函数与方程教学设计
《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《二元一次方程与一次函数》教学设计精选4篇在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
二次函数与一元二次方程教学设计

二次函数与一元二次方程教学设计二次函数与一元二次方程教学设计1教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课一、例题讲解投影片:(§2.8.1A)我们已经知道,竖直上抛物体的高度h(m)与运动时间t的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议投影片:(§2.8.1B)二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习随堂练习(P67)Ⅳ.课时小结本节课学了如下内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业习题2.9板书设计§2.8.1 二次函数与一元二次方程(一)一、1.例题讲解(投影片§2.8.1A)2.议一议(投影片§2.8.1B)3.想一想二、课堂练习随堂练习三、课时小结四、课后作业备课资料思考、探索、交流把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r= .∴S圆=πr2=π・2=π・= ≈796(m2).所以圆的面积最大.二次函数与一元二次方程教学设计2教学目标一、教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2、理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.3、理解一元二次方程的根就是二次函数与y =h 交点的横坐标.二、能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神2、通过观察二次函数与x 轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3、通过学生共同观察和讨论,培养合作交流意识.三、情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2、具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根、两个相等的实根和没有实根.3.理解一元二次方程的根就是二次函数与y =h 交点的横坐标.教学难点1、探索方程与函数之间的联系的过程.2、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法教学过程:1、设问题情境,引入新课我们已学过一元一次方程kx+b=0 (k0)和一次函数y =kx+b (k0)的关系,你还记得吗?它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转化成了一元一次方程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.2、新课讲解例题讲解我们已经知道,竖直上抛物体的高度h (m )与运动时间t (s )的关系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是抛出时的高度,v 0(m/s )是抛出时的速度.一个小球从地面被以40m/s 速度竖直向上抛起,小球的高度h(m)与运动时间t的关系如下图所示,那么(1)h 与t 的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?小组交流,然后发表自己的看法.学生交流:(1)h 与t 的关系式是h =-5 t 2+v 0t +h 0,其中的v 0为40m/s,小球从地面抛起,所以h 0=0.把v 0,h 0带入上式即可求出h 与t 的关系式h =-5t 2+40t(2)小球落地时h为0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是-5t 2+40t=0t 2-8t=0t(t- 8)=0t=0或t=8t=0时是小球没抛时的时间,t=8是小球落地时的时间.也可以观察图像,从图像上可看到t =8时小球落地.议一议二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像如下图所示(1)每个图像与x 轴有几个交点?(2)一元二次方程x2+2x=0 , x2-2x+1=0有几个根?解方程验证一下, 一元二次方程x2-2x +2=0有根吗?(3)二次函数的图像y=ax2+bx+c 与x 轴交点的坐标与一元二次方程ax2+bx+c=0 的根有什么关系?学生讨论后,解答如下:(1)二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像与x 轴分别有两个交点、一个交点,没有交点.(2)一元二次方程x 2+2x=0有两个根0,-2 ;x2-2x+1=0有两个相等的实数根1或一个根1 ;方程x2-2x +2=0没有实数根(3)从图像和讨论知,二次函数y=x2+2x与x 轴有两个交点(0,0),(-2,0) ,方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图像与x 轴有一个交点(1,0),方程 x2-2x+1=0 有两个相等的实数根1或一个根1二次函数y=x2-2x +2 的图像与x 轴没有交点, 方程x2-2x +2=0没有实数根由此可知,二次函数y=ax2+bx+c 的图像与x 轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.小结:二次函数y=ax2+bx+c 的图像与x 轴交点有三种情况:有两个交点、一个交点、没有焦点.当二次函数y=ax2+bx+c 的图像与x 轴有交点时,交点的横坐标就是当y =0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.基础练习1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标.(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+42、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是 .4、已知抛物线y=x2+px+q与x 轴的两个交点为(-2,0),(3,0),则p= ,q= .5. 已知抛物线 y=-2(x+1)2+8 ①求抛物线与y轴的交点坐标;②求抛物线与x 轴的两个交点间的距离.6、抛物线y=a x2+bx+c(a0)的图象全部在轴下方的条件是(A) a0 b2-4ac0(B)a0 b2-4ac0(B) (C)a0 b2- 4ac0 (D)a0 b2-4ac0想一想在本节一开始的小球上抛问题中,何时小球离地面的.高度是60 m?你是怎样知道的?学生交流:在式子h =-5t 2+v 0t +h 0中v 0为40m/s, h 0=0,h=60 m,代入上式得-5t 2+40t=60t 28t+12=0t=2或t=6因此当小球离开地面2秒和6秒时,高度是6 0 m.课堂练习 72页小结:本节课学习了如下内容:1、若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c 与x轴的两个交点坐标分别是A(x1,0 ), B( x2,0 )2、一元二次方程ax2+bx+c=0与二次三项式ax2+bx+c及二次函数y=ax2+bx+c 这三个二次之间互相转化的关系.体现了数形结合的思想3、二次函数y=ax2+bx+c 何时为一元二次方程?二次函数与一元二次方程教学设计3一、教学目标:1。
222二次函数与一元二次方程(教学设计)九年级数学上册(人教版)

22.2 二次函数与一元二次方程教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十二章“二次函数”22.2 二次函数与一元二次方程,内容包括:二次函数与一元二次方程的联系.2.内容解析解一元二次方程ax2+bx+c=0可以看作已知二次函数y=ax2+bx+c的值为0,求自变量的值.从图象上看,如果二次函数的图象与x轴有公共点,当自变量取公共点的横坐标时,函数的值为0.由此可求出相应的一元二次方程的根.当二次函数的图象与x轴有两个公共点时,相应的一元二次方程有两个不等的实数根;当二次函数的图象与x轴有一个公共点时,相应的一元二次方程有两个相等的实数根;当二次函数的图象与x 轴没有公共点时,相应的一元二次方程没有实数根.通过探究二次函数与一元二次方程的联系,进而掌握利用二次函数的图象求一元二次方程的近似解的方法。
基于以上分析,确定本节课的教学重点:二次函数与一元二次方程的联系.二、目标和目标解析1.目标1) 理解二次函数与一元二次方程之间的联系,能够利用二次函数的图象求一元二次方程的近似解。
2)通过图象理解二次函数与一元二次方程联系的过程中,体会综合运用函数解析式和函数图象的数形结合思想。
2.目标解析达成目标1)的标志是:学生能够利用二次函数的图象,通过观察与x轴交点的横坐标,确定一元二次方程的近似解.达成目标2)的标志是:在探索二次函数与一元二次方程联系的过程中,理解二次函数与x轴的公共点个数与对应的一元二次方程的实数根的数量关系.三、教学问题诊断分析探究二次函数与一元二次方程的联系的过程与函数和一元一次方程的探究过程一致,但二次函数与x 轴公共点的个数共有三种情况.需学生理解当二次函数图象与x轴有公共点时,公共点的横坐标就是相应的一元二次方程的根.基于以上分析,本节课的教学难点是:用数形结合的思想探究二次函数与一元二次方程的联系.四、教学过程设计(一)探究新知以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h (单位:m)与飞行时间t (单位:s)之间具有关系:h= 20t–5t2 .[问题一]球的飞行高度能否达到15 m? 若能,需要多少时间?[问题二]球的飞行高度能否达到20 m? 若能,需要多少时间?[问题三]结合图形,你知道为什么在问题一中有两个点符合题意,而在问题二中只有一个点符合题意?[问题四]球的飞行高度能否达到20.5 m? 若能,需要多少时间?[问题五]球从飞出到落地要用多少时间?[问题六]结合此问题,你发现二次函数与一元二次方程的联系.师生活动:教师提出问题,学生积极回答问题。
函数与方程教学设计

课题:《函数与方程》--------------蒙城八中高一数学组:李艳一、教材剖析本节内容选自北师大版高中数学必修一第四章第一节,主要研究函数与方程的关系,教材以二次函数为例,引出零点存在定理,经过立体稳固运用图像法,定理法解决实质题目,进而为后边学习函数以及图像,以及数形联合的思想做铺垫,是高中数学的重要内容。
二、学情剖析学生已经学习了五种基本函数模型,认识他们的图像及性质,对方程也较为认识,在学习本节内容时,接受起来相对简单,可是学生利用数形联合的思想习惯还没有养成,关于不一样知识间的联系还不够深入。
应要点解说。
三、重难点要点:零点的存在定理难点:判断函数零点存在的方法及确立大概区间。
四、教课目的(1)认识函数与方程的关系,基本掌握零点存在定理,会使用定理解决简单的题目。
(2)经过指引研究的教课方法,在一步步求知的过程中渐渐帮助学生领会数形联合的思想,沟通研究,养成互帮相助的学习民风。
(3)经过学习并使用定理解决实质问题,帮助学生体验数学的乐趣,养成踊跃研究,乐于研究的人生观,培育学生迎难而上的勇于考虑的精神。
五、教课方法本节主要采纳指引 ---研究式教课,经过学生已有的知识经验建构新的知识观点,本节采纳多媒体教课,适用直观。
六、教课过程:1,复习引入教师发问:你学过那些函数?学生共同回答:一次函数,二次函数,幂函数,指数函数,对数函数教师发问,你学过那些方程?学生共同回答:一元一次方程,一元二次方程,二元一次方程组。
设计企图:经过对前方学习内容的回首,梳理知识,旨在指引学生思虑个知识间的联系。
2,研究新知方程 x2 x 6 0X=3 或-2y 函数 y x2 x 6-212x3 结论:方程的根就是对应函数图象与x 轴交点的横坐标。
引入零点的观点概括提高:零点的定义:函数图象与 x 轴交点的横坐标?思虑:零点是点吗?学生沟通议论并回答:不是,是横坐标,是实数。
教师发问:你能说出函数与方程之间的关系吗?学生回答:方程的根就是对应函数的零点设计企图:方程的根与对应函数图像的比较,可以让学生很简单得出结论,理解函数的零点的观点,直观体验函数与方程的联系。
函数与方程教学设计

函数与方程教学设计一. 教学目标1. 知识与技能(1)理解函数零点的概念,领会函数零点与方程根的关系,掌握零点存在的判定条件;(2)培养学生的观察能力;(3)培养学生的抽象概括能力。
2. 过程与方法(1)通过观察二次函数图象,并计算函数在区间端点的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法;(2)让学生归纳整理本节所学知识。
3. 情感、态度与价值观在函数与方程的联系中体验教学中的转化思想的意义和价值。
二. 教学重点与难点1. 重点:零点的概念及存在性的判定。
2. 难点:零点的确定。
三. 教具:投影仪。
四. 教学过程(一)创设情境,揭示课题1. 提出问题:一元二次方程20(0)ax bx c a ++=≠的根与二次函数2y ax bx c =++ (0)a ≠的图象有何关系?2. 观察几个具体的二次函数及其相应的二次函数的图象(用投影仪给出)(1)方程2230x x --=与函数223y x x =--; (2)方程2440x x -+=与函数244y x x =-+; (3)方程210x x -+=与函数21y x x =-+ 师:引导学生解方程、画函数的图象,分析方程的根与图象和x 轴交点坐标的关系,引出零点的概念。
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流。
师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流,探究新知1. 函数零点的概念:对于函数()y f x =,把方程()0f x =的根叫做函数()y f x =的零点。
函数()y f x =的零点就是方程()=0f x 的实数根,也是函数()y f x =的图象与x 轴交点的横坐标。
即:方程()=0f x 有实数根⇔函数()y f x =的图象与轴有交点⇔函数()y f x =有零点。
2.函数零点的求法:(1)(代数法)求方程()=0f x 的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数()y f x =的图象联系起来,并利用函数的性质找出零点。
二次函数与一元二次方程--教学设计

二次函数与一元二次方程--教学设计教学设计主题:二次函数与一元二次方程教学目标:1.理解二次函数的定义和性质;2.掌握一元二次方程的求解方法;3.能够将实际问题转化为二次函数或一元二次方程进行求解。
教学重点:1.二次函数的定义和性质;2.一元二次方程的求解。
教学难点:1.实际问题的建模;2.一元二次方程的求解。
教学准备:1.教师准备:教师课件、教学演示;2.学生准备:学生课本、笔记本。
教学过程:一、导入(5分钟)1.教师通过课件展示一张图,引导学生思考二次函数的图像特点;2.教师提问:你们在高中学过哪些与二次函数相关的知识?请举例说明。
二、概念讲解(20分钟)1.教师通过课件讲解二次函数的定义,并给出例题让学生进行分析和讨论;2.教师引导学生总结二次函数的性质,并进行讨论交流。
三、习题练习(15分钟)1.教师布置若干练习题,要求学生互相讨论解题方法和结果。
练习题可以涉及二次函数的图像、顶点坐标、对称轴等内容。
四、实际问题建模(15分钟)1.教师通过课件呈现一些实际问题,并提问学生如何将这些问题转化为二次函数或一元二次方程;2.学生进行小组讨论,寻找问题的解决方法和步骤。
五、一元二次方程的求解(20分钟)1.教师通过课件讲解一元二次方程的定义、一般形式和求解方法,引导学生理解方程解的含义;2.教师给出一些例题,引导学生进行求解过程,并解释每个步骤的含义和思路。
六、总结归纳(10分钟)1.教师带领学生总结二次函数与一元二次方程的相关知识点和求解方法;2.学生进行讨论和补充。
七、拓展与应用(15分钟)1.教师设计一些拓展题目,要求学生运用所学知识解决实际问题;2.学生进行小组讨论和解答,教师给予指导和点评。
八、课堂总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生复习和预习下节课的内容。
教学反思:通过本节课的教学,学生可以对二次函数与一元二次方程的定义、性质和求解方法有更深入的理解。
通过实际问题的建模和解答,学生可以将所学知识应用到实际生活中,提高问题解决能力。
函数的零点与方程的解教学设计
函数的零点与方程的解教学设计教学目标:1. 理解函数的零点与方程的解的概念及联系。
2. 掌握求解函数的零点与方程的解的方法。
3. 能够在实际问题中应用函数的零点与方程的解进行分析和求解。
教学内容:1. 函数的零点与方程的解的定义及联系。
函数的零点即函数取零值的自变量的值,可以通过解方程 f(x) = 0 求得。
方程的解即方程的可行解,在函数图像上对应着函数的零点。
2. 函数的零点与方程的解的求解方法。
(1) 图像法:通过绘制函数的图像,并观察图像与 x 轴的交点确定函数的零点。
(2) 代数法:将函数的表达式表示为方程,然后解方程求得函数的零点。
(3) 数值法:利用数值计算方法,通过迭代逼近的方式求得函数的零点。
3. 函数的零点与方程的解的应用。
(1) 分析函数的性质:函数的零点可以帮助我们分析函数的增减性、极值等特征。
(2) 解决实际问题:通过函数的零点与方程的解,可以解决与实际问题相关的计算和分析。
教学步骤:1. 概念讲解与示例演示:通过简单的例子引入函数的零点与方程的解的概念,解释它们的定义及联系。
同时,通过图像法和代数法求解函数的零点的方法进行示范。
2. 理解与练习:让学生自主思考和解答一些练习题,巩固对函数的零点与方程的解的理解。
可以设置一些简单的函数和方程,让学生通过图像法、代数法和数值法求解。
3. 深入应用:引入实际问题,让学生通过函数的零点与方程的解进行实际问题的分析和求解。
可以选择一些与学生生活经验相关的问题,如运动问题、经济问题等。
指导学生将问题抽象为函数或方程,并进行求解。
4. 总结与拓展:归纳整理函数的零点与方程的解的求解方法,并总结其应用。
拓展相关知识,如高次方程的求解、多元函数的零点等内容。
评估方式:1. 口头回答问题:通过课堂提问的方式,观察学生对函数的零点与方程的解概念的理解程度。
2. 解题能力评估:布置并批改相关练习题,检验学生对函数的零点与方程的解的求解能力。
3. 实际问题拓展:要求学生独立思考、解决实际问题,评估学生将函数的零点与方程的解应用于实际问题的能力。
初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计
在本章节的教学中,我们需要面对的是初三学生,他们在前两年的数学学习中,已经积累了一定的数学基础,掌握了函数、一元一次方程等基本知识。然而,二次函数与一元二次方程作为数学知识的一个难点,对学生而言,理解和运用上可能存在一定困难。
学生在学习过程中可能出现以下情况:对二次函数图像特征的理解不够深入,对一元二次方程求解方法的掌握不够熟练,以及在解决实际问题时不能灵活运用所学知识。因此,在教学过程中,我们要关注以下几点:
(3)鼓励学生进行合作学习,培养学生的团队协作能力和交流表达能力。
3.教学步骤:
(1)导入新课:通过生活中的实际问题,引出二次函数与一元二次方程的概念。
(2)探究新知:引导学生观察二次函数的图像,总结图像特征;教授一元二次方程的求解方法,并分析各种求解方法的适用条件。
(3)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(2)一元二次方程的求解方法有哪些?它们之间的优缺点是什么?
2.小组汇报
各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
(1)求解给定二次函数的顶点、开口方向和对称轴。
(2)利用一元二次方程求解实际问题的最优解。
2.教师巡回指导,解答学生在练习过程中遇到的问题。
3.鼓励学生分组讨论和合作学习,培养学生的团队协作能力和交流表达能力。
4.通过一元二次方程的求解过程,让学生体会数学的转化思想,培养学生解决问题的策略和方法。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生积极主动学习的态度。
2.引导学生体会数学在实际生活中的应用价值,增强学生的数学意识。
1.充分了解学生的知识储备,针对学生的薄弱环节进行有针对性的教学。
高中数学人教A版必修1教案-3.1_函数与方程_教学设计_教案_3
教学准备1. 教学目标一.教学目标情感态度和价值观目标:培养探索问题的能力和合作交流的精神,体会数学在实际生活中的应用价值,感受精确与近似的相对统一。
知识与技能目标:能够借助计算器用二分法求方程的近似解,了解二分法是求方程近似解的常用方法,理解二分法的步骤和思想。
过程与方法目标:进一步体会方程和函数的转化思想,在应用二分法求解方程的近似解的过程中,体会算法的思想和“逐步逼近”的思想。
2. 教学重点/难点二.教学重点掌握用二分法求给定方程的近似解三.教学难点二分法的概念,精确度的概念,二分法实施步骤中的算法思想3. 教学用具4. 标签教学过程(2)下面的这些方程:、、能用我们以前的方法求解吗?2.展示学习目标3.复习回顾上节课的知识要点(1)方程的根与函数零点之间的等价关系的根可以转化为函数零点存在性定理4.两个生活情境问题(1)找假币:有八枚硬币,其中有一枚硬币是假币,假币的质量要比真币的质量小。
可以使用天平作为工具,要想把这枚假币找出来,最少可以称量几次?如何操作?(2)猜价格:播放中央电视台经济频道《购物街》节目中“猜价格”的视频片段。
思考:两个生活情境你有什么启发?5.(1)通过两个生活实例,结合零点存在定理,可以发现:我们可以用“取中点”的方法来逐步缩小零点所在的区间,从而把函数的零点逼近出来。
小组合作探究,利用这个思想方法,借助计算器,逐步缩小函数的零点所在的区间。
(2)计算何时终止?提出“精确度”的概念。
(3)讨论探究:为什么只要区间长度,就可以把区间内的任何一个数作为零点的近似值。
(4)展示探究结果6.给出二分法的定义和二分法的操作步骤,并用口诀的方式帮助学生记忆二分法的操作步骤:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断。
7.分别从二分法的概念,二分法的操作步骤两个方面给出两类题型:8.当堂完成下面的题目9.(1)提问:这节课你有什么收获?(2)课件展示本节课的知识框架,并对本节课的重点内容和难点内容加以强调。
一次函数与二元一次方程课教学设计优秀3篇
一次函数与二元一次方程课教学设计优秀3篇元一次方程教学设计篇一教学目标:1、会用加减消元法解二元一次方程组。
2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。
3、了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。
教学重点:加减消元法的理解与掌握教学难点:加减消元法的灵活运用教学方法:引导探索法,学生讨论交流教学过程:一、情境创设买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?设苹果汁、橙汁单价为x元,y元。
我们可以列出方程3x+2y=235x+2y=33问:如何解这个方程组?二、探索活动活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?2、这些方法与代入消元法有何异同?3、这个方程组有何特点?解法一:3x+2y=23①5x+2y=33②由①式得③把③式代入②式33解这个方程得:y=4把y=4代入③式则所以原方程组的解是x=5y=4解法二:3x+2y=23①5x+2y=33②由①—②式:3x+2y-(5x+2y)=23-333x-5x=-10解这个方程得:x=5把x=5代入①式,3×5+2y=23解这个方程得y=4所以原方程组的解是x=5y=4把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法。
三、例题教学:例1.解方程组x+2y=1①3x-2y=5②解:①+②得,4x=6将代入①,得解这个方程得:所以原方程组的解是巩固练习(一):练一练1。
(1)例2.解方程组5x-2y=4①2x-3y=-5②解:①×3,得15x-6y=12③②×3,得4x-6y=-10④③—④,得:11x=22解这个方程得x=2将x=2代入①,得5×2-2y=4解这个方程得:y=3所以原方程组的解是x=2y=3四、思维拓展:解方程组:五、小结:1、掌握加减消元法解二元一次方程组2、灵活选用代入消元法和加减消元法解二元一次方程组元一次方程教学设计篇二教学目标知识目标:了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:《函数与方程》
--------------蒙城八中高一数学组:李艳
一、教材分析
本节内容选自北师大版高中数学必修一第四章第一节,主要研究函数与方程的关系,教材以二次函数为例,引出零点存在定理,通过立体巩固运用图像法,定理法解决实际题目,从而为后面学习函数以及图像,以及数形结合的思想做铺垫,是高中数学的重要内容。
二、学情分析
学生已经学习了五种基本函数模型,了解他们的图像及性质,对方程也较为了解,在学习本节内容时,接受起来相对容易,但是学生利用数形结合的思想习惯还没有养成,对于不同知识间的联系还不够深入。
应重点讲解。
三、重难点
重点:零点的存在定理
难点:判定函数零点存在的方法及确定大致区间。
四、教学目标
(1)了解函数与方程的关系,基本掌握零点存在定理,会使用定理解决简单的题目。
(2)通过引导探究的教学方法,在一步步求知的过程中逐渐帮助学生体会数形结合的思想,交流探索,养成互帮互助的学习风气。
(3)通过学习并使用定理解决实际问题,帮助学生体验数学的乐趣,养成积极探索,乐于研究的人生观,培养学生迎难而上的勇于思索的精神。
五、教学方法
本节主要采用引导---探究式教学,通过学生已有的知识经验建构新的知识概念,本节采用多媒体教学,实用直观。
六、教学过程:
1,复习引入
教师提问:你学过那些函数?
学生共同回答:一次函数,二次函数,幂函数,指数函数,对数函数
教师提问,你学过那些方程?
学生共同回答:一元一次方程,一元二次方程,二元一次方程组。
设计意图:通过对前面学习内容的回顾,梳理知识,旨在引导学生思考个知识间的联系。
2, 探究新知
结论:方程的根就是对应函数图象与x 轴交点的横坐标。
引入零点的概念
归纳提升:
零点的定义:函数图象与x 轴交点的横坐标?
思考:零点是点吗?
学生交流讨论并回答:不是,是横坐标,是实数。
教师提问:你能说出函数与方程之间的关系吗?
学生回答:方程的根就是对应函数的零点
设计意图:方程的根与对应函数图像的比较,能够让学生很容易得出结论,理解函数的零点的概念,直观体验函数与方程的联系。
3, 定理研究
观察二次函数图像并思考:如何判断函数是否存在零点。
观察零点前后图像及函数值有何特点?
答:零点前后的图像一边在x 轴上方,一边在x 轴下方。
即:函数值异号 得出结论:
归纳提升,零点的存在定理
提问:为何至少有一个零点?
并作图研究
提问:为何函数图像连续?
提问:为何端点函数值异号?若同号还能不能判定?
得出结论:(1)两个条件缺一不可。
(2)定理只能判定有没有零点。
设计意图:通过一个个问题的提出,逐渐引导学生深入探究零点存在定理,突出学生主体教师主导的新型是师生观。
突破难点。
4, 习题演练
(例题1)巩固练习
函数 的零点所在的大致区间是 ( )
6-x 0
62=--x x 方程X=3或-2 9lg y x x
=-
A,(6,7) B(7,8) C(8,9) D(9,10)
学生共同完成,
教师讲解方法步骤。
设计意图:本例主要是对零点存在定理的巩固,帮助学生学以致用,学会使用定理解决实际问题。
加深对定理的理解。
突破难点。
培养学生正确的学习习惯。
(例题2)能力提升
学生思考交流
教师用两种方法解题:图像法,定理法。
并强调,在做题时应两种方法结合使用。
设计意图:有例题1的铺垫,在大部分学生基本掌握定理法的基础上,引入图像法,引导学生使用数形的思想。
感受数形结合的奥妙。
共同思考交流,有助于培养学生团结互助的精神。
(例题3)自主练习
方程lg x + x=0 有没有根,并确定根的大致区间
学生独立完成,请学生到黑板示范。
教师讲解
设计意图:例3主要是对学生学习效果的检测,学生示范,不仅能发现学习的问题,更能开发学生的思维,发现不同的解题方法。
培养学生积极探索,乐于求知的学习习惯。
5, 课堂小结:
师生共同回顾:
(1) 零点的定义
(2) 函数与方程的关系
(3) 判定零点存在的方法:图像法,定理法。
6, 作业布置
教材P119,B 组:1,2
七、教学反思:
本节设计连贯,学生互动良好,课件制作简介大方,形象直观。
有没有零点?
判断函数23x y x -=。