向上平移;当b <0时,向下平移)

指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212 3 13 5 25 8 38 9 49 3859=====

解 (2)0.6110.6∵>,>, ∴>. - --- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>, >, a a a a a n n n n n n n n n n n n -+-+-=-111 1 1 11 1(a 0a 1n 1)0a 1n 10() () ∴<,∴<当>时,∵>,>,∴>,>a a a n n a a a n n n n n n n n n n n n 1111 1111 1 1() () ()--+--+-1a 1n 101 【例5】作出下列函数的图像:

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

相关文档
最新文档