第20章平均数2
2023年人教版八年级数学下册第二十章《加权平均数》导学案

新人教版八年级数学下册第二十章《加权平均数》导学案一、学习目标:1. 理解数据的“权”和加权平均数的意义。
2. 会计算加权平均数。
学习重点:会计算加权平均数。
学习难点:对“权”的理解。
二、知识链接:简单算术平均数(课前预习)三、导学过程:问题1:(先独立完成,然后小组分工合作交流,选代表展示。
)一家公司打算招聘一名英文翻译. 对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表所示:应试者听说读写甲85 78 85 73乙73 80 82 831.如果这家公司想找一名综合能力较强的翻译,那听、说、读、写成绩按多少比确定?计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.2.如果公司要招聘一名笔译能力较强的翻译,那听、说、读、写成绩按2 :1 :3 :4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.归纳: 一般地,若n 个数x1 , x2, …, x n 的权分别是w1 , w2 … , w n,则叫做这n 个数的加权平均数.权的意义:——————————————————————————————.思考: 如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按3 : 3 : 2 : 2的比确定,那么甲乙两人谁会被录取?问题2: (小组合作完成)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手 演讲内容 演讲能力 演讲效果A 85 95 95 B9585951、你能确定他俩的名次吗?2、假如你是A 选手,你能设计一种合理方案,使自己获得第一名吗?四、课堂检测1、有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A ....22x y x y mx ny mx nyB C D m nm n++++++ 2、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:候选人测试成绩(百分制) 面试笔试 甲 86 90 乙9283(1) 如果公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取? (2) 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?五、课堂小结六、作业教科书习题20.1 ——113页第1题、122页第5 题20.1.1平均数(2)学习目标1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值4、经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法学习重点:根据频数分布表求加权平均数学习难点:根据频数分布表求加权平均数教学过程第一步:课堂引入设计的几个问题如下:(1)、请同学读P140探究问题,依据统计表可以读出哪些信息(2)、这里的组中值指什么,它是怎样确定的?(3)、第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
初中数学 第20章数据的分析 全章教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。
4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT

600≤x <1 000
5
1 000≤x <1 400
10
1 400≤x <1 800
12
1 800≤x <2 200
17
2 200≤x <2 600
6
解:即样本平均数为1 672. 因此,可以估计这批灯泡的平均使用寿命大约是 1 672 h.
样本估计总体
练一练
问题2 某校为了解八年级男生的身高,从八年级
各班随机抽查了共40 名男同学,测量身高情况(单位:
cm)如下图.试估计该 人数
校八年级全部男生的平 20
20
均身高.
15
10
10
6
5
4
0 145 155 165 175 185 身高/cm
课堂小结
(1)在抽样调查得到样本数据后,你如何处理样本 数据并估计总体数据的集中趋势? 样本平均数估计总体平均数.
解:他们的平均身高为: 156+158+160+162+170 =161.2 5
所以,他们的平均身高为161.2 cm.
做一做
问题2 某班级为了解同学年龄情况,作了一次年 龄调查,结果如下:13岁8人,14岁16人,15岁24人, 16岁2人.求这个班级学生的平均年龄(结果取整数).
解:这个班级学生的平均年龄为:
课堂小结
(1)当一组数据中有多个数据重复出现时,如何简便 地反映这组数据的集中趋势? 利用加权平均数.
(2)据频数分布求加权平均数时,你如何确定数据与 相应的权?试举例说明.
数据
频数
权
组中值
课后作业
作业: 必做题:教科书第121页复习巩固第1题; 选做题:教科书第122页综合应用第6题.
人教版数学八年级下册-20.1.1平均数-教案(2)

20.1.1平均数——人教版版八年级上册第二十章第一节教学设计一、学生状况分析本节课是人教版版数学教材八年级下册第二十章《数据的代表》的第1节——“平均数”的第1课时.学生在小学阶段已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.进入初中阶段后,在七年级相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的教学任务是:让学生理解算术平均数、加权平均数的概念;会求一组数据的算术平均数和加权平均数;能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.根据以上分析,制定本节课的教学任务入下:1.知识与技能(1)认识权、会求加权平均数,并体会权的差异对结果的影响.(2)理解简单平均数和加权平均数的区别和联系,并能利用其解决一些实际问题.2. 过程与方法(1)通过小组活动,初步经历数据的处理过程,发展学生数据处理能力.(2)经历从特殊到到一般的数学探究方法,认识加权平均数的意义和价值,解决简单的实际问题.3. 情感态度与价值观(1)通过小组合作的活动,进一步增强与他人交流的意识与能力,培养学生的合作意识和能力.(2)通过权对结果的影响,使学生体会数学与人类社会的密切联系,通过解决身边的实际问题,体会到从不同角度考虑问题的必要性,认识事物要经历从一般到特殊的过程.了解数学的价值,增进对数学的理解和学好数学的信心.在探索过程中形成实事求是的态度和勇于探索的精神.4、教学重难点 教学重点:(1)加权平均数的概念,会求加权平均数. (2)简单平均数与加权平均数的区别和联系. 教学难点:体会权的差异对结果的影响,认识到权的重要性. 三、教学过程设计本节课由五个教学环节组成,它们是“温旧孕新——探新知权——新知升华—学以致用——小结平均数”.其具体内容与分析如下:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思教 学 内 容教师活动 学生活动 教学目的一、 温旧孕新问题1 2017年2月28日由《重庆晚报》打造的“重庆六一班”小记者培训课,在德普外国语学校开班,并授予德普为小记者培训基地. 经过激烈的比赛,学校现在要在甲、乙两名同学中选拔出一名“德普小记者”,他们的各项成绩(百分制)如下表:现在请计算两名候选者的平均成绩(百分制),如果你是评委,从他们的成绩看,应该选谁呢?展示视频图片以什么样的标准来比较他们的成绩?肯定分配中突出某项的方案具有合理性,并通过计算得出方案的可行性.在总分、平均分相等的情况下,具体该如何比较选拔?学生给出方案计算总分、平均分无法解决问题,让学生感受不同成绩在同一个问题上的重要程度不同,体会数据赋予“权”的必要性.形式变化,实质仍然反映了数据的不同重要程度.二、探新知权 1、加权平均数的概念 由小记者在四个测试中的重要程度不同,在老师的追问中,由学生自己探索出权的呈现形式,引入“权”的概念,导入课题. 权的定义: 权表示:数据的重要程度 数据的权反映数据的相对重要程度. 权形式:比例、百分比 根据不同的权重,所求的平均数就是加权平均数. 归纳: 一般地,若n 个数1x ,2x ,…,n x 的权分别提炼出权的定义:反映数据的重要程度.体会“权”的差异对“加权平均数”结果的影响.“简单平均数”可以看作是权相等的“加权平均数”.给学生一个反思自悟的过程.是 1w ,2w ,…,n w ,则 112212n nnx w x w x w x w w w ++=++叫做这n 个数的加权平均数(weighted average ) .书本171-172页“加权平均数”的相关内容.三、新知升华简单平均数与加权平均数统称为算术平均数. 当数据的权都相等时,所求的加权平均数就是简单平均数,简单平均数是加权平均数地特殊情况, 四、学以致用 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分. 其中一位选手的单项成绩(百分制)如下表:(1)按演讲内容占60%、演讲能力占30%、演讲效果占10%,计算选手的平均成绩;(2)演讲内容、演讲能力、演讲效果按 3:2: 1的比确定,计算选手的平均成绩.五、学以致用 小组编题1. 选择你感兴趣的生活中加权平均数的例子为背景;2. 可以采用不同形式给出相应考察项目的权;3. 小组合作探究,要分工明确,设计出科学合理的求加权平均数的题目;4. 小组活动时间共18分钟;5. 活动结束后 ,每个小组派两个代表上台展示成果.六、小结—平均数 我最大的收获是…我对同学和同伴的表现感到… 我从同学身上学到了…本节课在对你今后的生活中对待一些事情进行分析时,会有什么帮助?七、布置作业.必做题:教科书第113页练习第2题;归纳概括公式(权的百分数的形式与比的形式)从加权平均数的多种形式计算巩固所学知识,并为下面生活中的加权平均例子提供素材.归纳概括公式利用刚才总结的公式列出式子.学生举例巩固所学体会“权”的对结果的影响,进一步理解“权”.感受加权平均数在生活中应用的广泛,体会数学的价值.巩固演练、反馈矫正(备用)1.(★)如果一组数据5, x, 3, 4的平均数是5, 那么x=____;2.(★★)某小区月底统计用电情况:其中有4户用电45度,有5户用电42度, 有6户用电50度, 则平均每户用电_____度;3. (★★)某校规定学生的体育成绩由三部分组成:体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次为92分、80 分、84 分,则小颖这学期的体育成绩是多少分?4. (★★★)小亮买甲种练习本a本,每本m元;买乙种练习本b本,每本n元,两种练习本平均每本多少元?你得了________颗★。
新部编人教版八年级下册数学 《平均数(2)》教案

第二十章数据的分析20.1.1平均数第二课时一、教学目标1.核心素养通过进一步学习算术平均数、加权平均数的概念,加深对加权平均数的理解,初步掌握统计解决问题的基本方法,培养学生收集数据提取信息的能力,学会构建模型分析数据,解释数据蕴含的结论.2.学习目标(1)1.1.1 进一步加深对加权平均数的理解.(2)1.1.2经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法.(3)1.1.3能根据频数分布直方图计算平均数,能正确有效应用平均数知识解决问题,提高分析解决问题的能力.3.学习重点根据频数分布表求加权平均数,根据频数分布直方图计算平均数.4.学习难点理解频数、组中值得概念,根据不同特点的频数分布直方图采取相应的处理方法.二、教学设计(一)课前设计1.预习任务阅读教材P128-P130,思考:平均数的意义是什么?如何利用加权平均数的计算公式求一组数据的平均数?2.预习自测1.数据15,23,17,17,22的平均数是_____________,若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是__________。
2.利用公式x=x/+a计算105,103,101,100,114,108,110,106,98,102的平均数,其中a=___,x/=_______,x=_______。
3.一个班级有45名学生,其中14岁的有16人,15岁的有17人,16岁的有8人,17岁的有4人,那么这个班的平均龄是_________岁。
预习自测参考答案1.18.8,62.100,4.7,104.73.15(二)课堂设计1.知识回顾(1)加权平均数的意义;(2)加权平均数的计算公式2.问题探究问题探究一:加深对加权平均数的理解问题1:某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个人小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是(分),由上可得,甲组的成绩最高.问题2:阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是_____,中位数是_____,众数是_____;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:(1)前10株西红柿秧上小西红柿个数的平均数是(32+39+45+55+60+54+60+28+56+41)÷10=47;把这些数据从小到大排列:28、32、39、41、45、54、55、56、60、60,最中间的数是(45+54)÷2=49.5,则中位数是49.5;60出现了2次,出现的次数最多,则众数是60;故答案为:47,49.5,60;(2)根据题意填表如下:个数分组, 28≤x<36, 36≤x<44, 44≤x<52, 52≤x<60, 60≤x<68频数, 2, 5, 7, 4, 2补图如下:故答案为:5,7,4;(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.问题3:下图反映了甲、乙两班学生的体育成绩。
+第20+章数据的整理与初步处理基础复习++2023—2024学年华东师大版数学八年级下册+

第20 章数据的整理与初步处理基础复习知识点 1 平均数1. 为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是 ( )A.44B.45C.46D.472. 某快递公司快递员张山某周每日投放快递物品件数为:有4天是30件,有2天是35件,有1天是41件,这周张山日平均投递物品件数为 ( )A.35.3件B.35件C.33件D.30件3. 八年级某班五个合作学习小组的人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为 ( )A.7B.6C.5D.44. 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,并分别按5:3:2的比例计入总评成绩,小明的三项成绩(单位:分)分别是90、95、90,他的总评成绩是 ( )A.91分B.91.5分C.92分D.92.5分5.如果公司分别赋予面试和笔试7和3的权.根据甲、乙两人的平均成绩,公司将录取 .7. 某班有50名学生,平均身高为166 cm,其中20名女生的平均身高为160 cm,则30名男生的平均身高为cm.8. 某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%(1)这四名候选人面试成绩的平均数为 .(2)现得知候选人丙的综合成绩为87.6分,则表中x的值等于 .(3)求其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名人选.知识点 2数据的集中趋势1. 一般地,将一组数据按由小到大的顺序排列(即使有相等的数据也要全部参加排列),处于正中间位置的一个数据(或中间位置两个数据的平均数)叫做这组数据的中位数.2. 一组数据中出现次数最多的数据称为这组数据的众数,一组数据可以有不止一个众数,也可以没有众数.3. 平均数、中位数和众数的选用:平均数能充分利用各数据的信息,但易受极端值的影响;当一组数据中的个别数据波动较大时,一般用中位数来描述这组数据的集中趋势,但中位数不能充分地利用各数据的信息;当一组数据中某些数据多次重复出现时,众数往往更能反映问题,但当各数据重复出现的次数大致相同时,它往往没有什么特别意义.9. 在一次女子跳水比赛中,八名运动员的年龄(单位:岁)分别为:12,13,13,14,15,13,13,15.这组数据的众数是( )A.12B.13C.14D.1510. 新冠肺炎疫情爆发以来,山西共派出13 批医疗队支援湖北,共计1516人,白衣逆行,千里驰援.如表是山西11A.33人B.86人C.91人D.98人11. 若一组数据:2,2,x,5,7,7的众数为7,则x为 ( )A.2B.5C.6D.712. 通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若每位同学的测试成绩各不相同.则被选中同学的成绩肯定不少于这9位同学测试成绩统计量中的 ( )A.平均数B.众数C.中位数D.加权平均数13.该班此次英语听力口语考试成绩众数比中位数多分.14. 在一次数学答题比赛中,六位同学答对题目的个数分别为:7,5,3,7,5,10,则这组数据的众数是 .15. 为了保障人民群众的身体健康,在预防新型冠状病毒期间,进入超市购物人员都需要测量体温,某8位顾客已知这8位顾客的平均体温为37C.求:(1)表中a的值.(2)这组数据的中位数和众数.16. 某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数.(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标? 请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员完不成任务,进而失去信心;如果目标定得太低,不能发挥营业员的潜力。
20.1.1平均数第二课时

在求n个数的算术平均数时,如果x1出现f1 次,x2出现f2次,------xk出现fk次(f1+f2+---+fk=n)则这几个数的算术平均数为:
为了了解5路公共汽车的运营情况,公 交部门统计了某天5路公共汽车每个运行 班次的载客量,得到下表:
81 ≤X<111 111≤X<121
11 31
51 71 91
111
3 5
20 22 18
15
为了绿化环境,柳荫街引进一批法国梧桐,三 年后这些树的树干的周长如下图所示,计算(可 以用计算器)这些法国梧桐树干的平均周长.
频数
14 12
10
8 6 4 2
4 5
5 6 5 5
7 5
8 5
0
40 50 60 70 80 90
人教版数学第二十章
1.1
平 均 数(2)
自主学习
求下列各组数据的平均数: 1、数据88,72,86,90,75;
2、数据12,12,12,12,4,4,4,4,13;
30位同学的数学成绩如下:
86、 86、 86、 86、 86、 90、 90、 90、 90、 90、 90、 90、 92、 92、 92、 92、 92、 92、 92、 92、 100、 100、 100、 100、 100、 100、 100、 100、100 、 100
周长/cm
载客量(人) 频数(班次)
11 31 51 71 91 111
பைடு நூலகம்
3 5 20 22 18 15
这天5路公共汽车平均每班的载客量是多少?
人教版八年级数学下册高分突破课件:20.1.1平均数(2)

课后作业
12.某校共有1000名学生,为了了解他们的视力情况,随机抽查了 部分学生的视力,并将调查的数据整理绘制成直方图和扇形图. (1)这次共调查了多少名学生?扇形图中的a、b值分别是多少? (2)补全频数分布直方图; (3)在光线较暗的环境下学习的学生占对应被调查学生的比例如 下表:
根据调查结果估计该校有多少学生在光线较暗的环境下学习?
课后作业
9.某台机床生产一批直径为10mm的圆型零件, 从中抽出部分零件进行检测,抽得的零件数及其直 径数如下表:
请根据表中数据解答下列问题: (1)一共抽查的零件数是 50 ; (2)数据9.98,9.99,10.00,10.01,10.02,的 权依次是 1,4,41,;2,2 (3)求抽取的零件的直径的平均数.
第二十章 数据的分析
平均数(2)
课前预习 课堂精讲 课后作业
课前预习
1.初二(8)班共有50名学生,平均身高为168㎝, 其中30名男生的平均身高为170㎝,则20名女生的 平均身高为 165。cm 2.有6个数,它们的平均数是12,若再添一个数5 ,则这7个数的平均数是___1_1_. 3. 小王同学在一次考试中,语文、数学、英语三门 学科的平均分为80分,物理、政治两科的平均分为 85,则该生这5门学科的平均分为 82 。 4.学校篮球队员练习罚球线投篮,结果如下表, 每人投10次平均每人投中 5.7球.
这Hale Waihona Puke 0个数的平均数是( B)A. 11.6 B. 232 C. 23.2
D. 11.5
4. 某次军训打靶,有a次每次中靶x环,有b次每次中靶y环
,则这个人平均每次中靶的环数是( A)
5.期中考试后,学习小组长算出全组5位同学数学成绩的 平均分为M,如果把M•当成另一个同学的分数,与原来的 5个分数一起,算出这6个分数的平均值为N,那么M: N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.1.1 平均数(二)
教学目标】
1、 我知道加权平均数是描述一组数据集中程度的代表 .
2、 我会根据频数分布表求加权平均数,从而解决一些实际问题
3、 我可以体会利用样本来估计总体的统计学思想
一、导入
问题:为了鉴定某种灯泡的质量, 对其中100只灯泡的使用寿命进行测量, 结果如下表:(单位:小时)
求这些灯泡的平均使用寿命? 597.5小时
结论:一般地,求n 个数的算术平均数时,如果 洛出现右次,X 2出现f 2
次,…X k 出现f k 次,那么这n 个数的算术平均数看成加权
平均数,x = ,其中f 1, f 2- f k 叫做
的权.
二、活动探究
例1:为了解5路公共汽车的运营情况,公交部门统计了某天 5路公共汽车每
个运行班次的载客量,得到下表:
(1) 这天5路公共汽车平均 每班的载客量是多少? 约73人
(2) 从表中,你能知道这一天 5路公共汽车大约有多少班 次的载客量在平均载客量以 上吗?占全天总班次的百分 比是多少?
33 班 约 39.8%
组中值:数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均 数.
课型:新授课
主备人:孙俊志 审核:张杰 课堂笔记
结论:1.当数据是以分组的形式出现时,用组中值代表每一组的数据
2. 每一组的频数看作每一组数据的权
例2某灯泡厂为了测量一批灯泡的使用寿命,从中抽查了100只灯泡”它们的使使用寿命600 < x1000W X1400 < x1800 < x2200 < x
X/时V 1000V 1400V 1800V 2200V 2600 r灯泡数10M9253412 /个
解:1676小时
三、达标测试
1.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、
100分1人,84分6人.该班平均成绩为78.7 分.
2.
年龄13141516
频数1452
求校女子排球队队员的平均年龄.
13*1+14*4+15*5+16*2 =147
X =-------------------------------------- =14.7
1+4+5+2
3.为了绿化环境,柳荫街引进了一批法国梧桐,三年后这些树的树干的周长情况如右图所示,计算这批法国梧桐树干的平均周
长.(精确到0.1cm)
45*8 55*12 65*14 75* 10 85* 6
x = -----------------------------------------------------
8+12+14+10+6
=63.8597.5(cm)
四、自我评价。