双简支梁固有频率及振型测量

合集下载

实验八 九 简支梁和悬臂梁的振型测量

实验八 九  简支梁和悬臂梁的振型测量

实验八线性扫频法简支梁振型测试
一、实验目的
学习线性扫频法观察简支梁的振型;
二、实验仪器安装示意图
图8-1 实验装置框图
三、实验原理
根据梁的振动的振型叠加原理。

当激振频率是某一阶固有频率时候,梁的振动表现为此阶频率下的振型。

从而可以观察振型的节点,近似的知道振型曲线。

四、实验步骤
有一根梁如图所示,采用线性扫频方法做其z 方向的振动模态,可按以下步骤进行。

(1)连接仪器
固定好JZ‐1型接触式激振器,并与DH1301连接好。

(2)调整信号源频率,直到出现某阶振型
五、实验结果和分析
1、记录模态参数
模态参数 第一阶 第二阶 第三阶 第四阶 第五阶 频率
2、根据节点初步画出各阶模态振型图
3、与理论结果进行比较
实验九悬臂梁振型观察
一、实验目的
1、观察悬臂梁振型
二、实验仪器安装示意图
图9‐1 实验装置框图
三、实验原理
同 简支梁
四、实验步骤
有一根悬臂梁如图所示,采用线性扫频方法做其z 方向的振动模态,可按以下步骤进行。

(1)连接仪器
固定好非接触式激振器,并与DH1301连接好。

(2)调整信号源频率,直到出现某阶振型
五、实验结果和分析
1、记录模态参数
模态参数 第一阶 第二阶 第三阶 第四阶
频率
2、根据节点画出各阶模态振型图并与理论结果比较。

机械振动大作业——简支梁的各情况分析

机械振动大作业——简支梁的各情况分析

机械振动大作业姓名:徐强学号:SX1302106专业:航空宇航推进理论与工程能源与动力学院2013年12月简支梁的振动特性分析题目:针对简支梁、分别用单、双、三、十个自由度以及连续体模型,计算其固有频率、固有振型。

单、双、三自由度模型要求理论解;十自由度模型要求使用李兹法、霍尔茨法、矩阵迭代法、雅可比法、子空间迭代法求解基频;连续体要求推导理论解,并通过有限元软件进行数值计算。

解答:一、 单自由度简支梁的振动特性如图1,正方形截面(取5mm ×5mm )的简支梁,跨长为l =1m ,质量m 沿杆长均匀分布,将其简化为单自由度模型,忽略阻尼,则运动微分方程为0=+••kx x m ,固有频率ωn =eqeq m k ,其中k 为等效刚度,eq m 为等效质量。

因此,求出上述两项即可知单自由度简支梁的固有频率。

根据材料力学的结果,由于横向载荷F 作用在简支梁中间位置而引起的变形为)(224348EI F -)(x l x x y -=(20l x ≤≤), 48EI F -3max l y =为最大挠度,则: eq k =δF=348EIl梁本身的最大动能为:)(224348EI F -)(x l xx y -==)(223max43x l l x y -T max =2×dx x y l m l 220)(21⎭⎬⎫⎩⎨⎧•⎰=2max 351721•y m )(如果用eq m 表示简支梁的质量等效到中间位置时的大小,它的最大动能可表示为:T max =2max21•y m eq所以质量为m 的简支梁,等效到中间位置的全部质量为: m m eq 3517=故单自由度简支梁横向振动的固有频率为:ωn =eqeq m k =3171680mlEImk图1 简支梁的单自由度模型二、 双自由度简支梁的振动特性如图2,将简支梁简化为双自由度模型,仍假设在简支梁中间位置作用载荷,根据对称性,等效质量相等,因此只要求出在3/l 处的等效质量即可。

简支梁固有频率及振型函数

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导一.等截面细直梁的横向振动取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。

梁在横向振动时,其挠曲线随时间而变化,可表示为y=y(x,t) (1)除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。

故可以采用材料力学中的梁弯曲的简化理论。

根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为:22yEI M x ∂=∂(2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。

挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。

关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。

至于分布载荷集度q 的正向则规定与y 轴相同。

在这些规定下,有:M QQ q x x ∂∂==∂∂, (3)于是,对方程(2)求偏导,可得:222222(EI )(EI )y M y Q Q q xx x x x x ∂∂∂∂∂∂====∂∂∂∂∂∂,(4)考虑到等截面细直梁的EI 是常量,就有:3434y yEI Q EI q x x ∂∂==∂∂,(5)方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。

应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为22y q t ρ∂=-∂(6)其中ρ代表梁单位长度的质量。

假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。

将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程:4242y yEI x t ρ∂∂=--∂∂ (7)其中2/a EI ρ=。

为求解上述偏微分方程(7),采用分离变量法。

假设方程的解为:y(x,t)=X(x)Y(t)(8)将式(8)代入(7),得:224241Y a d XY t X dx ∂=-∂ (9) 上式左端仅依赖于t,而右端仅依赖于x ,因此要使对于任何x,t 上式均成立,必须二者均等于一个常数。

梁的振动实验报告

梁的振动实验报告

《机械振动学》实验报告实验名称梁的振动实验专业航空宇航推进理论与工程姓名刘超学号 SJ1602006南京航空航天大学Nanjing University of Aeronautics and Astronautics2017年01月06日1实验目的改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。

对比理论计算结果与实际测量结果。

正确理解边界条件对振动特性的影响。

2实验内容对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。

3实验原理3.1 固有频率的测定悬臂梁作为连续体的固有振动,其固有频率为:()1,2,.......r r l r ωλ==其中, 其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、、、 简支梁的固有频率为:()1,2,.......r r l r ωλ==其中 其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、、、其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。

试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3)横截面积:A =4.33*10-4 (m 2),截面惯性矩:J =312bh =2.82*10-9(m 4)则梁的各阶固有频率即可计算出。

3.2、实验简图图1 悬臂梁实验简图图2简支梁实验简图实验仪器本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。

图3和图4分别为悬臂梁和简支梁的实验装置图。

图5为YE6251数据采集仪。

图3 悬臂梁实验装置图图4 简支梁实验简图图5 YE6251数据采集分析系统实验步骤1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。

固有频率测量实验报告

固有频率测量实验报告

固有频率测量实验报告固有频率测量实验报告引言固有频率是物体在没有外力作用下自由振动的频率。

在工程和科学领域中,准确测量固有频率对于设计和分析结构的动态响应至关重要。

本实验旨在通过使用简单的装置和方法来测量固有频率,并探讨其在不同条件下的变化。

实验装置本实验使用了一个简单的弹簧振子装置。

装置由一个固定在支架上的弹簧和一个连接在弹簧末端的质量块组成。

质量块可以通过调整位置来改变弹簧振子的质量。

实验中使用了一个光电传感器和计算机软件来测量振子的运动。

实验步骤1. 将弹簧振子装置固定在实验台上,并调整质量块的位置,使其与弹簧保持水平。

2. 将光电传感器安装在弹簧振子的一侧,并将其连接到计算机。

3. 打开计算机上的测量软件,并进行校准。

4. 将振子拉至一侧,并释放,观察振子的自由振动。

5. 记录振子的振动时间和光电传感器的读数。

6. 重复步骤4和5,进行多次测量。

实验结果通过多次测量,我们得到了振子在不同质量条件下的固有频率。

结果显示,随着质量块的增加,振子的固有频率减小。

这是因为质量块的增加增加了振子的惯性,使其振动变得缓慢。

我们还发现,振子的固有频率受到环境条件的影响。

在不同温度和湿度下,振子的固有频率会发生变化。

这是因为温度和湿度的变化会导致弹簧的刚度和振子的质量发生变化,从而影响固有频率的测量结果。

讨论与分析本实验结果表明,固有频率是一个重要的物理参数,可以用于分析和设计结构的动态响应。

通过测量固有频率,我们可以了解结构的振动特性,并采取相应的措施来避免共振和破坏。

然而,本实验使用的装置和方法存在一些限制。

首先,弹簧振子的简化模型并不能完全代表复杂的实际结构。

其次,由于环境条件的变化,测量结果可能存在一定的误差。

因此,在实际应用中,需要综合考虑其他因素,并采用更精确的测量方法。

结论本实验通过简单的装置和方法成功测量了弹簧振子的固有频率,并探讨了其在不同条件下的变化。

结果表明,质量和环境条件对固有频率有重要影响。

实验五简支梁固有频率测试实验1

实验五简支梁固有频率测试实验1

实验五 简支梁固有频率测试实验一、 实验目的:1、 掌握固有频率测试的工程意义及测试方法。

2、 掌握用共振法、李萨育图形法测量振动系统的固有频率的方法及步骤。

3、 加深了解常用简单振动测试仪器的使用方法。

二、实验设备和工具1.机械振动综合实验装置(安装简支梁) 1套2.激振器及功率放大器 1套3.加速度传感器 1台4.电荷放大器 1台5.数据采集仪 1台6.信号分析软件 1套三、实验内容1.用共振法测量简支梁固有频率共振法测量振动系统的固有频率是比较常用的方法之一。

共振是指当激振频率达到某一特定值时,振动量的振动幅值达到极大值的现象。

由弹性体振动理论可知,计算简支梁固有频率理论解为:APEJ L f 20115.49 式中,L 为简支梁长度(cm );E 为材料弹性系数(kg/cm 2);A 为梁横截面积(cm 2);P 为材料比重(kg/cm 3);J 为梁截面弯曲惯性矩(cm 4)。

用共振法测量简支梁固有频率的仪器连接如图1所示图1测量双简支梁固有频率框图2.用李萨育图形法测量简支梁固有频率李萨育图形是由运动方向相互垂直的两个简谐振动的合成运动轨迹。

李萨育图形可以通过示波器或数据采集软件的X-Y轨迹图观察到。

在图的X、Y 轴上同时输入简谐振动两个信号,这两个信号不同的相位差合成不同的李萨育图形如图2所示。

振动的位移、速度及加速度的幅值其各自达到极大值时频率是不同的,只有在无阻尼的情况下,它们频率才相等,并且等于振动系统的固有频率。

但在弱阻尼的情况下,三种共振频率接近系统的固有频率。

只有速度共振频率真正和固有频率相等,所以用速度共振的相位差判别共振。

判别依据是系统发生速度共振时,激振力和速度响应之间的相位差为90°,依据位移、速度、加速度响应判断速度共振的李萨育图形如图3~5所示。

θ=00 θ=450 θ=900 θ=1350 θ=1800图2 不同相位差信号合成的李萨育图形n ωω< n ωω= n ωω>图3用位移响应判断速度共振n ωω< n ωω= n ωω>图4用速度响应判断速度共振n ωω< n ωω= n ωω>图5用加速度响应判断速度共振四、实验原理固有频率是振动系统的一项重要参数。

固支梁各阶固有频率及振型测量

固支梁各阶固有频率及振型测量

固支梁各阶固有频率及振型测量
一、实验目的:
1. 熟悉梁的固有频率测量原理及振型形状;
2. 用共振法确定固支梁的各阶固有频率和振型。

二、实验仪器设备及安装示意图:
1. 计算机
2. YE6230T3动态数据采集系统
3. 功率函数发生器
4. 机械振动实验台
5. 加速度传感器激光位移传感器电涡流传感器自选
6. 激振器
三、实验过程:
四、实验结果及分析:
1、前三阶固有频率测量结果
2、各测点实测振幅(单位:)1,175;
3、各测点振幅换算值
4、绘出固支梁前三阶振型图一阶振型图
二阶振型图三阶振型图
多自由度系统各阶固有频率及主振型的测量一、实验目的
二、实验设备及安装示意图
三、实验结果与分析
1、不同张力下各阶固有频率的理论计算值与实测值
2、绘出观察到的三自由度系统振型曲线。

3、将理论计算出的各阶固有频率、理论振型与实测固有频率、实测振型相比较,是否一致? 产生误差的原因在哪里?。

简支梁固有频率与固有振型的实验室测量与理论分析

简支梁固有频率与固有振型的实验室测量与理论分析
Ex e i e a si e ho s a d p rm nt lTe tng M t d n The e c lAna y i f S mpl a or t a i l sso i e Be m wih Na u a e ue y a n r n b a o t t r Fr q nc nd I he e t Vi r t n l i
Ab ta t i l b a wh c i h r s —e t n a d c n iu u tu t r s u u l s d a n a ay i to f h i rt n p e s r c :S mp e e m ih w t t e c o s s ci n o t o ssr cu e,i s al u e sa n l ss o l e vb ai h - h o n y ot o n me o .D n mi a a y i o i l e m t h p l a in o e r t a n lssa d e p r n a si g meh d ,c n g t au o nn y a c n l ss fsmp eb a wi te a p i t f h o e i l ay i n x e me t l e t t o s a e t — h c o t c a i t n n rl r q e c v b ain a l u ea d c t a d mp n fte c n iu u t cu e o a ay et en t rl r q e c v b ain,a l a e u n y, i r t mpi d n r i l a i g o o t o ss u tr .T n z h au a e u n y, i rt f o t i c h n r l f o mpi — t d n rt a a i gc n a od s mp t ei ir t n whc e d e f r e t a g ot e f me o k tc n a s e c ei — u e a d c i ld mp n a v i y ah t vb ai , ih l a st t ut s ma e t a w r .I a lor a h t i c c o oh h d h r h n t nin t v i i rt n tr wi h a u a e u n y a d ih r n ir t n o e smp e b a wi r s -e t n,w i h ofr d a e t o a od v b ai .Sa t t te n t r f q e c n n ee t b ai ft i l e m t co ss ci o o h l r v o h h o h c f e e u eu t o o s r o rr s a c i r t n o o l ae r me o k s flme h d t tt u e e r h o v b ai f mp i td f a f o c c a w r. Ke r s:smpe b a w t r s —e t n i r t n au a  ̄e u n y;i h r n i r t n mo e;d mp n a i y wo d i l e m i co s s ci ;v b ai ;n t r l q e c h o o n e e t b ai d v o a ig rt o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《振动测试实验》实验报告∗
南京航空航天大学
机械结构力学及控制国家重点实验室
二○一一年
∗注:实验报告完成后请以附件形式发送至:wt78@
邮件主题请写明:《振动测试实验报告》,姓名,学号,分班号(三班或四班)
一、实验目的
•测量双简支梁的固有频率和振型。

•理解多自由度系统振型的物理概念。

•掌握多自由度系统固有频率和振型的简单测量方法。

二、实验原理图
简支梁固有频率和振型测试原理图
三、实验过程
1、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”。

打开各设备电源。

2、进入“双简支梁固有频率与振型测量”实验操作界面,使信号发生器的输出频率约为 30Hz,输出电压约为 1V 。

调节功率放的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(观察并用手触摸)。

3、将信号发生器输出频率由低向高逐步调节,同时观察李萨育图形。

当李萨育图为稳定的正椭圆时,信号发生器的频率读数即为第一阶固有频率。

继续将
信号发生器的频率向高逐步调节,测出第二阶、第三阶固有频率。

4、再将信号发生器调到第一阶固有频率值,保持功率放大器的输出功率恒定(即:不再改变信号发生器的输出电压和功率放大器的输出功率),保持“参考”传感器的位置不变。

将“测量”传感器从双简支梁的右端等距跑点,依次记下“测量”传感器在各个位置时的测量点与参考点传感器输出电压之比(即“测量点/参考点”的显示值)及其正负号。

将其归一化即可得到第一阶振型,填“振型数据”表格。

点击“振型图”或“振型动画”检验振型数据。

四、实验数据与分析
1、列出固有频率。

双简支梁的3个阶段的固有频率分别为:
一阶: 36.7Hz
二阶: 136.5Hz
三阶: 326.6Hz
一阶振型图
二阶振型图
3、测量双简单支梁振型时,改变“测量”传感器位置后,李萨育图形出现非正
椭圆,解释原因,如何避免?
答:测量双简单支梁振型时,改变“测量”传感器位置后,由于传感器有一定的质量,改变传感器位置也就改变了系统的质量分布,必然引起其固有频率的变化,在李萨育图形上表现出呈非正椭圆。

选择质量较小的传感器,有利于减少其误差。

传感器质量小则对系统的影响较小。

相关文档
最新文档