同轴度检测方法

合集下载

孔同轴度的测量方法

孔同轴度的测量方法

孔同轴度的测量方法
孔同轴度是指同轴孔的中心轴线与孔壁之间的距离,也可以理解为孔的偏心程度。

测量孔同轴度的方法有多种,下面将介绍几种常见的方法。

一、比较法
比较法是一种简单直观的测量方法。

首先准备一个已知同轴度的参照物,将其放置在待测孔旁边。

然后使用一个测量工具(如游标卡尺、测微仪等),分别测量参照物和待测孔的孔径。

通过比较两者的测量结果,可以得出待测孔的同轴度。

二、光学法
光学法利用光的干涉原理来测量孔同轴度。

首先需要一个光源和一个光学设备(如显微镜、干涉仪等),将光源照射到待测孔上。

通过观察光的干涉现象,可以得出孔的同轴度。

这种方法适用于较小孔径和高精度要求的测量。

三、机械法
机械法是一种利用机械装置来测量孔同轴度的方法。

常见的机械测量装置有孔径测量器、同轴度测量仪等。

这些装置通过机械运动和测量系统的配合,可以准确地测量孔的同轴度。

机械法适用于各种孔径和精度要求的测量。

四、电子法
电子法是利用电子技术来测量孔同轴度的方法。

常见的电子测量装置有示波器、激光干涉仪等。

这些装置通过电子信号的检测和处理,可以得出孔的同轴度。

电子法适用于大孔径和高精度要求的测量。

孔同轴度的测量方法有比较法、光学法、机械法和电子法等多种。

不同的方法适用于不同的测量需求,选择合适的方法可以提高测量的准确性和效率。

在实际应用中,可以根据具体情况选择合适的方法来进行孔同轴度的测量。

同时,还需要注意测量时的环境条件和仪器的使用方法,以确保测量结果的准确性。

同轴度的三种测量方法

同轴度的三种测量方法

同轴度的三种测量方法
同轴度是机械产品检测中常见的一种形位公差项目。

是表示零件的轴与轴、孔与孔、轴与孔之间要求同轴,也可以理解为:控制实际轴线与基准轴线的偏离程度。

在测量中,同轴度是测量工件经常会遇到的事,在测量时,通常使用的测量设备主要是三坐标测量仪,三坐标是公认的测量空间形状误差较好的精密检测设备。

三坐标测量仪测量同轴度的测量方式有公共轴线法、直线度法、求距法,其中公共轴线法是最广泛使用的办法。

1.公共轴线法
在被测元素和基准元素上测量多个横截面的圆,再将这些圆的圆心构造一条3D直线,作为公共轴线,每个圆的直径可以不一致,然后分别计算基准圆柱和被测圆柱对公共轴线的同轴度,取其最大值作为该零件的同轴度。

这条公共轴线近似于一个模拟心轴,所以使用公共轴线法的测量效果是最接近零件的实际装配过程。

2.直线度法
在被测元素和基准元素上测量多个横截面的圆,然后选择这几个元构造一条3D直线,同轴度近似为直线度的两倍。

被收集的圆在测量时最好测量其整圆,如果实在一个扇形上测量,则测量软件计算出的偏差可能很大。

3.求距法
同轴度为被测元素和基准元素轴线间最大距离的两倍。

即用关系
计算出被测元素和基准元素的最大距离后,将其乘以2即可。

求距法在计算最大距离时要将其投影到一个平面上来计算,因此这个平面与用作基准的轴的垂直度要好。

这种情况比较适合测量同心度。

三坐标测量机检测同轴度的方法研究

三坐标测量机检测同轴度的方法研究

三坐标测量机检测同轴度的方法研究三坐标测量机是一种用于测量工件三维形状和位置的高精度测量设备,广泛应用于机械制造、汽车、航空航天等行业。

在工件加工和装配过程中,同轴度是一个重要的技术指标,它反映了工件内部各部分之间轴线的平行度和同心度。

研究三坐标测量机检测同轴度的方法对于提高工件加工质量和精度具有重要意义。

一、同轴度的概念同轴度是工件内部各部分之间轴线的平行度和同心度。

在零件的设计和加工中,要求零件的各孔和轴线之间的相互位置精确,这就要求零件的各孔和轴线之间的同轴度要求。

二、三坐标测量机检测同轴度的方法1. 传统测量方法传统测量同轴度的方法通常是采用刻度尺、游标卡尺等手动测量工具进行测量,这种方法存在以下问题:一是测量精度低,无法满足高精度要求;二是测量效率低,浪费时间和人力成本;三是人为因素大,容易出现误差;四是无法实现自动化、数字化管理。

2. 三坐标测量机测量同轴度的方法三坐标测量机是一种高精度、高效率的测量设备,因此可以有效地应用于同轴度的测量。

其具体方法如下:(1)建立工件的三维数学模型,导入三坐标测量机软件,并确定测量的基准点和测量路径。

(2)通过三坐标测量机的探头测量工件上各个关键点的坐标,获取工件的实际几何特征数据。

(3)利用三坐标测量机软件的同轴度测量功能,分析工件上各孔的轴线的平行度和同心度,并生成测量报告。

(4)根据测量报告对工件进行修正或调整,以满足同轴度的技术要求。

三、三坐标测量机检测同轴度的技术难点在三坐标测量机检测同轴度的过程中,存在一些技术难点需要克服:1. 基准点确定:工件上的基准点对同轴度的测量影响很大,因此需要准确、稳定的基准点来进行测量。

2. 测量路径规划:工件的复杂形状和内部结构要求测量路径的合理规划,以确保测量点覆盖全面、均匀。

3. 测量精度保证:同轴度的测量需要高精度的测量仪器和精准的测量方法,要求三坐标测量机具备高精度和稳定性。

4. 数据分析和处理:同轴度的数据分析和处理是一个复杂的工程,需要利用专业的软件工具进行分析和处理。

同轴度的检测方法

同轴度的检测方法

同轴度的检测方法引言同轴度是指物体中心轴与其他几何元素的对齐程度。

在许多工程和制造领域中,同轴度的检测是一项重要的任务,它可以确保产品的精度和性能。

传统检测方法传统上,同轴度的检测方法主要基于使用测量工具和仪器来测量物体的几何特征。

以下是常见的传统检测方法:1.物体旋转法物体旋转法是一种简单且常用的方法,它使用一个旋转平台和测量工具来确定物体中心轴与其他元素的对齐程度。

通过旋转物体并记录测量结果,可以得出物体的同轴度。

2.投射法投射法是一种使用光线或激光来测量物体特征的方法。

通过投射光线或激光并记录反射或散射的结果,可以确定物体的同轴度。

现代检测方法随着技术的进步,现代的同轴度检测方法更加精确和高效。

以下是一些现代检测方法的示例:1.光学测量法光学测量法是利用光学传感器和相机来捕捉物体的图像,并使用图像处理技术来分析和测量物体的几何特征。

通过对物体图像进行处理和比较,可以得出物体的同轴度。

2.三维扫描法三维扫描法使用激光扫描仪或光学扫描仪来捕捉物体的表面几何信息。

通过对扫描数据进行分析和比较,可以确定物体的同轴度。

3.数值模拟法数值模拟法使用计算机模拟和仿真技术来分析物体的设计和制造过程。

通过建立几何模型和进行数值计算,可以评估物体的同轴度,并进行优化设计。

结论同轴度的检测方法在工程和制造领域中具有重要意义。

传统的方法使用测量工具和仪器进行物理测量,而现代的方法则利用光学和计算机技术进行更精确和高效的测量。

随着技术的进步,我们可以期待同轴度检测方法在未来的发展和应用中更加广泛和多样化。

同轴度的测量方法

同轴度的测量方法

同轴度的测量方法
同轴度是指两个轴线在相同平面内且距离很近的程度,测量同轴度的方法有以下几种:
1. 使用千分尺:将千分尺固定在一端,另一端对准待测的轴,记录读数。

然后将千分尺旋转180度,对准同一位置重新读数。

如果两次读数相等,表示两个轴在同一直线上,同轴度为0。

如果读数不相等,则两个轴不在同一直线上,同轴度可通过读数差来计算。

2. 使用同心度表:将同心度表两个球面测头分别放在待测轴的两端,然后旋转测头,记录同心度表指示值。

如果两个轴同心度高,需要调整轴的位置,以使得测头的指示最小。

3. 使用绳线法:在两个轴的中心穿上一根细绳或牛皮线,然后在两个轴端上固定一个精度较高的刻度尺。

将两个轴转动,观察绳线或牛皮线的位置变化,计算出两个轴的同轴度。

4. 使用立轴法:在待测轴的两端安装两个垂直的定位柱,然后使用立轴读数器在两个定位柱上测量两个轴的距离差,以确定同轴度。

以上是常用的几种同轴度测量方法,但不同方法的适用范围和精度有所不同,需要根据具体情况选择合适的方法。

同轴度检测方法范文

同轴度检测方法范文

同轴度检测方法范文同轴度是指一个物体的轴线与另一个物体的轴线之间的平行度或一致度。

在工业制造中,同轴度通常被用来评估两个物体之间位置的准确性或对称性。

同轴度的检测方法有很多种,下面将介绍几种常用的方法。

一、光学比对法光学比对法是一种通过光学仪器来测量和比对轴线位置的方法。

通常使用的仪器有光学投影仪、测量仪等。

该方法的基本原理是,将被测物体放置在光学设备下,通过光线的反射或透射,观察物体的特征线或标记点,然后比对和测量物体的轴线位置。

通过计算标记点的位置和距离,可以得到同轴度的数值。

光学比对法的优点是测量精度高、非接触式测量、适用于各种形状的物体等。

但同时也存在一些限制,比如受到光线的干扰、需要对光线进行校准等。

二、机械对座法机械对座法是一种利用机械装置来确保两个物体轴线准确对齐的方法。

通常使用的装置有对座夹具、静压对座系统等。

该方法的基本原理是,将被测物体放置在对座装置上,通过调整对座装置的位置和角度,使得两个物体的轴线完全对齐。

对于一些需要高度精确的同轴度要求,可以通过微调螺丝或气动系统来实现。

机械对座法的优点是操作简单、适用于各种形状和尺寸的物体、适用于大规模生产等。

但同时也存在一些限制,比如对座装置的精度和稳定性要求较高,无法满足非接触式测量等。

三、激光测量法激光测量法是一种利用激光光束来测量轴线位置的方法。

通常使用的装置有激光测距仪、激光干涉仪等。

该方法的基本原理是,将被测物体放置在激光器的光束下,通过测量激光的反射或干涉信号,确定物体的轴线位置。

通过计算光束的偏移量、干涉条纹的间距等可以得到同轴度的数值。

激光测量法的优点是测量快速、精度高、适用于各种形状和尺寸的物体等。

但同时也存在一些限制,比如需要在相对封闭的环境中进行测量、对光源和接收器的校准要求较高等。

总结起来,同轴度的检测方法有光学比对法、机械对座法和激光测量法等。

不同的方法适用于不同的实际情况和要求,可以根据具体的应用进行选择和使用。

三坐标测量机检测同轴度的方法研究

三坐标测量机检测同轴度的方法研究

三坐标测量机检测同轴度的方法研究三坐标测量机是一种精密的测量设备,能够对工件进行高精度的三维测量。

同轴度是工程中常用的一种尺寸和形位公差,通常用于描述轴线、孔、孔座、轴孔之间对于一个公共轴线的偏差。

在工程制造中,同轴度的精度要求越来越高,因此如何有效地利用三坐标测量机来检测同轴度成为了一个重要的研究课题。

本文将就三坐标测量机检测同轴度的方法进行研究和探讨。

一、理论基础1. 同轴度的定义同轴度是指两个或两个以上圆柱面的轴线在相互平行的状态下,这些轴线与一个公共轴线之间的偏差量。

同轴度一般用最大偏差值表示。

2. 三坐标测量机原理三坐标测量机是一种利用触发式或非触发式方式,通过测头和加工工件之间的相对运动来获得工件表面上特定点的三维坐标数据的测量设备。

通过在三个坐标轴方向上的测量,可以确定工件的三维空间位置。

二、同轴度检测方法1. 测量前的准备工作首先需要确定需要测量的工件的特征,包括测量的位置、尺寸和形状,以及所需的测量方式。

然后需要根据工件的特征选择合适的夹具和装夹方式,确保工件的稳定性和测量的准确性。

2. 测量过程在确定好测量位置和夹具后,需要将工件放置在三坐标测量机的测量台上,并进行基准标定。

然后根据工件的特征和测量要求设置测头的参数,包括测量速度、步进值等。

接着利用三坐标测量机对工件进行测量,获取工件表面上特定点的三维坐标数据。

最后根据测量数据计算同轴度的偏差值,并对结果进行分析和验证。

3. 数据处理与分析在测量完成后,需要对获取的测量数据进行处理和分析。

首先需要对数据进行滤波处理,剔除异常值和误差点,然后根据测量数据计算同轴度的偏差值。

最后将计算结果与设计要求进行对比,评估工件的同轴度是否符合要求。

三、方法优劣比较三坐标测量机检测同轴度的方法具有以下优势:1. 高精度:三坐标测量机具有非常高的测量精度,能够对工件进行高精度的三维测量,确保测量结果的准确性。

2. 自动化:三坐标测量机具有自动化测量功能,能够实现对工件的快速、高效测量,提高工作效率。

轴承同轴度的拉线检测方法

轴承同轴度的拉线检测方法

轴承同轴度的拉线检测方法
轴承同轴度是指轴承内径与外径之间的关系,同轴度越高表示轴承的内外径越接近于同一个轴线。

常用的轴承同轴度检测方法包括以下几种:
1. 视觉检测法:使用光学设备(如显微镜、放大镜等)观察轴承内外径,通过目测判断内外径位置是否对称,来初步判断轴承的同轴度。

2. 量测检测法:使用测量仪器(如千分尺、编码器等)对轴承内外径进行直接测量,然后计算内外径的偏差值,进而得出轴承的同轴度。

3. 感应检测法:利用感应原理,将轴承放在感应装置上,感应装置会对轴承的内外径进行感应,然后通过测量信号得出轴承的同轴度。

4. X射线检测法:使用X射线设备对轴承进行检测,通过测量X射线的透射和反射情况,获得轴承内外径的分布情况,从而判断轴承的同轴度。

需要注意的是,以上方法中的视觉检测法和X射线检测法需要借助特殊的设备,所以一般在实际生产中较少采用。

量测检测法和感应检测法是最常用的轴承同轴度检测方法。

在进行同轴度检测时,需要使用具有一定精度的测量和感应设备,并进行相应的数据处理和分析,以确保检测结果的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同轴度检测是我们在测量工作中经常遇到的问题,用三坐标进行同轴度的检测不仅直观且又方便,其测量结果精度高,并且重复性好。

汽车零部件生产企业,有很多产品需要进行严格的同轴度检查,特别是出口产品的检查更加严密,如EATON差速器壳、AAM拨叉、主减速器壳等。

因此能否准确地测量出此类零件的同轴度对以后的装配有着一定的影响。

1、影响同轴度的因素
在国标中同轴度公差带的定义是指直径公差为值t,且与基准轴线同轴的圆柱面内的区域。

它有以下三种控制要素:①轴线与轴线;②轴线与公共轴线;③圆心与圆心。

因此影响同轴度的主要因素有被测元素与基准元素的圆心位置和轴线方向,特别是轴线方向。

如在基准圆柱上测量两个截面圆,用其连线作基准轴。

在被测圆柱上也测量两个截面圆,构造一条直线,然后计算同轴度。

假设基准上两个截面的距离为10 mm,基准第一截面与被测圆柱的第一截面的距离为100 mm,如果基准的第二截面圆的圆心位置与第一截面圆圆心有5μm的测量误差,那么基准轴线延伸到被测圆柱第一截面时已偏离50μm(5μmx100÷10),此时,即使被测圆柱与基准完全同轴,其结果也会有100μm的误差(同轴度公差值为直径,50μm是半径),测量原理图如图1所示。

2、用三坐标测量同轴度的方法
对于基准圆柱与被测圆柱(较短)距离较远时不能用测量软件直接求得,通常用公共轴线法、直线度法、求距法求得。

2.1 公共轴线法
在被测元素和基准元素上测量多个横截面的圆,再将这些圆的圆心构造一条3D直线,作为公共轴线,每个圆的直径可以不一致,然后分别计算基准圆柱和被测圆柱对公共轴线的同轴度,取其最大值作为该零件的同轴度。

这条公共轴线近似于一个模拟心轴,因此这种方法接近零件的实际装配过程。

2.2 直线度法
在被测元素和基准元素上测量多个横截面的圆,然后选择这几个圆构造一条3D直线,同轴度近似为直线度的两倍。

被收集的圆在测量时最好测量其整圆,如果是在一个扇形上测量,则测量软件计算出来的偏差可能很大。

2.3 求距法
同轴度为被测元素和基准元素轴线间最大距离的两倍。

即用关系计算出被测元素和基准元素的最大距离后,将其乘以2即可。

求距法在计算最大距离时要将其投影到一个平面上来计算,因此这个平面与用作基准的轴的垂直度要好。

这种情况比较适合测量同心度。

3、实际应用
现以EATON差速器壳为例:据图纸要求差速器壳两端轴承内孔同轴度为φ0.05 mm,如果两端孔的同轴度不好,则会影响半轴和齿轮的装配,导致齿轮转动不畅,因此需要准确的测量出差速器壳的同轴度。

差速器壳简图如2所示。

表1例举了同轴度的测量数据。

其中求距法不适用该工件,因此这里不举例。

由表1可以看出,如果直接用单个孔做基准轴,评价的结果大大超出图纸要求,用公共轴线法和直线度方法评价出来的结果比较全面的反映出所测范围内的情况。

4、结论
在实际测量中,同轴度的测量受到多方面的影响。

操作者的自身素质和对图纸工艺要求的理解不同;测量机的探测误差,探头本身的误差;工件的加工状态,表面粗糙度;检测方法的选择,工件的安放、探针的组合;外部环境等,例如检测间的温度、湿度等都会给测量带来一定的误差。

所以在实际应用中应多从以上几个因素考虑。

相关文档
最新文档