高中数学--点差法在中点弦等问题中的应用
关于圆锥曲线"中点弦"问题的思考——点差法的应用

又A、B 两点 在椭 圆上 ,则 4I 9 x+
二 一 4 x +x ) (1 2
一
3 6,4 2+ x 9
4 .3 6, Nhomakorabea(( :22X2_ 12 yy I ・ )) l 2 - - 一 得 -= X
,
去
两式相减得 4 一 ) 9 ) ( + (。一 =0,
点M平分 ,求这条弦所在 的直线方 程。 解 :设直 线与椭 圆的交点 为A ( , 。 。Y ),B ( 2Y ),M X,: ( ,1 2 )为A 的中点 , B
所 以 + 2 x =2, 1 Y =2, + 2
尸 , 、Q , ) RP. 点为M , ,则 = , ) Y , Q 2 的中 )
所 以
9 x
一 一
2 一 + 3=0,而此 方程无 实数 解 ,所 以满足 题设 的直 线不 存在
一
,
而 = y- O
,
二 弦中点的坐标 问题
例2 、求 直线 Y= — 被抛 物 线 Y = x x l 8 截得 线段 的 中点坐 标。
解 :设 直 线 Y=X 一1与 抛 物 线 Y :8 x交 于 A x,1 (1 ), Y
:
将从 以下几点来谈点差法在 中点弦问题中的应用 。
一
(,) 54 。
求中点弦所在直线方程问题
变形 2 、若 抛 物线 C: X 存 在不 同 的两 点关 于 直 线 Y: 上
解 : 设 抛 物 线 c 上 关 于 直 线 , 称 的 两 点 分 别 为 对
: mx 3 Y 对称, 求实数 的取值范围. 例1 过椭圆吾 1 一点M( , ) 、 + 内 1 1 引一条弦, 使弦被 , = (一 知)
解-点差法公式在抛物线中点弦问题中地妙用

“点差法”公式在抛物线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121ΛΛΛΛmx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=Θ.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN=⋅01.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零.例1.抛物线x y 42=的过焦点的弦的中点的轨迹方程是( )A. 12-=x yB. )1(22-=x y C. 212-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =⋅得:21=⋅-y x y, 整理得:)1(22-=x y .∴所求的轨迹方程为)1(22-=x y .故选B.例2.抛物线22x y =上一组斜率为2的平行弦中点的轨迹方程是( )A. 21=x (y >21)B. 21=y (x >21) C. x y 2=(x >1) D. 12+=x y 解:由22x y =得y x 212=,41=∴m ,焦点在y 轴上. 设平行弦的中点M 的坐标为),(y x .由m x k MN=⋅1得:4121=⋅x ,21=∴x . 在22x y =中,当21=x 时,21=y . ∴点M 的轨迹方程为21=x (y >21).故答案选A.例3.(03上海)直线1-=x y 被抛物线x y 42=截得的线段的中点坐标是___________.解:2=m ,焦点)0,1(在x 轴上. 设弦MN 的中点P 的坐标为),(y x ,弦MN 所在的直线l 的斜率为MN k ,则.1=MN k 由m y k MN =⋅0得:20=y ,.120-=∴x 从而30=x . ∴所求的中点坐标是)2,3(.例4.抛物线的顶点在原点,焦点在x 轴上,它和直线1-=x y 相交,所得的弦的中点在522=+y x上,求抛物线的方程.解:设抛物线的方程为)0(22≠=m mx y ,直线与抛物线的两个交点为M 、N ,弦MN 的中点P的坐标为),(00y x .由m y k MN =⋅0得:m y =0,.1100+=+=∴m y x又Θ点),1(m m P +在圆522=+y x 上,.5)1(22=++∴m m解之得:,2-=m 或.1=m 由⎩⎨⎧=-=.2,12mx y x y 得:.01)1(22=++-x m xΘ直线与抛物线有两个不同的交点,4)1(42-+=∆∴m >0. ∴m <2-,或m >0..1=∴m故所求的抛物线方程为.22x y =例5.已知抛物线x y 122=上永远有关于直线m x y l +=4:对称的相异两点,求实数m 的取值范围.解:设抛物线上A 、B 两点关于直线l 对称,且弦AB 的中点为),(00y x P . 根据题意,点P 在直线l 上,l AB ⊥,∴41-=AB k . 又x y 122=,mx y 22=,∴6=m .由m y k AB =⋅0,得:6410=⋅-y ,∴240-=y . 又由m x y +=004,得:4240+-=m x .点),(00y x P 在抛物线的开口内,∴2)24(-<)424(12+-⨯m . 解之得:m <216-.故实数m 的取值范围)216,(--∞.例6. (05全国Ⅲ文22)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线.(Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当3,121-==x x 时,求直线l 的方程. 解:(Ⅰ)y x 212=Θ,∴)81,0(,41F p =. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由p x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F. (Ⅱ)当3,121-==x x 时,.102,12),18,3(),2,1(210210=+=-=+=-y y y x x x B A 由p x k AB=⋅01得:41=k . ∴所求的直线l 的方程为10)1(41++=x y ,即.0414=+-y x 例7.已知直线02=--y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是________. 解:x y 42=,mx y 22=,∴2=m . 直线的斜率为1.由m y k MN =⋅0得:20=y . 代入0200=--y x 求得40=x .∴线段AB 的中点坐标是)2,4(.例8.直线2-=kx y 与抛物线x y 82=交于不同的两点P 、Q ,若PQ 中点的横坐标是2,则||PQ =____.解:x y 82=,mx y 22=,∴4=m .在2-=kx y 中,20=x 时,220-=k y ,∴若PQ 中点的纵坐标是220-=k y . 由m y k AB =⋅0得:4)22(=-k k ,即022=--k k . 解之得:2=k 或1-=k . 由⎩⎨⎧=-=.8,22x y kx y 得:04)2(422=++-x k x k .Θ直线与抛物线交于不同的两点,∴⎪⎩⎪⎨⎧-+=∆≠.016)2(16,0222φk k k解之得:k >1-且0≠k .∴2=k .由⎩⎨⎧=-=.8,222x y x y 得:041642=+-x x . 即0142=+-x x .设),(),,(2211y x Q y x P ,则1,42121==+x x x x .∴[]152)416(54)()1(||212212=-=-++=x x x x k PQ .例9.已知抛物线C 的顶点在原点,焦点在x 轴的正半轴上,直线14:+-=x y l 被抛物线C 所截得的弦AB 的中点M 的纵坐标为2-,则抛物线C 的方程为____________.解:x y 82=,mx y 22=,∴4=m .由m y k AB =⋅0得:4=AB k .∴AB 所在的直线方程为)4(41-=-x y ,即0154=--y x .例10.设1P 2P 为抛物线y x =2的弦,如果这条弦的垂直平分线l 的方程为3+-=x y ,求弦1P 2P 所在的直线方程.解:设抛物线的方程为mx y 22=(m >0).在14+-=x y 中,斜率为4-,2-=y 时,43=x . ∴弦AB 的中点M 的坐标为)2,43(--. 由m y k AB =⋅0得:m =-⨯-)2(4,∴8=m .∴所求的抛物线的方程为x y 162=.例11.过点)1,4(Q 作抛物线x y 82=的弦AB ,若弦AB 恰被Q 平分,则AB 所在的直线方程为_______.解:y x =2,my x 22=,∴21=m . 弦1P 2P 所在直线的斜率为1. 设弦1P 2P 的中点坐标为),(00y x .由m x k P P =⋅0211得:210=x . 弦1P 2P 的中点也在直线3+-=x y 上,∴253210=+-=y .弦1P 2P 的中点坐标为)25,21(. ∴弦1P 2P 所在的直线方程为)21(125-⋅=-x y ,即02=+-y x . 例12.已知抛物线22x y =上有不同的两点A 、B 关于直线m x y l +=:对称,求实数m 的取值范围.解:设弦AB 的中点为),(00y x P . 根据题意,l AB ⊥,∴1-=AB k . 又y x 212=,my x 22=,∴41=m . 由m x k AB=⋅01,得:4110=⋅-x ,∴410-=x . 又由m x y +=00,得:m y +-=410. 点),(00y x P 在抛物线的开口内,∴2)41(-<)41(21m +-⨯.解之得:m >83.故实数m 的取值范围),83(+∞.例13.(05全国Ⅲ理21)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线.(Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上的截距的取值范围. 解:(Ⅰ)y x 212=Θ,∴)81,0(,41F p m ==. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由m x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F.(Ⅱ)当2=k 时,由(Ⅰ)知,810-=x ,直线l 的方程为4120++=y x y , ∴它在y 轴上的截距410+=y b ,410-=b y . 直线AB 的方程为00)(21y x x y +--=,即16521-+-=b x y . 代入22x y =并整理得:085242=+-+b x x .Θ直线AB 与抛物线有两个不同交点,∴)852(161+--=∆b >0,即932-b >0.∴b >329.故l 在y 轴上的截距的取值范围是),329(+∞.例14.(08陕西文理20) 已知抛物线22x y C =:,直线2+=kx y 交C 于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N. (Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0=⋅NB NA ,若存在,求k 的值;若不存在,请说明理由.证明:(Ⅰ)41,212===p m y x ,设点M 的坐标为),(00y x . 当0=k 时,点M 在y 轴上,点N 与原点O 重合,抛物线C 在点N 处的切线为x 轴,与AB 平行. 当0≠k 时,由p x k AB=⋅01得:40kx =. ∴8222k x y N ==. 得点N 的坐标为)8,4(2k k . 设抛物线C 在点N 处的切线方程为)4(82k x m k y -=-,即8)4(2k k x m y +-=. 代入22x y =,得:8)4(222k k x m x +-=,整理得:084222=-+-k km mx x . 0)(2)84(822222=-=+-=--=∆k m k km m k km m ,∴k m =,即抛物线C 在点N 处的切线的斜率等于直线AB 的斜率.故抛物线C 在点N 处的切线与AB 平行.(Ⅱ)解:若0=⋅NB NA ,则NB NA ⊥,即︒=∠90ANB .∴||2||2||2||MN BM AM AB ===.482200+=+=k kx y ,∴816848||2220+=-+=-=k k k y y MN N . 由⎩⎨⎧=+=.2,22x y kx y 得0222=--kx x .设),(),,(2211y x B y x A ,则1,22121-==+x x kx x .∴)16)(1(21)44)(1(]4))[(1(||2222212212++=++=-++=k k k k x x x x k AB .∴8162)16)(1(21222+⨯=++k k k . 即4)16()16)(1(2222+=++k k k . 化简,得:416122+=+k k ,即42=k .∴2±=k .故存在实数2±=k ,使0=⋅NB NA .。
点差法求解中点弦问题

点差法求解中点弦问题点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。
求出直线的斜率,然后利用中点求出直线方程。
用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。
【定理1】在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN-=⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x b y a x )2()1(-,得.02222122221=-+-byy a x x.2212121212ab x x y y x x y y -=++⋅--∴又.22,21211212x y x y x x y y x x y y k MN ==++--=.22a b x y k MN -=⋅∴ 【定理2】在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN=⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---by y a x x .2212121212a b x x y y x x y y =++⋅--∴ 又.22,000021211212x y x y x x y y x x y y k MN==++--= .2200a b x y k MN =⋅∴ 【定理3】 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k M N=⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121 m x y m x y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在.一、椭圆1、过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A 、B 两点,使线段AB 被P 点平分,求此直线的方程.【解】 法一:如图,设所求直线的方程为y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0, (*)又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1、x 2是(*)方程的两个根,∴x 1+x 2=k 2-k4k 2+1. ∵P 为弦AB 的中点,∴2=x 1+x 22=k 2-k 4k 2+1.解得k =-12,∴所求直线的方程为x +2y -4=0.法二:设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2), ∵P 为弦AB 的中点,∴x 1+x 2=4,y 1+y 2=2.又∵A 、B 在椭圆上,∴x 21+4y 21=16,x 22+4y 22=16.两式相减,得(x 21-x 22)+4(y 21-y 22)=0, 即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0.∴y 1-y 2x 1-x 2=-x 1+x 24y 1+y 2=-12, 即k AB =-12.∴所求直线方程为y -1=-12(x -2),即x +2y -4=0.2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程.【解答】解:设P (x ,y ),A (x 1,y 1),B (x 2,y 2). ∵P 为弦AB 的中点,∴x 1+x 2=2x ,y 1+y 2=2y .则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为:x+y=0.(﹣<x <)∴点P 的轨迹方程为:x+y=0(﹣<x <);3、(2013秋•启东市校级月考)中心在原点,焦点坐标为(0,±5)的椭圆被直线3x ﹣y ﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 .【解答】解:设椭圆=1(a >b >0),则a 2﹣b 2=50①又设直线3x ﹣y ﹣2=0与椭圆交点为A (x 1,y 1),B (x 2,y 2),弦AB 中点(x 0,y 0) ∵x 0=,∴代入直线方程得y 0=﹣2=﹣,由,得,∴AB 的斜率k==﹣•=﹣•=3∵=﹣1,∴a 2=3b 2②联解①②,可得a 2=75,b 2=25,∴椭圆的方程为:=1故答案为:=1.4、例1(09年四川)已知椭圆12222=+by a x (a >b >0)的左、右焦点分别为1F 、2F ,离心率22=e ,右准线方程为2=x .(Ⅰ) 求椭圆的标准方程;(Ⅱ) 过点1F 的直线l 与该椭圆相交于M 、N 两点,且3262||22=+N F M F ,求直线l 的方程. 解:(Ⅰ)根据题意,得⎪⎪⎩⎪⎪⎨⎧====.2,222c a x a c e ∴1,1,2===c b a .∴所求的椭圆方程为1222=+y x . (Ⅱ)椭圆的焦点为)0,1(1-F 、)0,1(2F . 设直线l 被椭圆所截的弦MN 的中点为),(y x P .由平行四边形法则知:P F N F M F 2222=+.由3262||22=+N F M F 得:326||2=F .∴.926)1(22=+-y x ① 若直线l 的斜率不存在,则x l ⊥轴,这时点P 与)0,1(1-F 重合,4|2|||1222==+F F F F ,与题设相矛盾,故直线l 的斜率存在.由22ab x y k MN-=⋅得:.211-=⋅+x y x y ∴).(2122x x y +-=② ②代入①,得.926)(21)1(22=+--x x x 整理,得:0174592=--x x . 解之得:317=x ,或32-=x .由②可知,317=x 不合题意. ∴32-=x ,从而31±=y .∴.11±=+=x yk ∴所求的直线l 方程为1+=x y ,或1--=x y .6、(2009秋•工农区校级期末)已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点M ,则点M 的坐标为.【解答】解:设直线与椭圆的交点分别为(x 1,y 1),(x 2,y 2),则,两式相减,得=0,(y 1﹣y 2)(y 1+y 2)=﹣3(x 1﹣x 2)(x 1+x 2),=﹣3×,因为直线斜率为3,∴=3,∵两交点中点在直线x=,x 1+x 2=1,∴3=﹣3×1÷(y 1+y 2),∴=﹣.所以中点M 坐标为(,﹣).故答案为:(,﹣).7、如图,在DEF R t ∆中,25||,2||,90=+=︒=∠DEF ,椭圆C :12222=+by a x ,以E 、F为焦点且过点D ,点O 为坐标原点。
优质课评比正式.点差法在中点弦问题中的应用

| AB | ( x1 x2 ) 2 ( y1 y2 ) 2 1 k 2 | x1 x2 |
1 k 2 (x1 x2 ) 2 1 k 2 ( x1 x2 ) 2 4 x1 x2
x12 4 y12 16 2 2 x2 4 y2 16
点 作差
点差法:利用端点在曲线上,坐标满足方程,作差 构造出中点坐标和斜率.
弦中点、弦斜率问题的两种处理方法
1.联立方程组,消去一个未知数,利用韦达定理解决. 2.点差法:设弦的两端点坐标,代入曲线方程相减后分解 因式,便可与弦所在直线的斜率及弦的中点联系起来.
高二数学[圆锥曲线]
第一次 旁遮大会
本节课的研究方向:
1.推导圆锥曲线截直线弦长公式
2.探寻中点弦问题的一般化方法
课题1:弦长问题
一.问题引入
x2 y 2 1 的左焦点作倾斜角为 600的直线, 经过椭圆 2
直线与椭圆相交于 A, B 两点,求 | AB |.
二.另僻蹊径
三.弦长公式
直线的方程.
y
2 2
B 2 , y2) (x
o
M
A 1, (x x
y1)
例1:已知椭圆
过点P(2,1)引一弦,使弦在
这点被平分,求此弦所在直线的方程. 解法一:
韦达定理→斜率 韦达定理法:利用韦达定理及中点坐标公式来构造
例1:已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程.
.
探索:
y2 已知双曲线方程 2 x 1,问是否存在被点 (1,1) M 2 平分的弦?若存在,求 出弦所在直线方程; 若不存在,说明理由
第3章专题12 点差法解决中点弦问题

点差法解决中点弦问题考向一利用点差法求中点弦所在直线方程1、已知椭圆C:x23+y2=1内有一条以点P(1,13)为中点的弦AB,则直线AB的方程为.【答案】3x+3y−4=0【解析】设A(x1,y1),B(x2,y2),则x1+x22=1,y1+y22=1由A,B在椭圆上可得x123+y12=1,x223+y22=1,两式相减可得,(x1−x2)(x1+x2)3+(y1−y2)(y1+y2)1=0∴K AB=y1−y2x1−x2=−(x1+x2)3(y1+y2)=−23⋅23=−1直线AB的方程为y−13=−1(x−1)即3x+3y−4=0.2、已知双曲线2x2−y2=2,则以点A(2,3)为中点的双曲线的弦所在的直线方程为______.【答案】4x−3y+1=0【解析】设以A(2,3)为中点的弦两端点为P1(x1,y1),P2(x2,y2),则x1+x2=4,y1+y2=6.又2x12−y12=2,①2x22−y22=2,②①﹣②得:2(x1+x2)(x1﹣x2)=(y1+y2)(y1﹣y2),又由对称性知x1≠x2,∴A(2,3)为中点的弦所在直线的斜率k=y1−y2x1−x2=2(x1+x2)y1+y2=2×4 6=43,所以中点弦所在直线方程为y﹣3=43(x﹣2),即4x−3y+1=0.故答案为:4x−3y+ 1=0.3、椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A,B 两点.当P 点恰好为线段AB 的中点时,求l 的方程. 【答案】x +2y −8=0. 【解析】由P 的坐标,可得1636+49<1,可得P 在椭圆内,设A(x 1,y 1),B(x 2,y 2), 则x 1236+y 129=1,①x 2236+y 229=1,②由中点坐标公式可得x 1+x 2=8,y 1+y 2=4,③ 由①−②可得,(x 1−x 2)(x 1+x 2)36+(y 1−y 2)(y 1+y 2)9=0,④将③代入④,可得k AB =y 1−y 2x 1−x 2=−12,则所求直线的方程为y −2=−12(x −4),即为x +2y −8=0.4、已知双曲线x 24-y 2=1,求过点A (3,-1)且被点A 平分的弦MN 所在直线的方程.【答案】3x +4y -5=0.【解析】解法一:由题意知直线的斜率存在,故可设直线方程为y +1=k (x -3),即y =kx -3k -1,由⎩⎪⎨⎪⎧y =kx -3k -1,x 24-y 2=1,消去y ,整理得(1-4k 2)x 2+8k (3k +1)x -36k 2-24k -8=0. 设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=8k 3k +14k 2-1.∵A (3,-1)为MN 的中点,∴x 1+x 22=3,即8k 3k +124k 2-1=3,解得k =-34.当k =-34时,满足Δ>0,符合题意,∴所求直线MN 的方程为y =-34x +54,即3x +4y-5=0.解法二: 设M (x 1,y 1),N (x 2,y 2),∵M ,N 均在双曲线上,∴⎩⎨⎧x 214-y 21=1,x224-y 22=1,两式相减,得x 22-x 214=y 22-y 21,∴y 2-y 1x 2-x 1=x 2+x 14y 2+y 1. ∵点A 平分弦MN ,∴x 1+x 2=6,y 1+y 2=-2.∴k MN =y 2-y 1x 2-x 1=x 2+x 14y 2+y 1=-34.经验证,该直线MN 存在.∴所求直线MN 的方程为y +1=-34(x -3),即3x +4y -5=0.5、已知抛物线y 2=6x ,过点P (4,1)引一条弦P 1P 2使它恰好被点P 平分,求这条弦所在的直线方程及|P 1P 2|.【答案】3x -y -11=022303【解析】设直线上任意一点坐标为(x ,y ),弦两端点P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减,得(y 1+y 2)(y 1-y 2)=6(x 1-x 2). ∵y 1+y 2=2,∴k =y 1-y 2x 1-x 2=6y 1+y 2=3,∴直线的方程为y -1=3(x -4),即3x -y -11=0.由⎩⎪⎨⎪⎧y 2=6x ,y =3x -11得y 2-2y -22=0, ∴y 1+y 2=2,y 1·y 2=-22.∴|P 1P 2|=1+19·22-4×(-22)=22303. 考向二 利用点差法求曲线方程1、已知椭圆()2222:10x y E a b a b +=>>的右焦点为()3,0F ,过点F 的直线交E 于A ,B 两点,若AB 的中点坐标为()1,1M -,则E 的方程为( )A .2214536x y +=B .2213627x y +=C . 2212718x y +=D .221189x y +=答案:D解析:设()()1122,,,A x y B x y,则又2229a b c -==,即有2229b b -=,得229,18b a ==2、平面直角坐标系xoy 中,过椭圆()2222:10x y M a b ab+=>>右焦点的直线0x y +交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12,求M 的方程解析:设()()()112200,,,,,A x y B x y P x y ,所以222a b =因此226,3a b ==3、椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为12,点31,2P ⎛⎫⎪⎝⎭、AB 、在椭圆E 上,且PA PB mOP +=,求椭圆E 的方程及直线AB 的斜率。
运用点差法解答与中点弦有关问题的步骤

与中点弦有关的问题是有关圆锥曲线中的弦以及弦的中点问题.解答此类问题,通常需运用点差法.运用点差法解答与中点弦有关问题的步骤为:1.设出弦的两个端点的坐标:A(x1,y1)、B(x2,y2);2.将两点的坐标代入圆锥曲线方程中,并将两式相减,得出含有x1+x2、y1+y2的式子;3.联立直线与圆锥曲线的方程得到一元二次方程,由根与系数的关系求得x1+x2、y1+y2;4.根据直线的斜率公式k=y1-y2x1-x2以及中点的坐标公式,建立中点和直线的斜率之间的联系;5.建立有关x1+x2、y1+y2的关系式,求得问题的答案.解答简单的中点弦问题,有时可省略第三步.下面举例加以说明.例1.若抛物线C:y2=x上存在不同的两点关于直线l:y=m()x-3对称,求实数m的取值范围.解:当m=0时,满足题意;当m≠0时,设抛物线C上关于直线l:y=m()x-3对称的两点分别为P()x1,y1,Q()x2,y2,中点M()x0,y0,可得y21=x1,y22=x2,将上述两式作差得:k PQ=y1-y2x1-x2=12y,因为k PQ=-1m,可得y0=-m2,又中点M()x0,y0在直线l:y=m()x-3上,所以y0=m()x0-3,解得x0=52,因为中点M在抛物线y2=x的内部,所以y20<x0,即æèöø-m22<52,解得:m∈()-10,10.所以实数m的取值范围为m∈()-10,10.对于与中点弦有关的参数取值范围问题,通常需运用点差法求解.对于本题,先将弦两端点的坐标代入曲线方程中,将两式作差,建立有关x1+x2、y1+y2的关系,然后运用中点坐标公式、直线的斜率公式,根据中点在直线上求得中点的坐标,再根据中点M在抛物线y2=x的内部,建立关于m的不等式.例2.已知AB为椭圆x2a2+y2b2=1()a>b>0中的一条弦,该弦不垂直于x轴,AB的中点为P,O为椭圆的中心,证明:直线AB和直线OP的斜率之积是定值.证明:设A()x1,y1,B()x2,y2,且x1≠x2,可得x21a2+y21b2=1,x22a2+y22b2=1,将两式作差得:y1-y2x1-x2=-b2()x1+x2a2()y1+y2,得k AB=-b2()x1+x2a2()y1+y2,又k OP=y1+y2x1+x2,则k AB=-b2a2∙1k OP,得k AB∙k OP=-b2a2,该值为定值,即直线AB和直线OP的斜率之积是定值.解答本题主要运用了点差法.通过将两式作差,求得直线AB的斜率,并根据中点坐标公式和斜率公式求出直线OP的斜率,从而证明结论.例3.已知双曲线的方程为x2-12y2=1,过点B()1,1能否作直线l,使得l与双曲线分别交于P,Q两点,且PQ的中点为B.如果存在,请求出它的方程;若不存在,请说明理由.解:假设直线l存在,且P()x1,y1,Q()x2,y2,由中点公式可得x1+x2=2,y1+y2=2,由题意可得x21-12y21=1,x22-12y22=1,将两式作差可得2()x1-x2-()y1-y2=0,则直线l的斜率k=y1-y2x1-x2=2,因为P,Q,B三点在直线l上,所以直线l的方程为:y=2x-1,将y=2x-1与x2-12y2=1联立可得:2x2-4x+3=0,该方程没有实数根,因此不存在直线l.解答本题,需先通过作差求得直线PQ的斜率,然后根据P、Q、B三点在直线l上,求得直线l的方程,再根据直线与双曲线有交点,运用一元二次方程的根的判别式判断出是否存在直线l.虽然点差法是解答与中点弦有关问题的重要方法,但在运用时需注意两点:(1)运用根与系数的关系解题时易产生漏解;(2)有些直线的斜率不存在,需单独进行讨论.(作者单位:江苏省响水县第二中学)考点透视39。
高中数学抛物线点差法
点差法————抛物线中点弦问题中的妙用定理 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121ΛΛΛΛmx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=Θ.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN=⋅01.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零.典题妙解例1 抛物线x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 212-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =⋅得:21=⋅-y x y, 整理得:)1(22-=x y .∴所求的轨迹方程为)1(22-=x y .故选B.例2 抛物线22x y =上一组斜率为2的平行弦中点的轨迹方程是( )A. 21=x (y >21) B. 21=y (x >21) C. x y 2=(x >1) D. 12+=x y 解:由22x y =得y x 212=,41=∴m ,焦点在y 轴上. 设平行弦的中点M 的坐标为),(y x .由m x k MN=⋅1得:4121=⋅x ,21=∴x . 在22x y =中,当21=x 时,21=y . ∴点M 的轨迹方程为21=x (y >21).故答案选A.例3 (03上海)直线1-=x y 被抛物线x y 42=截得的线段的中点坐标是___________. 解:2=m ,焦点)0,1(在x 轴上. 设弦MN 的中点P 的坐标为),(y x ,弦MN 所在的直线l 的斜率为MN k ,则.1=MN k 由m y k MN =⋅0得:20=y ,.120-=∴x 从而30=x . ∴所求的中点坐标是)2,3(.例 4 抛物线的顶点在原点,焦点在x 轴上,它和直线1-=x y 相交,所得的弦的中点在522=+y x 上,求抛物线的方程.解:设抛物线的方程为)0(22≠=m mx y ,直线与抛物线的两个交点为M 、N ,弦MN 的中点P 的坐标为),(00y x .由m y k MN =⋅0得:m y =0,.1100+=+=∴m y x又Θ点),1(m m P +在圆522=+y x 上,.5)1(22=++∴m m解之得:,2-=m 或.1=m由⎩⎨⎧=-=.2,12mx y x y 得:.01)1(22=++-x m x Θ直线与抛物线有两个不同的交点,4)1(42-+=∆∴m >0. ∴m <2-,或m >0..1=∴m故所求的抛物线方程为.22x y =例5.已知抛物线x y 122=上永远有关于直线m x y l +=4:对称的相异两点,求实数m 的取值范围. 解:设抛物线上A 、B 两点关于直线l 对称,且弦AB 的中点为),(00y x P . 根据题意,点P 在直线l 上,l AB ⊥,∴41-=AB k . 又x y 122=,mx y 22=,∴6=m .由m y k AB =⋅0,得:6410=⋅-y ,∴240-=y . 又由m x y +=004,得:4240+-=m x .点),(00y x P 在抛物线的开口内,∴2)24(-<)424(12+-⨯m . 解之得:m <216-.故实数m 的取值范围)216,(--∞.例6. (05全国Ⅲ文22)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当3,121-==x x 时,求直线l 的方程. 解:(Ⅰ)y x 212=Θ,∴)81,0(,41F p =. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=.由p x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F. (Ⅱ)当3,121-==x x 时,.102,12),18,3(),2,1(210210=+=-=+=-y y y x x x B A 由p x k AB=⋅01得:41=k . ∴所求的直线l 的方程为10)1(41++=x y ,即.0414=+-y x 金指点睛1. 已知直线02=--y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是________. 2. 直线2-=kx y 与抛物线x y 82=交于不同的两点P 、Q ,若PQ 中点的横坐标是2,则||PQ =____. 3. 已知抛物线C 的顶点在原点,焦点在x 轴的正半轴上,直线14:+-=x y l 被抛物线C 所截得的弦AB 的中点M 的纵坐标为2-,则抛物线C 的方程为____________.4. 设1P 2P 为抛物线y x =2的弦,如果这条弦的垂直平分线l 的方程为3+-=x y ,求弦1P 2P 所在的直线方程.5. 过点)1,4(Q 作抛物线x y 82=的弦AB ,若弦AB 恰被Q 平分,则AB 所在的直线方程为_______.6. 已知抛物线22x y =上有不同的两点A 、B 关于直线m x y l +=:对称,求实数m 的取值范围. 7. (05全国Ⅲ理21)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上的截距的取值范围.8. (08陕西文理20) 已知抛物线22x y C =:,直线2+=kx y 交C 于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N.(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0=⋅,若存在,求k 的值;若不存在,请说明理由.参考答案1. 解:x y 42=,mx y 22=,∴2=m . 直线的斜率为1. 由m y k MN =⋅0得:20=y . 代入0200=--y x 求得40=x .∴线段AB 的中点坐标是)2,4(.2. 解:x y 82=,mx y 22=,∴4=m .在2-=kx y 中,20=x 时,220-=k y ,∴若PQ 中点的纵坐标是220-=k y . 由m y k AB =⋅0得:4)22(=-k k ,即022=--k k . 解之得:2=k 或1-=k .由⎩⎨⎧=-=.8,22x y kx y 得:04)2(422=++-x k x k . Θ直线与抛物线交于不同的两点,∴⎪⎩⎪⎨⎧-+=∆≠.016)2(16,0222φk k k解之得:k >1-且0≠k . ∴2=k .由⎩⎨⎧=-=.8,222x y x y 得:041642=+-x x . 即0142=+-x x . 设),(),,(2211y x Q y x P ,则1,42121==+x x x x .∴[]152)416(54)()1(||212212=-=-++=x x x x k PQ .3. 解:x y 82=,mx y 22=,∴4=m . 由m y k AB =⋅0得:4=AB k .∴AB 所在的直线方程为)4(41-=-x y ,即0154=--y x . 4. 解:设抛物线的方程为mx y 22=(m >0). 在14+-=x y 中,斜率为4-,2-=y 时,43=x . ∴弦AB 的中点M 的坐标为)2,43(--. 由m y k AB =⋅0得:m =-⨯-)2(4,∴8=m .∴所求的抛物线的方程为x y 162=.5. 解:y x =2,my x 22=,∴21=m . 弦1P 2P 所在直线的斜率为 1. 设弦1P 2P 的中点坐标为),(00y x .由m x k P P =⋅0211得:210=x . 弦1P 2P 的中点也在直线3+-=x y 上,∴253210=+-=y .弦1P 2P 的中点坐标为)25,21(.∴弦1P 2P 所在的直线方程为)21(125-⋅=-x y ,即02=+-y x . 6. 解:设弦AB 的中点为),(00y x P . 根据题意,l AB ⊥,∴1-=AB k . 又y x 212=,my x 22=,∴41=m .由m x k AB=⋅01,得:4110=⋅-x ,∴410-=x . 又由m x y +=00,得:m y +-=410. 点),(00y x P 在抛物线的开口内,∴2)41(-<)41(21m +-⨯. 解之得:m >83.故实数m 的取值范围),83(+∞.7. 解:(Ⅰ)y x 212=Θ,∴)81,0(,41F p m ==.设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由m x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F.(Ⅱ)当2=k 时,由(Ⅰ)知,810-=x ,直线l 的方程为4120++=y x y , ∴它在y 轴上的截距410+=y b ,410-=b y . 直线AB 的方程为00)(21y x x y +--=,即16521-+-=b x y . 代入22x y =并整理得:085242=+-+b x x .Θ直线AB 与抛物线有两个不同交点,∴)852(161+--=∆b >0,即932-b >0.∴b >329.故l 在y 轴上的截距的取值范围是),329(+∞.8.(Ⅰ)证明:41,212===p m y x ,设点M 的坐标为),(00y x .当0=k 时,点M 在y 轴上,点N与原点O 重合,抛物线C在点N 处的切线为x 轴,与AB 平行.当0≠k 时,由p x k AB=⋅01得:40k x =. ∴8222k x y N ==. 得点N 的坐标为)8,4(2k k . 设抛物线C 在点N 处的切线方程为)4(82k x m k y -=-,即8)4(2k k x m y +-=. 代入22x y =,得:8)4(222k k x m x +-=,整理得:084222=-+-k km mx x . 0)(2)84(822222=-=+-=--=∆k m k km m k km m ,∴k m =,即抛物线C 在点N 处的切线的斜率等于直线AB 故抛物线C 在点N 处的切线与AB 平行.(Ⅱ)解:若0=⋅,则⊥,即︒=∠90ANB .∴||2||2||2||MN BM AM AB ===.482200+=+=k kx y ,∴816848||2220+=-+=-=k k k y y MN N . 由⎩⎨⎧=+=.2,22x y kx y 得0222=--kx x .设),(),,(2211y x B y x A ,则1,22121-==+x x kx x . ∴)16)(1(21)44)(1(]4))[(1(||2222212212++=++=-++=k k k k x x x x k AB .∴8162)16)(1(21222+⨯=++k k k . 即4)16()16)(1(2222+=++k k k . 化简,得:416122+=+k k ,即42=k .∴2±=k .故存在实数2±=k ,使0=⋅.。
用点差法巧解弦中点问题
用点差法巧解弦中点问题在解决直线被圆锥曲线所截得的弦中点有关问题时,通常有两种思路:一种是应用根与系数的关系.这种解法运算较繁,且不容易消去参数得到所求的方程.另一种就是我要重点介绍的“点差法”,点差法作为一种特殊的数学方法,在解决中点弦问题中能设而不求,用代点作差法,此法运算量小,能给人一种简洁明快,耳目一新的感觉. 例1.已知椭圆221164x y +=.⑴若它的一条弦AB 被M (1,1)平分,求AB 所在的直线方程; ⑵求过点M (1,1)的弦中点的轨迹方程.分析:用点差法设出交点,代入椭圆方程作差出现中点斜率. 解:⑴设点A ()11,x y ,B ()22,x y ,A 、B 在椭圆上,22111164x y ∴+=,①22221164x y +=.② ①-②得222212120164x x y y --+=,()()()()121212120164x x x x y y y y -+-+∴+=,化简得()()()1212121212124164x x y y x x x x y y y y -+-+==--++.∴M 是弦AB 的中点,由中点坐标公式知12122,2x x y y +=+=.又设AB 的斜率为k 21424k -∴==-⨯. ∴直线AB 的方程为450x y +-=.⑵设点A ()11,x y ,B ()22,x y ,又设所求动点为P (),x y ,因为P 是弦AB 的中点,由中点坐标公式得:12122,2x x x y y y +=+=.又 A 、B 在椭圆上,22111164x y ∴+=,①22221164x y +=.②①-②得222212120164x x y y --+=. 设AB 的斜率为k ,()()121212124164x x y y xk x x y y y-+-∴===--+.又M (1,1)在AB 上,∴MP 的斜率为11MP y k x -=-,而MP k k =,即114y x x y -=--.整理得点P 的轨迹方程为22440x y x y +--=.点评:这种方法巧妙,运算量小,在解决弦中点的有关问题时十分有效.例2、已知双曲线2212y x -=,是否存在被点()1,1P 平分的弦?若存在,求出弦所在的直线方程;若不存在,请说明理由.解:假设存在被点P 平分的弦MN ,设()11,M x y ,()22,N x y ,斜率为k ,则221112y x -=,222212y x -=,两式相减,得()()()()12121212102x x x x y y y y +--+-=, 即()()12121212102y y x x y y x x -+-+⋅=-. 因为12122,2x x y y +=+=,所以12202k -⨯⨯=,2k ∴= .直线MN 的方程为()121y x -=-,即21y x =-.将其代入221112y x -=,得22430x x -+=,()2442380∆=--⨯⨯=-<,所以不存在被P 点平分的弦.点评:若点P 在双曲线的内部,则以该点为中心的弦一定存在,无须检验;若点P 在双曲线的外部,则以该点为中心的弦可能存在,也可能不存在,必须检验. 例3、由点()2,0-向抛物线24y x =引弦,求弦的中点的轨迹方程.分析:设端点坐标,利用点差法找到中点坐标及斜率关系,可求弦中点轨迹. 解:设端点为()()1122,,,A x y B x y ,则2211224,4y x y x ==,两式相减得()2212214y y x x -=-.①①式两边同时除以21x x -,得()2121214y y y y x x -+=-.②设弦的中点坐标为(),x y ,则212x x x +=,122y y y +=.③ 又点(),x y 和点()2,0-在直线AB 上,所以有21212y y yx x x -=+-④将③④代入②得242yy x ⋅=+整理得()222y x =+. 故所求中点的轨迹方程是()222y x =+在抛物线24y x =的内部的部分.小结:以上三例说明,凡是涉及到圆锥曲线中点弦问题,都可采用点差法来解题,并且简捷优美.。
第7节 用点差法解中点弦问题
第7节 用点差法解圆锥曲线的中点弦问题点差法公式在椭圆中点弦问题中的妙用定理 在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=-+-b y y a x x .2212121212ab x x y y x x y y -=++⋅--∴ 又.22,21211212x y x y x x y y x x y y k MN==++--= .22ab x y k MN -=⋅∴ 同理可证,在椭圆12222=+ay b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200b a x y k MN -=⋅.例1:过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为),(11y x A 、),(22y x B)1,2(M 为AB 的中点 ∴421=+x x 221=+y y又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x∴21244)(421212121-=⨯-=++-=--y y x x x x y y即21-=AB k ,故所求直线的方程为)2(211--=-x y ,即042=-+y x 。
人教版数学-备课资料运用“点差法的方法解决弦的中点问题
运用“点差法”的方法解决弦的中点问题所谓“点差法”,就是将直线与曲线的两个交点代入曲线方程f (x ,y )=0得:f (x 1,y 1)=0,f (x 2,y 2)=0将两式作差即可得出中点坐标和斜率之间的关系,下面举例说明。
例1 已知:双曲线x 2-22y =1,过点B (1,1)能否作出直线m ,使m 与已知双曲线交于Q 1、Q 2两点,且点B 是线段Q 1Q 2的中点,这样的直线m 如果存在,求出它的方程;如果不存在,说明理由。
解:设Q 1(x 1,y 1),Q 2(x 2,y 2),代入双曲线方程得⎪⎪⎩⎪⎪⎨⎧=-=-121222222121y x y x 两式作差得(x 1+x 2)(x 1-x 2)=21(y 1+y 2)(y 1-y 2) ∴2121x x y y --=2121)(2y y x x ++ ∵x 1+x 2=2,y 1+y 2=2∴kQ 1Q 2=2121x x y y -=2 (※) 联立⎪⎩⎪⎨⎧=--=-12)1(2122y x x y 得方程2x 2-4x+3=0由判别式△=16-4×2×3<0,知此直线与双曲线无交点,故m 不存在点评:到(※),直线m 过点B (1,1),其斜率为k Q1Q2=2,① ②有的同学会下结论:存在直线m :y-1=2(x-1),实质上不存在,从图中大致可以看出,但必须给出严密推理。
例2 过点P (-1,1),作直线与椭圆42x +22y =1交于A 、B 两点,若线段AB 的中点恰为P 点,求AB 所在直线的方程和线段AB 的长度。
解:设A (x 1,y 1),B (x 2,y 2),则⎪⎩⎪⎨⎧=+=+424222222121y x y x ①-②得x 12-x 22+2(y 12-y 22)=0显然x 1=x 2,不合题意,∴x 1≠x 2 ∴))(())((21212121x x x x y y y y -+-+=-21 ③ 由已知x 1+x 2=-2,y 1+y 2=2,2121x x y y --=k AB ,代入③式,得 k AB =21∴所求的直线方程为y-1=21(x+1)即x-2y+3=0联立直线x-2y+3=0和椭圆方程2422y x +=1得3x 2+6x+1=0 x 1=x 2=-2,x 1·x 2=31∴|AB|=21k +|x 1-x 2|=411+·212214)(x x x x -+45·3144⨯-=33032425=⨯ ① ②点评:涉及弦的中点问题,可以利用判别式和韦达定理的方法加以解决,也可以利用“点差法”的方法解决此类问题,若知道中点,则利用“点差法”的方法可得出过中点弦的直线的斜率,比较两种方法,用“点差法”的方法的计算量较少,此法在解决有关存在性的问题时,要结合图形和判别式△加以检验。