平面与平面的相对位置

合集下载

平面相对位置

平面相对位置

c
三面共点法
a
b f l r
k
c
d
PV
e
g s
h
QV
a e
b f
k
c
g
l s h
d
r
3 垂直问题
3.1 直线与平面垂直 几何条件
M
L2
K P N
L1
如果一直线垂直于平
面内的一对相交直线, 则此直线垂直于该平面
3.1 直线与平面垂直 几何条件
M
L1 L2 P N K
M V C N P B D PV
A
PH
H
如果一直线的正面投影垂直 于一平面内正平线的正面投影, 同时其水平投影垂直于该平面内 水平线的水平投影,则该直线垂 直于该平面。
投影特性
m
c a
n
b
d b
c a n
d
如果一直线的正面投影垂直 于一平面内正平线的正面投影, 同时其水平投影垂直于该平面内 水平线的水平投影,则该直线垂 直于该平面。
f
d
d b a e f
c
2 相交问题
P B K N A B A P M C
交 点 交 线
直线和平面的共有点 两平面的共有线(两个共有点)
2.1 特殊位置的相交
参与相交的两元素中,至少有一个垂直 于某投影面,其投影有积聚性,这种情况为 特殊位置的相交,作图较为简便。
2.1.1 直线与特殊位置平面相交
平行于直线


作直线 过 点
平行于平面 垂直于直线 垂直于平面 平行于直线
无数解 无数解 一 解
无数解 一 一 解 解
作平面
平行于平面 垂直于直线 垂直于平面

第4章 直线与平面、平面与平面的相对位置

第4章  直线与平面、平面与平面的相对位置

4.2 相交问题
【例4-5】 (1)求交点,如图4-9(c)所示。
①在铅垂线的水平投影上标出交点的水平投影k。
②在平面内过K点的水平投影k作辅助线ad,并求出它的正面 a′d′。
③a′d′与m′n′的交点即交点的正面投影k′。
4.2 相交问题
【例4-5】
(2)直线的可见性可利用重影点法来判断。因为直线是铅垂线, 水平投影积聚为一点,故不需要判别其可见性,只需判别直线 正面投影的可见性即可。直线以交点K为分界点,在平面前面 的部分可见,在平面后面的部分不可见。如图4-9(c)所示,选 取m′n′与b′c′的重影点1′和2′来判别。1点在MN上,2点在BC上, 从水平投影看,1点在前可见,2点在后不可见。即k′1′在平面 的前面可见,画成粗实线;其余部分不可见,画成虚线。
4.2 相交问题
3.一般位置平面与特殊位置平面相交
【例4-7】
求一般位置平面ABC与铅垂面P的交线MN及判别平面正面投 影的可见性,如图4-11(a)所示。 【解】分析:如前面所述,把求两个平面交线的问题看成是求 两个共有点的问题。所以欲求图4-11(b)中两个平面的交线,从 对图4-11(a)的分析来看,只要求出交线上的任意两点(如M和N) 即可。因为铅垂面的水平投影有积聚性,所以交线的水平投影 必然位于铅垂面的积聚投影上;交线的正面投影可利用线上定 点的方法求出。 作图步骤如下:
4.1.2 平面与平面平行 条件
若一个平面内的两条相交直线对应 平行于另一个平面内的两条相交直
线,则这两个平面平行。
4.1平行问题
1.两个一般位置平面平行
【例4-3】 过点E作一个平面与平面ABC平行,如图4-6(a)所示。
E ABC 作图步骤如图4-6(b)所示。 (1)过点E作ED∥AB(ed∥ab、e′d′∥a′b′)。 (2)过点E作EF∥AC(ef∥ac、e′f′∥a′c′),则平面DEF 所求。

工程制图 2.5 直线与平面、平面与平面的相对位置

工程制图 2.5 直线与平面、平面与平面的相对位置

通过重影点判别可见性。

例:求直线MN与平面ABC的交点K,并判别可见性。
b B K A m m a
2 ●

n
a
1(2)

k ●
c c

N
C
M 2
m
c
1 a
n H
k 1 b
b k
n
2、直线为特殊位置
m b k a n b k● 2 m(n)
● ●
c

1(2)

c

kHale Waihona Puke 1(2) A N Cb
k m (n) c H

c
a
a
1
3、一般位置直线与一般位置平面相交
一般位置直线与一般位置平面相交
辅助平面法:过直线作一特殊位置的平面, 先求两平面的交线, 再求交线与已知直线的交点, 此交点即为直线与平面的交点。
PV a’ d’ m’ k’ c’ n’ e’ d n c
1、平面为特殊位置 例:求直线MN与平面ABC的交点K,并判别可见性。 空间及投影分析 b n 平面ABC是一铅垂面, 其水平投影积聚成一条直 k 1(2) 线,该直线与mn的交点即 a ● 为K点的水平投影。 c m 作 图 ① 求交点 m ●2 c ② 判别可见性 ● 由水平投影可知,KN b k 1 a n 段在平面前,故正面投 影上kn为可见。
有无数解
b
n a

mc
例2:过M点作一正平线MN平行于平面 ABC。
b cm

n
a
a b
c
唯一解

m
n
例 3
不平行

机械制图(工程图学)第三章 直线与平面、平面与平面

机械制图(工程图学)第三章 直线与平面、平面与平面
b' e' d' a' a' c' f' X e b c 2 1 a d a d a d 1 X e b c 2 f' X e b c c' f' a' c' e' 2' 1' d' 1' d' b' e' 2' b'
f
f
f
(a)
(b) (c) 图3-12铅垂面与一般位置平面相交 铅垂面与一般位置平面相交
南京师范大学xws 17
3.3垂直问题 垂直问题
3.3.1直线与平面垂直 直线与平面垂直
垂直于平面的直线被称为该平面的垂线或法线,解题时的关键是在投影图 中如何定出法线的方向。 直线与平面垂直,则直线垂直平面上的任意直线(过垂足或不过垂足)。 反之,如直线垂直于平面上的任意两条相交直线,则直线垂直于该平面。
b' b' b' 1' 1' c' e(f) a' a' a' k' e'(f') c' k' 1' e'(f') 2' c'
X f b
X X f g c k a h e (a) e a b 1 c k h 1(2) c f g b 1
a
e (b) 图3-11铅垂线与一般位置平面相交 铅垂线与一般位置平面相交
f' d' n' m' c' a' k' e' X e k n a m b d 图3-5两平面平ቤተ መጻሕፍቲ ባይዱ的投影图 两平面平行的投影图 f c

直线与平面、两平面的相对位置

直线与平面、两平面的相对位置
如果两个平面内的两条相交直线互相垂直,那么这两个平面互相垂直。
THANKS
感谢观看
04
直线与平面、两平面相对位置的性质
和定理
直线与平面垂直的性质和定理
直线与平面垂直的性质
如果一条直线垂直于一个平面,那么这 条直线上的任意一点到平面的距离都相 等。
VS
直线与平面垂直的定理
如果一条直线与平面内的两条相交直线都 垂直,那么这条直线与这个平面垂直。
直线与平面平行的性质和定理
直线与平面平行的性质
在构建过程中,需要充分考虑直线与平面的关系,以及两平 面之间的相对位置,以确保所构建的几何形状符合设计要求 。
建筑设计中的应用
在建筑设计中,直线与平面、两平面 的相对位置关系具有重要意义。通过 合理利用这些关系,可以设计出具有 独特美感和实用性的建筑作品。
例如,可以利用直线与平面的垂直关 系设计出高耸入云的摩天大楼,利用 两平面之间的角度关系创造出独特的 建筑造型。
直线与平面相交
总结词
当直线与平面有一个公共点时,直线 与平面相交。
详细描述
直线与平面相交意味着直线和平面在 某一点相遇。这个点是直线和平面的 唯一公共点。
直线与平面垂直
总结词
当直线的方向向量与平面的法向量平行时,直线与平面垂直。
详细描述
直线与平面垂直意味着直线与平面中的所有线段都垂直。在这种情况下,直线要么完全位于平面上,要么与平面 相交于一点。
应用
在几何学、物理学和工程学中,两平面垂直 的情况也经常出现,例如建筑物的墙与地面 、电路板上的线路与基板等。
03
直线与平面、两平面相对位置的应用
空间几何形状的构建
空间几何形状的构建是直线与平面、两平面相对位置在实际 应用中的重要体现。通过利用这些相对位置关系,可以构建 出各种复杂的空间几何形状,如球体、立方体、圆柱体等。

直线与平面平面与平面的相对位置

直线与平面平面与平面的相对位置
解题过程: ①过b’作b’d’∥e’f’,求出db; ②检验bd是否与ef平行,
结论:平行
平面与平面的相对位置有:平行、相交和垂直三 种情况
二. 平面与平面平行
判定定理: 若一平面上的一对相交直线分别与另一平面上的
一对相交直线互相平行,则二平面平行。
E
D F
B A
C
若属于一平面的相交两直线对应平行于属于另一平面的相交两直 线,则此两平面平行
连接d’k’,延长后交
c’f’ 于m’点;
2)由m’ 得m,连 接dm与ab交得k;
3)根据重影点Ⅰ、 Ⅱ判别可见性。
3. 一般位置线与一般位置面相交
〖例〗如图所示,求作直线MN和平面△ABC的交 点K,并判别投影的可见性。
作图步骤:
1)在V面投影图中 标出直线MN与AC、 AB的重影点1’、2’。
〖例〗已知空 间点M和平面ABCD 的两面投影,求作 过M点垂直于平面 ABCD的垂线MN的 投影
作图步骤:
1)作a’1’∥OX轴,求
得1’ 和1,过点m作a1
的垂线。
2)作a2∥OX轴,由2 得2’,过m’作a’2’的垂 线m’n’。
3)由n’得n点,将 m’n’和mn画成粗实线。
2.特殊位置的直线与平面垂直
2)由1’、2’ 得1、 2,连接12与mn交得 点k。
3)由k得k’。
4)根据重影点Ⅳ、 Ⅴ判别可见性。
二. 平面与平面相交
M
K
L
F
N
两平面的交线是一条直线,这条直线为两平面所共有
平面与平面相交的问题,主要是求交线和判别 可见性的问题。
1.两特殊位置平面相交
投影面垂直面相交: 两个平面的投影均积聚为直线,若两直线相交, 则空间两平面相交,交点即为两平面交线。(交 点必为该投影面垂直线)

第五章 直线、平面的相对位置

第五章  直线、平面的相对位置

本章讨论直线与平面、平面与平面的相对位置关系及其投影,包括以下内容:1)平行关系:直线与平面平行,两平面平行;2)相交关系:直线与平面相交,两平面相交;3)垂直关系:直线与平面垂直,两一般位置直线垂直和两平面垂直。

§1 平行关系1.1 直线与平面平行直线与平面平行的几何条件是:如果平面外的一直线和这个平面上的一直线平行,则此直线平行于该平面。

由于EF∥BD,且BD 是ABC 平面上的一直线,所以,直线EF平行于ABC 平面。

[例1]试过K点作一水平线,使之平行于△ABC。

先在△ABC上作一水平线AD;再过点K,作kl∥ad,k′l′∥a′d′,则直线KL为所求。

[例2]试过K 点作一正平线,使之平行于P 平面。

因P V 是P 平面上特殊的正平线,所以过点K 作KL ∥P V ,即作k ′l ′∥PV ,kl ∥X 轴,则直线KL 为所求。

[例3]试过K 点作一铅垂面P (用迹线表示),使之平行于AB 直线。

由于铅垂面的H 投影为一直线,故若作铅垂面平行于AB 直线,则P H必平行于ab 。

因此,过k 作P H ∥ab ;过P X 作P V ⊥X 轴,则P 平面为所求。

1.2 平面与平面平行两平面相平行的条件是:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。

两平行平面和第三个平面相交,其交线一定互相平行。

因此,两平行平面的同面迹线一定平行。

如果两平面的两对同面迹线分别互相平行,则不能肯定两平面是互相平行的。

如果平面的两条迹线是平行直线时,则一般要看第三个投影才能确定。

P 平面平行于Q 平面P 平面不平行于Q 平面[例1]过点K 作一平面,使之与AB、CD两平行直线表示的平面平行1:在AB、CD 平面上,作一条和AB、CD 不平行的辅助线,如AC ;2:过K 作KL∥AB ;3:过K 作KM∥AC ,则平面LKM即为所求。

[例2]过K 点作Q 平面(用迹线表示),使之平行于P 平面。

6.第六讲直线与平面.两平面的相对位置(一)

6.第六讲直线与平面.两平面的相对位置(一)

一般位置平面与特殊位置平面相交
V M B K P
m c
f n m
b k l a
AL
F
m N C f b n k a l
k b
a l
f
cH
c
PH
两平面图形投影重叠部分需判别可见性。交线总可见。基本方法依然是交 叉二直线重影点可见性的判别。较简单的方法是利用特殊位置平面的积聚性, 如右图由H投影图得知fkm在特殊位置平面之后,故V投影图上m′k′f′与 a′b′c′重叠部分不可见,画虚线,f′ k′l′n′与 a′b′c′重叠部分可 见,画实线。
一、直线与平面平行
P C A
D
B
若一直线平行于属于定平面的一直线,则该直线与平面平行
例题1 试判断直线AB是否平行于定平面
n′ m′
p′
d f e a c g b
e
n m p
直线MN 平行于定平面P
d
f a g b
结论:直线AB 不平行于定平面
c
例题2
试过点K作水平线AB平行于ΔCDE平面。 c f e b k a
一、直线与平面相交的特殊情况
1、一般位置直线与垂直面相交 2、垂直线与一般位置平面相交 二、一般位置平面与特殊位置平面(垂直面)相交 三、直线与一般位置平面相交 四、两一般位置平面相交
直线与平面相交
P
A
K
B
直线与平面相交只有一个交点,它是直线与平面的共 有点。交点的特性:交点总是可见,而且是可见与不可见 的分界点。
n
三、直线与一般位置平面相交
一般位置线面相交由于直线和平面的投影都没有积聚性 ,求交点时无积聚性投影可以利用,因此通常要采用辅助平 面法求一般位置线面的交点。一般位置线、面相交求交点的 步骤:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b’
d
k
b
c
例题3-11:过点A作一平面与平面DEFG平

e'
g'
a' d'
X
f'
O
f
a
d
g e
例题3-12:判定两平面是否平行。
c' d' a'
e'
d
e
a
c
g'
b' g
b
例题3-13:判定两正垂面是否平行。
d c'
e'
a'b来自gde
a
c
g b
二、两平面相交
交线——共有线
求交线的方法:
(1)利用积聚性求交线
b' f' k'
d'
两垂直面的交线是垂直线
l' c'
e' a'
a f
d
k(l)
e
c
例题3-14:求两平面的交线,并判断可见性。
(2)利用线面交点法求交线 温故知新
m' n'
n m
全交
例题3-15:求两平面的交线,并判断可见性。
n'
m'
n m
例题3-15:求两平面的交线,并判断可见性。
n'
m'
n m
互交
(3)用辅助平面求两平面的交线
Pv
k'
Qv
l'
k
l
平面扩大后再交
思考题一参与相交的两个平面都是特殊位 置时,其交线的投影如何求出?
思考题二
两个平面的交线应该在投影图 上画多长?
a'
b'
a
b
三、两平面垂直
包含与平面垂直 线的所有平面都 与该平面垂直
例题3-16:包含直线作一平面,与已知平面垂直。
例题3-17:判定两平面是否垂直。
例题3-18:判定两平面是否垂直。
直线与平面、平面与平面的相对位置:
平行
直线与平面 平面与平面
小结
定理 几何作图
定理
特殊位置的平面和直线 已知直线求平面 已知平面求直线(平面)
判定平行
相交
直线与平面 平面与平面
求交点 求交线
几何作图
特殊位置的平面和直线 一般位置的平面和直线
垂直
直线与平面
平面与平面
垂直于面内的正 平线和水平线
含垂直线
几何作图
用辅助平面(线)求交点的一般步骤:
1 在平面内作一辅助线, 使其一个投影与已知直线 的同名投影重合;
2 求辅助线的另一个投影, 与已知直线的同名投影相 交,得交点;
a’ e’ a
PH e
3 判定可见性:利用重 影点。
c’ d’
k’
相关文档
最新文档