基于小波自适应阈值图像去噪方法的研究

合集下载

一种基于小波变换的图像阈值去噪方法

一种基于小波变换的图像阈值去噪方法
, , ,
硬 阂值 函数 是将 大干 阂值砌, 的小波 系数 保 留 , 于阈值tr 小 h 的小波 系数 置零 , 公式表 用
去噪 , 与传统的软 、 硬阈值 函数 相比 , 函数克 该
小波阀值去噪 的原理 是 : ,J 若w }、 阈值 示 如 下 : ,于某

服 了硬 阈值 函数 不连续 以 及软 阈值 函数存 在 时 , m主 要 由噪 声 引起 , 为w w 认 ,
号 i 1。 (
1 t ” I

l h >tr
1 1 l r < 0 w t 皓h
为 了克 服软 阈值 函数 的 不精 确和 硬阈值 函数 的不连续的 缺点 , 本文 提出一种新 的闽值
函数 , 表达式 如下 : 其
1小波阈值去噪的原理
假 设有 如下 观测 信 号 :() .() 七= ( + () i1 } 其 中 () 为带 噪 信号 ,() 纯净 信 号 , .为 j } n
Q型 :
Sci ence en Te d chn o I ol gy nno vaton i Her d al
研 究 报 告

种 基于小波 变换 的图像 阈值去 噪方法
王侠 冯贺 ( 州师范 大学 物理 与 电子 工程学 院 江苏徐 州 2 1 ) 徐 2 1 16
摘 要 : 在基 于 小波 变换 的 图像 阈值化 去噪 方法 中 , 阚值 的选取 非 常重要 , 文提 出一种 新 的阁值 函数 , - 用于 图像去噪 , 本 -X f i - 实验结 果 表明 , 用本文提 出的算  ̄R J 的无论是峰 值信噪比还是 视觉效果 均优 于传统的软 , 阚值算 法。 采 - t 硬 关键词 : 小波 变换 固像去噪 闲值化 中图分 类号 : P 5 T 1 文献标识 码 : A 文 章编 号 ;6 4 0 8 ( 0 00 ( 一0 0 - 2 1 7 — 9 X 2 1 ) 8c 0 5 0 )

一种基于小波阈值的图像去噪方法研究

一种基于小波阈值的图像去噪方法研究

换。 得到去噪图 像 实验结果表明, 该方法比中值滤波具有更好的去噪效果。
关 键词 :图像 去 噪 ; 小波 变换 ; 阚值
中图分类号: 3 1 TP 9
文献标识码 : A
文章 编号 :6 3 34 (0 7 0 - 0 0 0 17 - 12 2 0 ) 10 3 - 3
I a eDe osn g rt m s d o a ee r s od S rn a e m g n ii gAlo i h Ba e n W v ltTh e h l h i k g
Ab t a t I es s m fd tc i gf e p e sw r , h c u r d d gt l ma e l b os d u a od b e S t o f ma ed — s r c : n t y t o e e t n r s o k t e a q i ii g s l e n i n v i a l. o ameh d o g e h e n i e ai wi e i
( oal 16 Tt y 8 ) l

种基于小波阈值 的图像去噪方法研 究
陶娜娜 , 军 , 高 张建
( 山东理 工大学 机械工程学院 , 山东 淄博 2 5 4 ) 50 9
摘要 : 在印刷 品质量检测 系统 中, 集来的 图像不可避免会 出现噪 声。 对这种情 况, 采 针 本文提 出 了基 于小波闺值的 图 像去噪 方法。 该方法首先对噪声 图像进行小波 变换得 到小波 系数矩 阵, 闽值化后 , 阅值化后 的小波系数矩 阵逆 变 硬 对
n iigb sdo a ee rs ods r k g s rp s d Frt , osdi g l e o o e ywa ee a s r T ecef insae osn ae nw v lthe h l h n a ei o oe 。 i l n ie t i p s y ma eaed c mp s db v ltrn f m. h o fce t r t o i d at t yh r rs ods r k g 。 atw v ltrn a t n r vre e ed n i di g . x e me tl eu t d mo - e lwi b ad t eh l h i a e At s, a ee a s ci saci esdt g th e os ma e E p r na s l e n h h n l t o n o t e i r s s aeta i meh di mo ai a du v u l r g t t ths to r v l t nme im - efti . r h t s e d h . d ie n Ke o d :ma ed n iig waee rnfr trs od v u y W r s i g e osn ; v lt a som; h h l a e t e l

基于小波变换的阈值图像去噪方法

基于小波变换的阈值图像去噪方法

关键词:图像去噪 小波变换 Radon 变换 脊波变换 阈值
山东科技大学硕士学位论文
目录
Abstract
Ima ge is an important carrier of the information as well as an important channel of acceeding informations. However, the ima ges are polluted by the noise or interferred by other non-target signa ls to different extents in ever y process of ima ge acquisition, transmission, and access. In order to obtain the ima ge informations more accurately, noise ima ge need to be denoised. Wavelet analysis is a new kind of frontier area. It has been attented extensively in signa l and ima ge de-noising while the wavelet analysis theor y is improving daily. This paper ma inly research on applica tion of the theor y of wavelet in ima ge de-noising,the ma in contents is as follows: In the previous three chapters of this paper, we introduce the status of ima ge de-noising ,the basic theor y of the waveletr analysis and the common ima ge-denoising algor ithms based on the wavelet transform. And we conclude the analysis and comparison about the three common methods of ima ge de-noising based on wavelet transform. In the forth chapter,beca use the algor ithm of ima ge de-noising based on orthogona l wavelet transform should make the Gibbs phenomenon and the common threshold usua lly cause the tendency of over strangled ing , we draw out the method of adaptive threshold ima ge denoising based on stationary wavelet transform .We give out the adeptive threshold by correcting the common threshold based on different scale and sub-band direction because the signa l and noise have different propagating character istics. We show that this algor ithm is reasonable and effective . In the fifth chapter, we introduce the rid gelet transform against the optima l basis of zerodimensiona l singula r objective function rather tha n the optima l basis of multi-dimensiona l objective function. Actually ridgelet is obtained by participating an orientation parpameter. The function of basis can describe the multi-dimensiona l singula r signa l along linear or hyperpla ne.We use ridgelet transform for ima ge denoising because the linear singula r of ima ge is express ed by less rid gelet coefficients.But noise do not have so significa nt coefficients.So we can obtain better effect by proposing the method of adaptive threshold ima ge de-noising based on rid gelet transform.We improve the common threshold according to the theory that the noise gradually weakened as the level of decomposition. Finally, we verify the effectiveness of this algor ithm by exper iments ,especia lly to the ima ge with features of linear singula rities.

基于小波变换的图像压缩与去噪技术研究

基于小波变换的图像压缩与去噪技术研究

基于小波变换的图像压缩与去噪技术研究1. 引言图像是一种以人眼可接受的方式来存储和传输大量视觉信息的媒体。

然而,图像文件通常具有较大的数据量,需要占用较大的存储空间和传输带宽。

因此,图像压缩成为一项重要的技术,对图像进行压缩可以减小文件大小和传输时间,提高存储利用率和传输效率。

此外,图像往往受到噪声的影响,噪声会导致图像质量的下降,降低图像的可视性和识别性。

因此,图像去噪也是一个重要的研究方向,可以提升图像的质量和信息内容。

基于小波变换的图像压缩和去噪技术因其较好的性能而备受关注。

本文将探讨小波变换在图像压缩和去噪中的应用。

2. 小波变换基础小波变换是一种数学变换方法,将函数分解为多个尺度的基函数(小波),并用各个尺度上的系数来表示原函数。

小波变换可以提取图像的频域信息和时域信息,具有较好的局部化特性。

3. 图像压缩技术图像压缩技术可以分为有损压缩和无损压缩两种方法。

有损压缩减少了图像中的冗余信息,牺牲一定的图像质量,而无损压缩可以完全恢复原始图像,但压缩比较低。

基于小波变换的图像压缩利用小波变换的多尺度分解和系数量化来实现。

首先,将原始图像进行小波分解得到低频分量和高频分量。

然后,对高频分量进行系数量化,利用人眼对于高频信息的较低敏感性,减少高频分量的数据量。

最后,将量化后的系数进行编码和存储。

4. 图像去噪技术图像去噪的目标是恢复出原始图像中的有效信息并去除噪声,提升图像的质量和可视性。

小波变换的局部化特性使其在图像去噪中有较好的效果。

基于小波变换的图像去噪方法通常采用阈值去噪的思想。

将图像进行小波分解,得到各个尺度上的小波系数。

然后,对小波系数应用适当的阈值,在不影响原始图像主要特征的情况下去除噪声。

5. 小波变换在图像压缩与去噪中的应用小波变换在图像压缩与去噪中已经得到广泛应用。

通过灵活选择不同的小波基函数和改进的算法,可以进一步提高图像压缩和去噪的性能。

在图像压缩方面,小波变换可以通过调整系数量化策略来平衡图像质量和压缩比。

一种小波阈值的图像去噪的新方法

一种小波阈值的图像去噪的新方法

科技信息2008年第24期SCIENCE &TECHNO LO GY INFORMATION ●噪声方差σ消噪前中值滤波维纳滤波本文方法消噪M SE PSN R MS E PS NR M SE PS NR MS E P SNR 0.0164120.06623926.700612727.093810427.93450.0212.217.189625224.116823524.420114426.43280.03180715.561236022.56784322.777918825.4737在图像的获取及传输中,往往会受到噪声的污染,而图像去噪的目的则是尽可能保持原始信号主要特征的同时,除去信号中的噪声。

在图像噪声中,人们根据实际图像的特点、噪声的统计特性和频谱分布的规律,发展了多样的去噪方法。

其中最为普遍的方法是根据噪声能量一般集中于高频,而图像频谱则分布于一个有限区间这一特征,采用低通滤波方法来进行去噪,如低通高斯滤波、维纳滤波等。

传统的去噪方法仅具有空间域或频域的局部的分析能力,在抑制图像噪声的同时,损失了图像的边缘等细节信息,使处理后的图像变得模糊。

近年来,小波理论得到了非常快速的发展。

由于小波变换同时具有时域和频域上的局部性特性以及多分辨分析特性,所以特别适合于图像处理中的应用。

1.小波去噪1.1图像的二维小波变换二维离散小波变换往往可以由一维信号的离散小波变换推导得之。

假设!(x)是一个一维的尺度函数,φ(x)是相应的小波函数,则可以得到二维小波变换的基础函数:φ1(x,y)=%(x)φ(y)φ2(x,y)=%(x )φ(y )φ3(x,y)=φ(x)φ(y)%(x,y)=%(x )%(y )对于图像而言,我们往往可以把它看作是二维矩阵,一般假设图像矩阵的大小为N ×N,且有N=2n (n 为非负的整数)。

在经过每次小波变换后,图像便分解为4个大小为原来尺寸1/4的子块频带区域。

毕业设计(论文)-基于小波图像去噪的方法研究[管理资料]

毕业设计(论文)-基于小波图像去噪的方法研究[管理资料]

毕业论文基于小波变换的图像去噪方法的研究学生姓名: 学号:学系 专 指导教师:2011年 5 月基于小波变换的图像去噪方法的研究摘要图像是人类传递信息的主要媒介。

然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。

寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。

小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。

它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。

随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。

本文对基于小波变换的图像去噪方法进行了深入的研究分析,首先详细介绍了几种经典的小波变换去噪方法。

对于小波变换模极大值去噪法,详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法;对小波变换阈值去噪方法的原理和几个关键问题进行了详细讨论。

最后对这些方法进行了分析比较,讨论了它们各自的优缺点和适用条件,并给出了仿真实验结果。

在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。

传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。

但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。

鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。

该方法利用小波阈值去噪基本原理,在基于最小均方误差算法LMS和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。

基于小波阈值的图像去噪-毕业论文

基于小波阈值的图像去噪-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---摘要随着多媒体技术的飞速发展,图像信息越来越重要,但是图像在获取、传输、和存储的各个细节中会受到影响,导致最终的图像不可避免的存在各种质量下降问题,我们需要的是高分辨率的图像,对有噪声的图像进行去噪处理有很重要的意义。

本文主要阐述的是基于小波变换的图像阈值去噪方法。

小波变换是一种信号处理技术,可以在时域和频域上显示信号。

小波变换可以将一个信号分解为代表不同频带的多个尺度,通过小波变换,可以确定信号在每个尺度上的时频特征,这样的属性可以用来消除噪声。

基于阈值的图像去噪方法被科学家Donoho和Johnstone提出了,基于阈值的去噪方法可以采用硬阈值或软阈值函数,它易实现且具有良好的效果。

在本文中,采用了不同的噪声,不同的阈值,不同的阈值函数进行分析与相比较。

关键词:小波变换;阈值;阈值函数;图像去噪;A b s t r a c tWith the rapid development of multimedia technology and network technology, image information becomes more and more important in people's work, study and life. But the image in the acquisition, transmission, and storage process sections will be affected seriously, which leads to the final image effected by all kinds of inevitable quality problems. but, which we need is the image with clearity and high resolution. Therefore, to deal with the noise of noisy images has very important meaning in practical application and life.There are a lot of methods for image de-noising. This paper mainly describes the image de-noising method based on wavelet transform. It is well known that wavelet transform is a signal processing technique which can display the signals on in both time and frequency domain. In this paper, we use several threshold based on wavelet transform to provide an enhanced approach for eliminating noise.Wavelet transforms can decompose a signal into several scales that represent different frequency band. The position of signal's instantaneous at each scale can be determined approximately by wavelet transform.Such a property can be used to denoise. Threshold-based de-noising method was proposed by Donoho. Threshold-based de-noising method is used hard-threshold or soft-threshold. It is very simple and has good performance. This paper uses the threshold techniques which applied threshold according to each band characteristic of image.In this paper, the results will be analyzed and compared for different noises, different thresholds, different threshold functions. It has a superior performance than traditional image de-noising method.Keyword:Wavelet Transform; Threshold; Threshold Function; Image De-noising第一章绪论1.1研究目的和意义当今各种信息充斥于我们的日常生活中,图像信息成为人类获取信息的重要信息,因为图像具有传输速度快,信息量大等一系列的强势[1]。

(整理)在众多基于小波变换的图像去噪方法中

(整理)在众多基于小波变换的图像去噪方法中

在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。

传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。

但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。

鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。

该方法利用小波阈值去噪基本原理,在基于最小均方误差算法L M S和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。

最后,通过仿真实验结果可以看到,该方法去噪效果显著,与硬阈值、软阈值方法相比,信噪比提高较多,同时去噪后仍能较好地保留图像细节,是一种有效的图像去噪方法。

小波基函数选择可从以下3个方面考虑。

(1)复值与实值小波的选择复值小波作分析不仅可以得到幅度信息,也可以得到相位信息,所以复值小波适合于分析计算信号的正常特性。

而实值小波最好用来做峰值或者不连续性的检测。

(2)连续小波的有效支撑区域的选择连续小波基函数都在有效支撑区域之外快速衰减。

有效支撑区域越长,频率分辨率越好;有效支撑区域越短,时间分辨率越好。

(3)小波形状的选择如果进行时频分析,则要选择光滑的连续小波,因为时域越光滑的基函数,在频域的局部化特性越好。

如果进行信号检测,则应尽量选择与信号波形相近似的小波。

小波变换与傅里叶变换的比较小波分析是傅里叶分析思想方法的发展和延拓。

自产生以来,就一直与傅里叶分析密切相关。

它的存在性证明,小波基的构造以及结果分析都依赖于傅里叶分析,二者是相辅相成的。

两者相比较主要有以下不同:(1)傅里叶变换的实质是把能量有限信号tf分解到以jwte为正交基的空间上去;而小波变换的实质是把能量有限的信号tf分解到由小波函数所构成的空间上去。

两者的离散化形式都可以实现正交变换,都满足时频域的能量守恒定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的阈值 函数对各层高频系数进行处理来达到去噪效果。实验结果表明, 与传统方法相 比, 该方法运算量较小 , 能有效去除
高斯 白噪声 , 进 一步 提高 峰值性 噪 比 , 同时 能够很 好地保 留图像 细节信息 。 关键 词 : 图像 去噪 ; 小 波变 换 ; 多尺度 ; 自适 应 阈值 ; 峰值 信噪 比
中图分 类号 : T P 7 5 1 . 1 文献 标识 码 : A 文章 编号 : 1 6 7 3 - 6 2 9 X{ 2 0 1 3 ) 0 8 - 0 2 5 0 - 0 4
d o i : l 0 . 3 9 6 9 / j . i s s n . 1 6 7 3 — 6 2 9 X. 2 0 1 3 . 0 8 . 0 6 4
第2 3卷
第 8期
计 算 机 技 术 与 发 展
COMPUT ER T ECHNOL OGY AND DEVEL 0PME NT
Vo 1 . 23 No. 8 Au g . 2 01 3
2 0 1 3年 8月
基于小波 自适应 阈值 图像去噪方法的研究
于笃发 , 邵建华 , 张 晶如
Ai mmi n g a t he t p h e n o me n o n, a n i mp r o v e d mu l i- t s c a l e a d a p t i v e t h r e s h o l d me ho t d o f i ma g e d e n o i s i n g b a s e d o n wa v e l e t t r a n s f o r ma ti o n h a s b e e n p r o p o s e d . Ac c o r d i n g t O he t c h a r a c t e r i s ic t s o f he t i ma g e wa v e l e t d e c o mp o s i t i o n, t h i s me t h o d C n a d e t e r mi n e he t b e t t e r t h r e s h o l d o f d i f - f e r e n t l a y  ̄s’c o e f f i c i e n t f o r d e n o i s i n g a f t e r wa v d ̄ d co e mp o s i t i o n, he t n p r o c e s s t h e h i g h f r e q u e n c y c o e f ic f i e nt o f e a c h l a y e r wi h t a p p r o ・ p na t e t h r e s h o l d f u n c t i o n o t a c h i e v e d e n o i s i n g e f f e c t . he T e x p e r i me n t l a r e s u l t s s h o w ha t t, c o mp a r e d wi t h ̄ d it io n l a me ho t d s , hi t s me ho t d C n a e f f ct e iv e l y en r l o v e Ga u s s i n a wh i t e n o i s e a n d f u r t h r e i mp r o v e he t p e a k s i g n l— a o —n t o i s e r a io, t wh i l e we l l p r e er s v i n g i ma g e d e t a i l s .
( C o l l e g e o f P h y s i c s a n d T e c h n o l o g y , N a n j i n g N o r ma l U n i v e r s i t y , N姐j i n g 2 1 0 0 2 3 , C h i n a )
Abs t r a c t : Us i n g wa v e l e t t r a ns f o r m t o il f t e r n o i s e s o n i ma g e i s a v e r y e f f e c t i v e me ho t d . T h e s mo o t h i ng e fe c t i s n o t v e r y g o o d o f ra t it d i o n -
Re s e a r c h o n I ma g e D e n o i s i n g B a s e d o n Wa v e l e t Ad a p t i v e T h r e s h o l d
YU Du—f a, S HAO J i a n-h u a, ZHANG J i n g- r u
a l wa v e l e t i ma g e d e n o i s i n g a l g o 珊l I l l , a n d t h e i ma g e d e t a i l p r e c i s i o n i s n ’ t h i g h e n o u g h, e v e n f a l s e Gi b b s p h e n o me n o n C a l l b e p r o d u c e d .
( 南京 师 范大 学 物理科 学与技 术 学院 , 江苏 南京 2 1 0 0 2 3 )
摘 要: 利用 小波 变换 对 图像 去 噪后 的 平滑 效 果不 是 很好 , 图
像细节 清 晰度不 够高 , 甚至会 产 生伪吉 布斯 现象 。针对 这些 现 象 , 文 中提 出 了一 种改 进 的基 于 小波 变换 的多 尺度 自适应 阈值 图像去 噪方 法 。该 方法 根据 图像小 波分 解 的特性 , 确定 适 合小 波 分解 后 不 同层 系数 去 噪 的较 优 阈值 , 然 后结 合 恰 当
相关文档
最新文档