线性规划模型
线性规划模型

汽车厂生产计划模型引申: ★ 若生产某类汽车,则至少生产80辆,求生产计划。
Max s.t . z 2x1 3x2 4x 3 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000 x1 , x2 , x3 0或 80
对于整数线性规划模型大致可分为两类: (1) 变量全限制为整数时,称纯整数规划; (2) 变量部分限制为整数的,称混合整数规划; (3) 变量只能取0或1时,称之为0-1整数规划。
3、整数线性规划的求解
在Lindo软件中最后加上语句:gin n
二、汽车厂生产计划模型
模型求解 整数规划(Integer Programming,简记IP)
二、Lindo软件求解 Lindo软件是解决线性规划求解问题 的对症良药,而Lingo则用来求解非线性 规划问题。
运用此软件注意的事项:
◆(1)“<, >”与“<= , =>”相同。
◆ (2)变量与系数间可以有空格(回车 符),但不能有运算符。 ◆ (3)变量以字母开头,不允许超过8个 字符。 ◆ (4)变量名不区分大小写。 ◆ (5)目标函数所在行为第一行,第二 行为约束符。
• 分析: • 1. 求什么? • 生产多少桌子? • 生产多少椅子? • 2. 优化什么? • 收益最大 • 3. 限制条件? • 原料总量 • 劳力总数
x1 x2
Max f=80 x1+45 x2
0.2 x1 +0.05 x2 ≤4 15 x1 +10 x2 ≤450
模型I :以产值为目标取得最大收益. 设:生产桌子 x1张, 椅子 x2张,(决策变量) • 将目标优化为:max f=80x1+45x2 • 对决策变量的约束: • 0.2x1+0.05x2≤4 • 15x1+10x2 ≤ 450, • x1 ≥ 0, x2 ≥ 0,
线性规划模型

线性规划模型● 知道线性规划模型的一般形式● 知道什么是可行解、可行域、最优解、最优值 ● 会用图解法求解二个变量的线性规划问题● 会利用软件WINQSB 求线性规划问题的最优解、最优值 ● 会建立简单的线性规划问题● 知道什么是缩减成本、影子价格,会利用软件WINQSB 进行灵敏度分析一、基本概念1. 线性规划模型的一般形式可以表示为:目标函数 max (或min )=c l x 1+c 2x 2+ … + c n x n 。
约束条件: ⎪⎪⎩⎪⎪⎨⎧≥=≤+++≥=≤+++≥=≤+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ),(),(),(22112222212111212111或或或 非负条件: x 1≥0, x 2≥0, …, x n ≥0可简写为 max(或min)=∑=n j j j x c 1 约束条件: ∑=n j j ij x a1≤(或=,≥) b i ,i=1,2,…,m非负条件: x j ≥0,j=1,2,…,n目标函数中的系数c i , i=1,2, …,n , 常称为价值系数,它反映某种价值(如利润、收益或效益);约束条件中的右端项bj ,j=1,2, …,m ,右端系数,它反映某种资源的限制(如劳动力、原材料等);约束条件中的a ij 常称为技术系数。
一般,它们都是已知的常数。
2.一个线性规划问题有解,是指能找出一组x j(j=1,2,…,n),使其满足所有的约束条件和非负条件。
称任何一组这样的x j(j=1,2,…,n)是线性规划问题的一个可行解。
通常,线性规划问题含有多个可行解。
称全部可行解的集合为该线性规划问题的可行域。
使目标函数值达到最优的可行解称为该线性规划问题的最优解,最优目标函数值称为该线性规划问题的最优值。
对不存在可行解的线性规划问题,称该线性规划问题无解。
二、两个变量的线性规划问题的图解法图解法的步骤为:第1步:在平面上建立直角坐标系;第2步:图示约束条件和非负条件,找出可行域;第3步:图示目标函数,并寻找最优解。
第二章线性规划模型

m
n
ai bj ,
i 1
j 1
又从产地 Ai到需求点 B j的单位运输成本为 cij , 求相应的运
输方案.
模型建立
设 xij表示从产地 Ai到需求点B j 的运输量, 则合适的运输
方案表现为
n
对产量的要求
xij ai
i 1, 2, ,m;
j 1
m
对需求量的要求 xij bj i 1
第五年 x54 1.0235x44 1.06x31,
投资收益函数为
z 1.06x41 1.215x23 1.165x32 1.0235x54.
由此得到该问题的数学模型
max z 1.06x41 1.215x23 1.165x32 1.0235x54,
s.t.x11 x14 120,
项目C: 于第二年的年初进行投资, 并于第五年的年末完成 成投资, 投资收益为21.5%, 投资额不超过40万; 项目D: 于每年的年初可进行投资, 并于当年末完成, 投资 收益为2.35%.
该公司现有资金120万, 试为该公司制定投资计划.
模型建立
以i 1, 2,3, 4,5代表年份, j 1, 2,3, 4分别表示4个项
0.1x1 0.3x2 0.9x3 1.1x5 0.2x6 0.8x7 1.4x8,
由此得到该问题的数学表达式:
min z 2.92x1 x2 x3 x4 200 2.12x2 x3 3x5 2x6 x7 200 1.5 x1 x3 3x4 2x6 3x7 4x8 200
3 2
x2
C
D
E
A
1
线性规划的数学模型

线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
线性规划模型

j 1
i 1
将目标函数和约束条件放在一起,即得指派问题的数学模型.
第i人花费在第j项工作的时间用cijxij表示,在所有的工作中,第i人干仅干一项工作,
若第i人被分配去干第j0项工作,则当j0≠j时,cijxij=0,所以花费的总时间为T
nn
cij xij
.
i1 j 1
n
n
对于第i人,应有 xij 1 ;对于第j项工作,应有 xij 1 .
cT x
Ax b
A
eq
x beq
l b x u b
Matlab中求解线性规划的命令为:
[x,fval]=linprog(c,A,b,Aeq,beg,lb,ub)
其中,x返回的决策变量x的取值,fvla返回的是目标函数的最优值.
注:若没有某种约束,则相应的系数矩阵赋值为空矩阵,如没有等式约束,则令Aeq=[], beq=[].
(7)模型的分析与评价
在建立线性模型是,总是假定aij,bi,cj都是常数,但实际上这些系数往往是估计值 和预测值,如市场条件一变,aij值就会变化;bi往往因工艺条件的改变而改变;cj是根据 资源投入后的经济效果决定的一种决策选择.因此,这些参数在什么范围内变化时,线 性规划问题的最优解不变.
2.整数规划模型
3. 0-1整数模型
在部分规划问题中,每个需要做的决策只有两种时,可以使用0-1整数规划建模,它的 变量xi仅取值0或1.此类模型可用Lingo和Matlab求解.Matlab中规定0-1整数规划模型中的标准形 式为:
min cT x Ax b
s.t. Aeq x beq
Matlab中求解0-1规划的命令为: [x,fval]=bintprog(c,A,b,Aeq,beq)
线性规划基本模型

在每次迭代中,单纯形法会根据目标函数的 系数和约束条件,通过一系列的数学运算, 将问题转化为更简单的形式,直到找到最优 解或确定无解。
单纯形法具有简单易懂、易于实现 的特点,是解决线性规划问题最常 用的方法之一。
对偶问题
等式约束
等式约束优化是指在优化问题中包含等式约束的线性规划问题。等式约束通常 表示决策变量之间的关系,满足等式约束是找到最优解的必要条件。
求解算法
对于包含等式约束的线性规划问题,可以采用一些特殊的算法进行求解,如消 元法或拉格朗日乘子法。这些算法能够更高效地处理等式约束,并找到最优解。
05
线性规划的扩展模型
线性规划基本模型
• 线性规划概述 • 线性规划的基本概念 • 线性规划的求解方法 • 线性规划的优化方法 • 线性规划的扩展模型 • 线性规划的实际应用案例
01
线性规划概述
定义与特点
定义
线性规划是一种数学优化方法,通过 在一定的约束条件下最大化或最小化 一个线性目标函数,来找到一组变量 的最优解。
现状
目前,线性规划已经发展成为一 个成熟的学科分支,有许多成熟 的算法和软件工具可用于解决各 种实际问题。
02
线性规划的基本概念
线性方程组
线性方程组
01
线性规划问题通常由一组线性方程组成,这些方程描述了决策
变量之间的关系。
线性方程的解
02
线性方程组可能有多个解,但在线性规划中,我们通常只关心
满足特定约束条件的解。
资源利用
线性规划可以确定最佳的资源利用方案,包括原材料、设备、劳动力等,以最小化生产成本或最大化 利润。
优化模型一:线性规划模型数学建模课件
混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。
线性规划模型
第一节 线性规划模型
(一)制定生产计划
例1:某炊具生产企业生产四种产品,生产过程中要经过5 个车间,每个车间所能提供的工时数量、每种产品的工时定额、 各种产品的单位成本、销售价格、市场需求量预测等如下表。 下月生产产品B和D的金属板供应量紧缺,最大供应量为2000 平方米,若产品B每件需要2平方米,产品D每件需要1平方米。 希望实现最大利润,制定下月的生产计划。
X 11 X 21 X 31 5000 X 12 X 22 X 32 7500 X 13 X 23 X 33 7500 X 14 X 24 X 34 2000 (三)物资调运问题
产品 车间
单位产品的工时定额 (时)
ABCD
可用
工时 (时/ 月)
冲压 0.03 0.15 0.05 0.1 400
钻孔 0.06 0.12
0.1 400
装配 0.05 0.10 0.05 0.12 500
喷漆 0.04 0.20 0.03 0.12 450
包装 0.02 0.06 0.02 0.05 400
求总费用最小,运费= 单件运费× 运送量,因此目标函数为
Z min 8X11 6 X12 7 X13 4 X 21 3X 22
5X 23 7 X 31 4X 32 8X 33
即供应量的约束为:
X11 X12 X13 6000
X 21 X 22 X 23 4000
X 31 X 32 X 33 10000
约束条件为满足三种规格钢筋的最低需求,所以线性 规划模型为
Zmin 4X1 12X 2 2X 3 5X 5 10X 6
2 X1 X 2 XHale Waihona Puke 3 30s.t.X
2
3X 4
1.1 线性规划模型
计算机应 用软件
a1n xn (或 ,或 )b1 a2 n xn (或 ,或 )b2 LLL amn xn (或 ,或 )bm
• 线性规划研究的问题: 1、在现有的人、财、物等资源的条件下, 研究如何合理地计划、安排,可使得 如产量、利润等。 某一目标达到最大, 2、在任务确定后,如何计划、安排,使 用最少的人、财、物等资源,去实现 该任务, 如使生产成本、费用最少等。 寻求在一定约束 条件下使某个指标达到最优
§1.1 线性规划的基本概念
即找到目标值与决策变量的数量关系
步骤三:确定约束条件 即决策变量所受到的外界条件的制约。 约束条件一般为决策变量的等式或不等式
要求:目标函数与约束条件均是线性的,
且目标函数只能是一个。
2、线性规划模型的一般形式:
max (或 min )z c1 x1 c2 x2 L cn xn
maximum minimum
¤Ð ¸ ò º Ò ú ¶ ù È ¥Î µ ºÀ øÈ ó ¨Ô £ ¨£ §
z 工厂的总利润 目标函数:z 3x1 2 x2 5 x3
û ¿ úú ²Æ «» Ó¸ ¤Ê ª» ä¨ £« ÖÖ Ó£ § ¿ ÃÌ ì» Ó¸ ¤Ä ÜÁ ¦ ¬² » úÆ « Ò² úÆ « ø ª² úÆ « £« ¨ ÖÖ Ó£ § 1 2 1 430 3 0 2 460 1 4 0 420 3 2 5
现在我们希望每天得到的维生素不少于所规定的最低需要 量,问应该如何搭配各种食品才能使所花的费用最少?
x2 每天采购乙食品的数量 解:x1 每天采购甲食品的数量 ,
线性规划模型
线性规划模型线性规划的英文全称为:Linear Programming ,可简称为LP . 一、线性规划所属学科线性规划是“运筹学”中应用最广泛、理论最成熟的一个分支.0-1⎧⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩线性规划非线性规划静态规划整数规划规划论规划多目标规划动态规划运筹学对策论决策论排队论图论存储论模型论 二、线性规划发展简史早在19世纪法国数学家傅里叶关于线性不等式的研究表明,他对线性规划已有所了解,还提出了单纯形法求解线性逼近中的线性规划20世纪三是年代末,苏联数学家康托洛维奇开始研究生产组织中的线性规划问题,并写出了线性规划应用于工业生产问题的经典著作《生产组织与计划中的数学方法》.1947年美国数学家丹奇格提出了单纯形(Simplex)方法及有关理论,为线性规划奠定了理论基础.五十年代,线性规划成为经济学家分析经济问题的重要工具.随着计算机的迅猛发展,线性规划现被广泛应用于工业、农业、商业等各个领域. 三、用线性规划方法解决实际问题的两大特点1、全局性——从全局出发,将全局目标作为追求目标;2、定量性——通过建立数学模型,对实际问题进行定量分析,而不是只做定性分析. 数学模型指:将实际问题用一系列数学表达式(函数、方程、不等式等)表示出来,称这一系列数学表达式为该实际问题的数学模型. 四、线性规划方法解决的两类问题1、任务一定,如何安排,可使人、财、物最省;2、人、财、物一定,如何安排,可使任务完成量最多. 五、线性规划可解决以下几方面的问题1、运输问题:某产品有若干个产地、若干个销地,如何运输,使总运费最省;2、生产组织问题:⎩⎨⎧产,使成本最低产值一定,如何安排生最高或利润产,使产值资源一定,如何安排生)(3、配料问题:如何搭配各种原料,既符合质量(营养)要求,又使成本最低;4、投资问题:资金一定,投向谁、投多少、期限多长,使若干年后本利和最高;5、库存问题:在仓库容量有限情况下,如何确定库存物资的品种、数量、期限,使库存效益最佳;6、合理播种问题:在土地资源有限的情况下,种什么、种多少,使效益最高;……第一节 线性规划模型的基本概念 一、建立模型的方法1 根据影响所要达到的目的的因素找到决策变量2 由决策变量和所要到的目的之间的函数关系确定的目标函数3 由决策变量所受到的限制条件确定决策变量所要满足的约束条件若模型满足:1 目标函数是线性函数 2 约束条件是线性等式或不等式; 则称为线性规划模型 二、常用模型 例1: 生产计划莫工厂生产I II 两种产品需要A 、B 两种原料,问怎样生产获利最大?1) 决策变量:设12,x x 分别生产I II 的数量 2) 目标函数:获利最大 12max 24x x + 3) 约束条件:1228x x +≤ 设备约束 12416,412x x ≤≤ 原料约束 12,0x x ≥ 基本约束 则我们可以建立模型12121212max 24.28416412,0z x x s tx x x x x x =++≤≤≤≥例2: 配料问题某养鸡场有一万只鸡,用动物饲料和谷物饲料混合喂养,每天每只鸡平均吃混合饲料一斤,其中动物饲料不少于1/5,动物饲料每斤0.25元,谷物饲料每斤0.2元,饲料公司每周至多能供应谷物饲料5万斤,问怎样混合饲料才能使每周成本最低? 解:1)决策变量 设动物饲料1x 斤,谷物饲料2x 斤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•x2=25 0
•x1+x2=300
•x1=0
•x1
•图2-1 •13
优化建模
线性规划图解法(续)
(4线),目直标线函上数的z=每50一x1点+1都00具x2有,相当z同取的某目一标固函定数值值时,得称到之一为条直 “等值线”。平行移动等值线,当移动到B点时,z在可行 域内实现了最大化。A,B,C,D,E是可行域的顶点,对 有限个约束条件则其可行域的顶点也是有限的。
利润元/kg
70
120
• 目前生产现状: • 不生产产品A ,生产产品B每天30 , 获利3600
•2
优化建模
招聘总经理!
• 约翰: 我应聘!
•
• 在现有资源状况下,我可以使利润达到4280 !
• 方案是: 生产A 产品20 , 生产 B 产品 24
• 可行性:9*20+4*24=276<360
•
– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存 在满足约束条件的解,当然也就不存在最优解
第1节 线性规划问题与模优型化 建 模
•
•
一、线性规划模型
•
•
从招聘总经理谈起
•
❖
•1
优化建模
泰山工厂生产状况
• 泰山工厂可以生产两种产品出售,需要三种资源,
已知各产品的利润、各资源的限量和各产品的资源
消耗系数如下表:
设备 劳动力 原材料
产品A 9 4 3
产品B 4 5 10
资源限量 360 200 300
•
生产A 产品20
•
生产 B 产品 24
• 获利:70*20+120*24=4280
优化建模 •7
优化建模
约翰就任泰山工厂总经理!
•8
优化建模
二、线性规划图解法
• 例2. 某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产,已知生产单
位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下
表:
Ⅰ
Ⅱ
4*20+5*24=200
•
3*20+10*24=300
•3
怎么达到的?
优化建模
• 约翰使用了运筹学中的线性规划模型 • 问题:如何安排生产计划,使得获利最多? • 步骤:
1、确定决策变量:设生产A产品x1kg,B产品x2kg
2、确定目标函数:maxZ=70X1+120X2 3、确定约束条件:设备约束 9X1+4X2≤360
资源限制
设备 原料 A 原料 B 单位产品获利
1 2 0 50 元
1 1 1 100 元
300 台时 400 千克 250 千克
• 问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?
•线性规划模型:
• 目标函数:Max z = 50 x1 + 100 x2
• 约束条件:s.t.
x1 + x2 ≤ 300
•5
例1图示
优化建模
•
.
•
x920 •A
80
•9x1+4x2 ≤ 360
60
•4x1+5x2 ≤200
40 •B •C
20
•0
•Z=70x1+120x2
•H •I
• 3x1+10x2
•G
≤300
20 •D 40•E 60
80 •1F00 •x1
•6
• 最优解:
• X1=20 , x2=24
• 对应的生产方案:
•200
•2x1+x2=400
•100
•2x1+x2≤400 •100 •200 •300
•12
优化建模
线性规划图解法(续)
(3)把五个图合并成一个图,取各约束条件的公共部分,如 图2-1所示。
•300
•x2=250
•200
•100
•x2≤250
•100 •200 •300
•x2=0
•x2 •2x1+x2=400
•x2
•X2≥0
•x2
•X1≥0
•X2=0
•X1=0
•x1
•x1
•11
优化建模
线性规划图解法(续)
(2)对每个不等式(约束条件),先取其等式在坐标系中作直 线,然后确定不等式所决定的半平面。
•300
•200
•x1+x2=300
•100
•100 •200 •300
•x1+x2≤300
•400
•300
人力约束4X1+5X2 ≤200 原材料约束3X1+10X2 ≤300 非负性约束X1≥0 X2≥0
•4
优化建模
线性规划图解法
• 由数学知识可知:y=ax+b是一条直线,同 理:Z=70x1+120x2→x2=70/120x1-Z/120也是 一条直线,以Z为参数的一族等值线。 9x1+4x2 ≤360 → x1 ≤360/9-4/9x2 是直线 x1=360/9-4/9x2 下方的半平面。所 有半平面的交集称之为可行域,可行域内 的任意一点,就是满足所有约束条件的解, 称之为可行解。
•15
优化建模
线性规划图解法(续)
例2 某公司由于生产需要,共需要A,B两种原料至少 350 吨(A,B两种材料有一定替代性),其中A原料至少购进125 吨。但由于A,B两种原料的规格不同,各自所需的加工时间 也是不同的,加工每吨A原料需要2个小时,加工每吨B原料 需 要1小时,而公司总共有600个加工小时。又知道每吨A原料 的 价格为2万元,每吨B原料的价格为3万元,试问在满足生产
s.t. x1 + x2 ≤ 300 (A) 2 x1 + x2 ≤ 400 (B)
x2 ≤ 250 (C) x1 ≥ 0 (D) x2 ≥ 0 (E) 得到最优解:
x1 = 50, x2 = 250 最优目标值 z = 27500
•10
优化建模
线性规划图解法(续)
(1)分别取决策变量X1 , X2 为坐标向量建立直角坐标系。 在直角坐标系里,图上任意一点的坐标代表了决策变量的 一组值,例1的每个约束条件都代表一个半平面。
•
2 x1 + x2 ≤ 400
•
x2 ≤ 250
•
x1 , x2 ≥ 0
•9
• 图解法
•
对于只有两个
决策变量的线性规划
问题,可以在平面直 角坐标系上作图表示
线性规划问题的有关 概念,并求解。
•
下面通过例1详
细讲解其方法:
优化建模
例1.目标函数:
Max z = 50 x1 + 100 x2 约束条件:
•x2
•z=10000=50x1+100x2 •z=0=50x1+100x2
•A •B •C
•E
•z=27500=50x1+100x2
•z=20000=50x1+100x2
•D
•x1
•图2-2 •14
优化建模
线性规划图解法(续)
• 重要结论:
– 如果线性规划有最优解,则一定有一个可行域 的顶点对应一个最优解;