高中数学函数经典复习题含答案
高中数学第三章函数的概念与性质真题(带答案)

高中数学第三章函数的概念与性质真题单选题1、函数y =√2x +4x−1的定义域为( )A .[0,1)B .(1,+∞)C .(0,1)∪(1,+∞)D .[0,1)∪(1,+∞) 答案:D分析:由题意列不等式组求解由题意得{2x ≥0x −1≠0,解得x ≥0且x ≠1,故选:D2、若定义在R 上的偶函数f (x )满足f (2−x )=−f (x ),且当1≤x ≤2时,f (x )=x −1,则f (72)的值等于( ) A .52B .32C .12D .−12答案:D分析:根据f (x )是偶函数以及f (2−x )=−f (x )求出f (x )的周期,再结合周期、奇偶性和f (2−x )=−f (x )即可将自变量的范围转化到[1,2]之间. ∵函数f (x )是偶函数, ∴f (−x )=f (x ), 又∵f (2−x )=−f (x ), ∴f (2−x )=−f (−x ), ∴f (x +2)=−f (x ),∴f (x +4)=−f (x +2)=−[−f (x )]=f (x ), ∴函数f (x )的周期为4,∴f (72)=f (72−4)=f (−12)=f (12)=−f (2−12)=−f (32)=−12.故选:D.3、下列函数的最小值为2的是( ) A .y =x2+2x B .y =2√x 2+4C.y=x+3+1x+3(x>−3)D.y=x−1+1x−1(x>2)答案:C分析:根据基本不等式及对勾函数的性质逐项分析即得.对于A,当x<0时,函数y=x2+2x没有最小值,故A错误;对于B,y=2√x2+4=√x2+4+√x2+4,因为√x2+4≥2,根据对勾函数的性质可得y=√x2+4+√x2+4≥52,故B错误;对于C,因为x>−3,x+3>0,所以y=x+3+1x+3≥2,当且仅当x=−2取等号,故C正确;对于D,y=x−1+1x−1≥2,当且仅当x=2取等号,又x>2,故等号不成立,故D错误.故选:C.4、下列图形能表示函数图象的是()A.B.C.D.答案:D分析:根据函数的定义,判断任意垂直于x轴的直线与函数的图象的交点个数,即可得答案.由函数的定义:任意垂直于x轴的直线与函数的图象至多有一个交点,所以A、B显然不符合,C在x=0与函数图象有两个交点,不符合,只有D符合要求.故选:D5、已知f(x+1)=x−5,则f(f(0))=()A.−9B.−10C.−11D.−12答案:D分析:根据f (x +1)=x −5,利用整体思想求出f (x )的解析式,求得f (0),从而即求出f(f (0)). 解:因为f (x +1)=x −5=(x +1)−6, 所以f (x )=x −6, f (0)=−6,所以f(f (0))=f (−6)=−12. 故选:D .6、已知函数f(x)={x 2+2,x <12x +a 2,x ≥1,若f(f(0))=4a ,则实数a =( )A .12B . 45C .2D .9 答案:C分析:由函数的解析式可得f(f(0))=f(2)=4+a 2=4a ,求解可得答案. ∵函数f(x)={x 2+2,x <12x +a 2,x ≥1,∴f(0)=2,则f(f(0))=f(2)=4+a 2=4a , 即(a −2)2=0,解可得:a =2. 故选:C7、设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则 A .f (log 314)>f (2−32)>f (2−23) B .f (log 314)>f (2−23)>f (2−32)C .f (2−32)>f (2−23)>f (log 314) D .f (2−23)>f (2−32)>f (log 314) 答案:C解析:由已知函数为偶函数,把f (log 314),f (2−32),f (2−23),转化为同一个单调区间上,再比较大小. ∵f (x )是R 的偶函数,∴f (log 314)=f (log 34).∵log34>log33=1,1=20>2−23>2−32,∴log34>2−23>2−32,又f(x)在(0,+∞)单调递减,∴f(log34)<f(2−23)<f(2−32),∴f(2−32)>f(2−23)>f(log31),故选C.4小提示:本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.<0,且f(2)=0,则不8、定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1等式xf(x)>0的解集是()A.(−2,2)B.(−2,0)∪(2,+∞)C.(−∞,−2)∪(0,2)D.(−∞,−2)∪(2,+∞)答案:C分析:依题意可得f(x)在[0,+∞)上单调递减,根据偶函数的性质可得f(x)在(−∞,0)上单调递增,再根据f(2)=0,即可得到f(x)的大致图像,结合图像分类讨论,即可求出不等式的解集;解:因为函数f(x)满足对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)<0,x2−x1即f(x)在[0,+∞)上单调递减,又f(x)是定义在R上的偶函数,所以f(x)在(−∞,0)上单调递增,又f(2)=0,所以f(−2)=f(2)=0,函数的大致图像可如下所示:所以当−2<x <2时f (x )>0,当x <−2或x >2时f (x )<0, 则不等式xf(x)>0等价于{f(x)>0x >0或{f(x)<0x <0,解得0<x <2或x <−2,即原不等式的解集为(−∞,−2)∪(0,2); 故选:C 多选题9、下列函数中,在(0,+∞)上单调递增且图像关于y 轴对称的是( ) A .f (x )=x 3B .f (x )=x 2C .f (x )=√x D .f (x )=|x | 答案:BD分析:根据单调性与奇偶性可得答案关于A 选项,函数f (x )=x 3为奇函数,其图像关于原点对称,故A 错误;关于B 选项,函数f (x )=x 2为偶函数,其图像图像关于y 轴对称,且函数f (x )在(0,+∞)上单调递增,故B 正确;关于C 选项,函数f (x )=√x 的定义域是[0,+∞),故函数f (x )为非奇非偶函数,故C 错误;关于D 选项,函数f (x )=|x |的定义域为R ,f (−x )=|−x |=|x |=f (x ),所以函数f (x )为偶函数,当x >0时,f (x )=x ,所以函数f (x )在(0,+∞)上单调递增,故D 正确. 故选:BD.10、已知函数f(x)=x α图像经过点(4,2),则下列命题正确的有( ) A .函数为增函数B .函数为偶函数C .若x >1,则f(x)>1D .若0<x 1<x 2,则f (x 1)+f (x 2)2<f (x 1+x 22)答案:ACD分析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由√x >1可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.将点(4,2)代入函数f(x)=x α得:2=4α,则α=12. 所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x >1时,√x >1,即f(x)>1,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 正确.故选:ACD.小提示:本题主要考查了幂函数的性质,11、已知幂函数f(x)=(m +95)x m ,则下列结论正确的有( ) A .f (−32)=116 B .f(x)的定义域是RC .f(x)是偶函数D .不等式f (x −1)≥f (2)的解集是[−1,1)∪(1,3] 答案:ACD分析:首先求函数的解析式,再根据幂函数的性质,判断定义域,奇偶性,以及解不等式. 因为函数是幂函数,所以m +95=1,得m =−45,即f (x )=x −45,f (−32)=[(−2)5]−45=(−2)−4=116,故A 正确;函数的定义域是{x |x ≠0},故B 不正确; ∵f (−x )=f (x ),所以函数是偶函数,故C 正确;函数f (x )=x −45在(0,+∞)是减函数,不等式f (x −1)≥f (2)等价于|x −1|≤2,解得:−2≤x −1≤2,且x −1≠0,得−1≤x ≤3,且x ≠1,即不等式的解集是[−1,1)∪(1,3],故D 正确. 故选:ACD12、已知函数f (x )=bx+a x+2在区间(−2,+∞)上单调递增,则a ,b 的取值可以是( )A .a =1,b >32B .a >4,b =2 C .a =−1,b =2D .a =2,b =−1 答案:AC分析:分离常数得f (x )=b +a−2b x+2,若f (x )在(−2,+∞)单调递增,则满足a −2b <0,检验选项即可求解.f (x )=bx+a x+2=b +a−2b x+2在(−2,+∞)上单调递增,则满足:a −2b <0,即a <2b ,故a =1,b >32满足,a =−1,b =2满足, 故选:AC13、设函数f (x )={ax −1,x <ax 2−2ax +1,x ≥a ,f (x )存在最小值时,实数a 的值可能是( )A .−2B .−1C .0D .1 答案:ABC分析:根据函数解析式,分a >0、a =0、a <0三种情况讨论,当a <0时根据二次函数的性质只需函数在断点处左侧的函数值不小于右侧的函数值即可; 解:因为f (x )={ax −1,x <ax 2−2ax +1,x ≥a,若a>0,当x<a时f(x)=ax−1在(−∞,a)上单调递增,当x→−∞时f(x)→−∞,此时函数不存在最小值;若a=0,则f(x)={−1,x<0x2+1,x≥0,此时f(x)min=−1,符合题意;若a<0,当x<a时f(x)=ax−1在(−∞,a)上单调递减,当x≥a时f(x)=x2−2ax+1,二次函数y=x2−2ax+1对称轴为x=a,开口向上,此时f(x)在[a,+∞)上单调递增,要使函数f(x)存在最小值,只需{a<0a2−1≥a2−2a2+1,解得a≤−1,综上可得a∈(−∞,−1]∪{0}.故选:ABC填空题14、若函数y=2x+3x+2的值域是____.答案:(-∞,2)∪(2,+∞)分析:利用分离常数法去求函数y=2x+3x+2的值域即可∵y=2−1x+2,∴y≠2,∴函数的值域是:(-∞,2)∪(2,+∞).所以答案是:(-∞,2)∪(2,+∞)15、函数的图象是两条线段(如图),它的定义域为[−1,0)∪(0,1],则不等式f(x)−f(−x)>−1的解集为________.答案:[−1,0)∪(12,1]分析:首先求得函数的解析式,然后利用函数的解析式分类讨论即可求得最终结果.解:当x∈[−1,0)时,设线段所在直线的方程为y=kx+b,线段过点(﹣1,0),(0,1),根据一次函数解析式的特点,可得出方程组 {−k +b =0b =1,解得 {b =1k =1 .故当x ∈[﹣1,0)时,f (x )=x +1;同理当x ∈(0,1]时,f (x )=x −1;当x ∈[﹣1,0)时,不等式f (x )﹣f (﹣x )> −1可化为:x+1﹣(−x −1)> −1,解得:x >−32,∴﹣1≤x <0.当x ∈(0,1]时,不等式f (x )﹣f (﹣x )>﹣1可化为:x −1﹣(−x +1)> −1,解得:x >12,∴12<x ≤1,综上所述,不等式f (x )﹣f (﹣x )>﹣1的解集为 [−1,0)∪(12,1]. 所以答案是:[−1,0)∪(12,1]16、已知幂函数f(x)=(m 2−m −1)x m 的图象关于y 轴对称,则f(m)=___________. 答案:4分析:根据幂函数的知识求得m 的可能取值,根据f (x )图象关于y 轴对称求得m 的值,进而即得. 由于f (x )是幂函数,所以m 2−m −1=1,解得m =2或m =−1. 当m =2时,f (x )=x 2,图象关于y 轴对称,符合题意.当m =−1时,f (x )=x −1=1x ,图象关于原点对称,不符合题意.所以m 的值为2,∴. f(x)=x 2,f(2)=22=4. 所以答案是:4. 解答题17、已知函数f(x)=x+bax 2+1是定义在[−1,1]上的奇函数,且f(1)=12. (1)求a ,b 的值;(2)判断f(x)在[−1,1]上的单调性,并用定义证明. 答案:(1)a =1,b =0; (2)证明见解析分析:(1)根据已知条件,f(x)为奇函数,利用f(0)=0可以求解出参数b ,然后带入到f(1)=12即可求解出参数a ,得到函数解析式后再去验证函数是否满足在[−1,1]上的奇函数即可;(2)由第(1)问求解出的函数解析式,任取x 1,x 2∈[−1,1],x 1<x 2,做差f(x 1)−f(x 2),通过因式分解判断差值f(x 1)−f(x 2)的符号,即可证得结论. (1)由已知条件,函数f(x)=x+b ax 2+1是定义在[−1,1]上的奇函数,所以f(0)=b =0,f(1)=1a+1=12,所以a =1,所以f(x)=xx 2+1,检验f(−x)=−x (−x)2+1=−x x 2+1=−f(x),为奇函数,满足题意条件;所以a =1,b =0. (2)f(x)在[−1,1]上单调递增,证明如下: 任取x 1,x 2∈[−1,1],x 1<x 2,f(x 1)−f(x 2)=x 1x 12+1−x 2x 22+1=x 1(x 22+1)−x 2(x 12+1)(x 12+1)(x 22+1)=x 1x 22+x 1−x 2x 12−x 2(x 12+1)(x 22+1)=x 1x 2(x 2−x 1)−(x 2−x 1)(x 12+1)(x 22+1)=(x 1x 2−1)(x 2−x 1)(x 12+1)(x 22+1);其中x 1x 2−1<0,x 1−x 2<0,所以f(x 1)−f(x 2)<0⇒f(x 1)<f(x 2), 故f(x)在[−1,1]上单调递增.18、若函数f(x)的定义域为,求g(x)=f(x +m)+f(x −m)(m >0)的定义域. 答案:分类讨论,答案见解析.分析:根据复合函数的定义域的求法,建立不等式组即可得到结论.解:∴f(x)的定义域为,∴g(x)=f(x +m)+f(x −m)中的自变量x 应满足{0⩽x +m ⩽1,0⩽x −m ⩽1,即{−m ⩽x ⩽1−m,m ⩽x ⩽1+m.当1−m =m ,即m =12 时,x =12 ;当1−m >m ,即0<m <12 时,m ⩽x ⩽1−m ,如图:[0,1][0,1]当1−m<m,即m>12时,x∈∅,如图综上所述,当0<m<12时,g(x)的定义域为[m,1−m];当m=12时,g(x)的定义域为{12};当m>12时,函数g(x)不存在.小提示:本题主要考查函数定义域的求法,根据复合函数的定义域之间的关系是解决本题的关键,属于中档题.。
高中数学必修一函数大题(含详细解答)

高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
高中数学_经典函数试题及答案

高中数学_经典函数试题及答案【第一份试题】1. 已知函数 y = f(x) 满足 f(2) = 1,f'(x) = 2x - 3。
求函数 f(x) 的解析式。
解答:根据题意,已知了 f'(x) = 2x - 3,因此函数 f(x) 的原函数为 F(x) = x^2 - 3x + C,其中 C 为常数。
根据 f(2) = 1,可得到 F(2) = 1,代入原函数求得 C = 0。
所以函数 f(x) 的解析式为 f(x) = x^2 - 3x。
2. 若函数 f(x) = 2x^3 + 4x + c 是奇函数,求常数 c 的值。
解答:根据题意,函数 f(x) 是奇函数,即满足 f(-x) = -f(x)。
代入函数 f(x) = 2x^3 + 4x + c,得到 -2x^3 - 4x - c = 2x^3 + 4x + c,整理得到 4x^3 + 8x + 2c = 0。
对比系数可得 -c = 2c,解得 c = 0。
所以常数 c 的值为 0。
3. 已知函数 f(x) = (x - 1) / (x + 1),求函数 f(x) 的反函数。
解答:要求函数 f(x) 的反函数,可以将 y(即 f(x))与 x 对调位置,并解出 x 关于 y 的表达式。
首先,将函数 f(x) 表示为 y = (x - 1) / (x + 1)。
交换 x 和 y,得到 x = (y - 1) / (y + 1)。
解以上方程,可以得到 y = (x + 1) / (x - 1)。
所以函数f(x) 的反函数为 f^(-1)(x) = (x + 1) / (x - 1)。
【第二份试题】1. 已知函数y = f(x) = 3sin(2x + π/4),求 f(x) 的周期和最大值、最小值。
解答:对于函数 y = 3s in(2x + π/4),参数 2 决定了正弦函数的周期。
周期T = 2π / 2 = π。
最大值和最小值可以通过观察正弦函数的图像得出。
高中数学对数函数经典练习题及答案(优秀4篇)

高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。
15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。
16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。
18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。
高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)

1.已知 tanx=2,求 sinx , cosx 的值.解: 因为 tan x = Sin X =2,又 sin 2x + cos 2x=1 , cosxsin x = 2cosx联立得丿2 2 ,sin x +cos x =1sin x -cosx _2 sin x cosx所以 sinx — cosx=2(sinx + cosx),22得到sinx= — 3cosx ,又sin x + cos x=1,联立方程组,解得3+10sin,COSX = -〒0- C ——3 所以 sin xcosx — 10法二:因为叱叱=2,sin x cosx所以 sinx — cosx=2(sinx + cosx),所以(sinx — cosx)2=4(sinx + cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,3所以有 sinxcosx — ■10求证:tan 2x sin 2x=tan 2x — sin 2x . I.F , [ ]22 2 22 2 2 22证明:法一:右边=tan' x — sin x=tan x — (tan x cos x)=tan x(1 — cos x)=tan x sin x , 法二:左边 =ta n 2x sin 2x=ta n 2x(1 — cos 2x)=ta n 2x — ta n 2x cos 2 x=ta n 2x — si n 2x ,问题得证.sinx =2.5解这个方程组得cosx =245sin x = --------- i 靠 cosx I 5tan(-120)cos(210)sin(-480)2 .求——tan(-690 ') sin(-150 丨 cos(330 )的值.解:原式tan( -120 180 )cos(18030 )sin( -360 -120 )o~tan(-720 30o )sin(-150 )cos(360 -30 )tan 60 (-cos30 )(-sin 120) 弋 3 tan30(—sin150 )cos303.卄 sin x - cosx右sin x cosx=2,,求 sinxcosx 的值. 解:法一:因为 3110 sinx 10- 尿,cosx4.问题得证.3 x =84[0 2兀]0x2 f(x)x1如sin(2 ■ 6)[-?,1], y [1 2]2(1)y sin x cosx+2(1)y=si n 2x t=cosx t(2)y 2sin xcosx[- 2, 2]cosx 2 [-1,1],2 cos x cosx (2)y 2sin xcosx (sinx2= (cos 2x cosx) 3 cosx)一 (t 2t) 3-(t 丄)2213 +— 4(sinx cosx)=(s in xy =t 2 -t -1,y=As in( + )( (6 0)(2, 2) 匚=4T=164、2 = . 2 sin(- 2)84f(x)=cos x f(x) 一 sinxcosx)20)© =一842sinxcosx sin x(si nx cosx) t=sinxcosx= 42 sin((2「2)..y _2 sin(_ x ).48 4()xwy f(x)42222f(x)=cos x 2sinxcosx sin4x (cos x sin x)(cos x sin x)_ 2= (cos x -sin x) -sin 2x =cos2x -sin 2xsin2x-2x) - - 2 sin(2x -;))x 可Og](2x--)%-丄]4 4 4x=0 f(x)tan - 21 cos 日 +sin 日cos : -sin -2 si n 2°—si n B . cos 日+2cos 2 &1 + si n 日 (1)cos ,Sinn _ cos^ cos 日 +si ne . sin 日1 ------ cos :-1十¥ =」—2逅;1 - tan v 1_22 2sinsin rcos v 2cos r2 2sin sin vcos v 2 cos 二2 2sin cos 二2 si nr sin 二 22=COS d COSdsin -彳1cos 二说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到) 程简化。
高中函数经典试题及答案

高中函数经典试题及答案一、选择题1. 函数f(x) = 2x^2 - 3x + 1在x = 1处的导数是:A. 1B. 2C. 3D. 4答案:C2. 若f(x) = x^3 - 2x^2 + x - 2,求f'(x):A. 3x^2 - 4x + 1B. x^3 - 2x^2 + 1C. 3x^2 - 4xD. 3x^2 - 4x + x - 2答案:A3. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π答案:B二、填空题4. 若f(x) = x^2 + 2x + 1,则f(-1) = _______。
答案:05. 函数g(x) = 3x + 5的反函数是 _______。
答案:g^(-1)(x) = (x - 5)/3三、解答题6. 已知函数h(x) = x^3 - 6x^2 + 9x - 2,求h'(x)。
答案:h'(x) = 3x^2 - 12x + 97. 求函数f(x) = 2x^3 - 5x^2 + 3x - 1在区间[1, 2]上的最大值和最小值。
答案:首先求导得到f'(x) = 6x^2 - 10x + 3。
令f'(x) = 0,解得x = 1 或 x = 5/3。
在区间[1, 2]上,f'(x) > 0,说明f(x)在此区间单调递增。
因此,最小值为f(1) = -2,最大值为f(2) = 3。
四、综合题8. 已知函数F(x) = ln(x) + x^2,求F'(x)并讨论其单调性。
答案:首先求导得到F'(x) = 1/x + 2x。
由于x > 0,1/x > 0,2x > 0,所以F'(x) > 0,说明F(x)在(0, +∞)上单调递增。
结束语:本试题涵盖了高中数学中函数的基本概念、导数及其应用、函数的周期性、反函数、最值问题等,旨在检验学生对高中函数知识点的掌握程度和应用能力。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
高中数学第三章函数的概念与性质知识点题库(带答案)

高中数学第三章函数的概念与性质知识点题库单选题1、“n=1”是“幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数”的一个()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:A分析:由幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数,可得{n 2−3n+3=1n2−3n<0,由充分、必要条件的定义分析即得解由题意,当n=1时,f(x)=x−2在(0,+∞)上是减函数,故充分性成立;若幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数,则{n 2−3n+3=1n2−3n<0,解得n=1或n=2故必要性不成立因此“n=1”是“幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数”的一个充分不必要条件故选:A2、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D3、“幂函数f(x)=(m2+m−1)x m在(0,+∞)上为增函数”是“函数g(x)=2x−m2⋅2−x为奇函数”的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立; “函数g (x )=2x −m 2⋅2−x 为奇函数”,则g (x )=−g (−x ),即2x −m 2⋅2−x =−(2−x −m 2⋅2x )=m 2⋅2x −2−x , 解得:m =±1,故必要性不成立, 故选:A .4、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.5、下列图形能表示函数图象的是( )A .B .C .D .答案:D分析:根据函数的定义,判断任意垂直于x 轴的直线与函数的图象的交点个数,即可得答案. 由函数的定义:任意垂直于x 轴的直线与函数的图象至多有一个交点,所以A 、B 显然不符合,C 在x =0与函数图象有两个交点,不符合,只有D 符合要求. 故选:D6、已知函数f(x)={2x 2+1,x ≤1,3x ,x >1.则f(f (3))=( )A .319B .3C .1D .19 答案:B分析:根据解析式代入求解即可f(f (3))=f (33)=f (1)=2+1=3故选:B7、已知函数f(x)={x 2+2,x <12x +a 2,x ≥1,若f(f(0))=4a ,则实数a =( )A .12B . 45C .2D .9 答案:C分析:由函数的解析式可得f(f(0))=f(2)=4+a 2=4a ,求解可得答案. ∵函数f(x)={x 2+2,x <12x +a 2,x ≥1,∴f(0)=2,则f(f(0))=f(2)=4+a 2=4a , 即(a −2)2=0,解可得:a =2. 故选:C8、下列四个函数在(−∞,0)是增函数的为( ) A .f (x )=x 2+4B .f (x )=1−2x C .f (x )=−x 2−x +1D .f (x )=2−3x答案:D分析:根据各个函数的性质逐个判断即可对A ,f (x )=x 2+4二次函数开口向上,对称轴为y 轴,在(−∞,0)是减函数,故A 不对. 对B ,f (x )=1−2x 为一次函数,k <0,在(−∞,0)是减函数,故B 不对.对C ,f (x )=−x 2−x +1,二次函数,开口向下,对称轴为x =−12,在(−∞,−12)是增函数,故C 不对. 对D ,f (x )=2−3x 为反比例类型,k <0,在(−∞,0)是增函数,故D 对. 故选:D 多选题9、一次函数f(x)满足:f(f(x))=4x +3,则f(x)的解析式可以是( ) A .f(x)=2x +1B .f(x)=1−2x C .f(x)=2x −3D .f(x)=−2x −3 答案:AD分析:根据待定系数法,设出f(x)=kx +b (k ≠0),可得f(f(x))=k (kx +b )+b =4x +3,再根据对应项系数相等即可求出.设f(x)=kx +b (k ≠0),则f(f(x))=k (kx +b )+b =k 2x +kb +b =4x +3,所以{k 2=4kb +b =3,解得{k =2b =1或{k =−2b =−3,即f (x )=2x +1或f (x )=−2x −3.故选:AD . 10、已知函数f(x)=x−b x 2+1是奇函数,则下列选项正确的有( )A .b =0B .f(x)在区间(1,+∞)单调递增C .f(x)的最小值为−12D .f(x)的最大值为2 答案:AC分析:利用函数是奇函数,可得f(0)=0,求出b可判断A;利用函数的单调性以及利用单调性求最值可判断B、C、D.函数f(x)=x−bx2+1是奇函数,则f(0)=0,代入可得b=0,故A正确;由f(x)=x−bx2+1=xx2+1=1x+1x,对勾函数y=x+1x在(1,+∞)上单调递增,所以f(x)=1x+1x在(1,+∞)上单调递减,故B错误;由y=x+1x ∈(−∞,−2]∪[2,+∞),所以f(x)=1x+1x∈[−12,0)∪(0,12],所以f(x)min=−12,故C正确、D错误.故选:AC11、已知函数y=f(x−1)的图象关于x=1对称,且对y=f(x),x∈R,当x1,x2∈(−∞,0]时,f(x2)−f(x1)x2−x1<0成立,若f(2ax)<f(2x2+1)对任意的x∈R恒成立,则a的可能取值为()A.−√2B.−1C.1D.√2答案:BC解析:由已知得函数f(x)是偶函数,在[0,+∞)上是单调增函数,将问题转化为|2ax|<|2x2+1|对任意的x∈R恒成立,由基本不等式可求得范围得选项.因为函数y=f(x−1)的图象关于直线x=1对称,所以函数y=f(x)的图象关于直线x=0(即y轴)对称,所以函数f(x)是偶函数.又x1,x2∈(−∞,0]时,f(x2)−f(x1)x2−x1<0成立,所以函数f(x)在[0,+∞)上是单调增函数.且f(2ax)<f(2x2+1)对任意的x∈R恒成立,所以|2ax|<|2x2+1|对任意的x∈R恒成立,当x=0时,0<1恒成立,当x≠0时,|a|<|2x2+1||2x|=|x+12x|=|x|+|12x|,又因为|x|+|12x |≥2√|x|⋅|12x|=√2,当且仅当|x|=√22时,等号成立,所以|a|<√2,因此−√2<a<√2,故选:BC.小提示:方法点睛:不等式恒成立问题常见方法:① 分离参数a ≥f (x )恒成立(a ≥f (x )max 即可)或a ≤f (x )恒成立(a ≤f (x )min 即可);② 数形结合(y =f (x ) 图象在y =g (x ) 上方即可);③ 讨论最值f (x )min ≥0或f (x )max ≤0恒成立.12、已知幂函数f(x)=(m +95)x m ,则下列结论正确的有( ) A .f (−32)=116 B .f(x)的定义域是R C .f(x)是偶函数D .不等式f (x −1)≥f (2)的解集是[−1,1)∪(1,3] 答案:ACD分析:首先求函数的解析式,再根据幂函数的性质,判断定义域,奇偶性,以及解不等式. 因为函数是幂函数,所以m +95=1,得m =−45,即f (x )=x −45,f (−32)=[(−2)5]−45=(−2)−4=116,故A 正确;函数的定义域是{x |x ≠0},故B 不正确; ∵f (−x )=f (x ),所以函数是偶函数,故C 正确;函数f (x )=x −45在(0,+∞)是减函数,不等式f (x −1)≥f (2)等价于|x −1|≤2,解得:−2≤x −1≤2,且x −1≠0,得−1≤x ≤3,且x ≠1,即不等式的解集是[−1,1)∪(1,3],故D 正确. 故选:ACD13、已知函数f(x)={−x,x <0x 2,x >0,则有( )A .存在x 0>0,使得f (x 0)=−x 0B .存在x 0<0,使得f (x 0)=x 02C .函数f (−x )与f(x)的单调区间和单调性相同D .若f (x 1)=f (x 2)且x 1≠x 2,则x 1+x 2≤0 答案:BC分析:根据函数解析式,分别解AB 选项对应的方程,即可判定A 错,B 正确;求出f (−x )的解析式,判定f (−x )与f(x)的单调区间与单调性,即可得出C 正确;利用特殊值法,即可判断D 错. 因为f(x)={−x,x <0x 2,x >0,当x 0>0时,f(x 0)=x 02,由f (x 0)=−x 0可得x 02=−x 0,解得x 0=0或−1,显然都不满足x 0>0,故A 错;当x 0<0时,f(x 0)=−x 0,由f (x 0)=x 02可得−x 0=x 02,解得x 0=0或−1,显然x 0=−1满足x 0<0,故B 正确;当x <0时,f(x)=−x 显然单调递减,即f(x)的减区间为(−∞,0);当x >0时,f(x)=x 2显然单调递增,即f(x)的增区间为(0,+∞);又f(−x)={x,−x <0x 2,−x >0={x,x >0x 2,x <0,因此f (−x )在(−∞,0)上单调递减,在(0,+∞)上单调递增;即函数f (−x )与f(x)的单调区间和单调性相同,故C 正确;D 选项,若不妨令x 1<x 2,f (x 1)=f (x 2)=14,则x 1=−14,x 2=12,此时x 1+x 2=14>0,故D 错; 故选:BC.小提示:关键点点睛:求解本题的关键在于根据解析式判定分段函数的性质,利用分段函数的性质,结合选项即可得解. 填空题14、若幂函数y =f(x)的图像经过点(18,2),则f(−18)的值为_________. 答案:−2分析:根据已知求出幂函数的解析式f(x)=x −13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a , 由题得2=(18)a =2−3a,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2. 所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 15、若函数y =f(x)的值域是[12,3],则函数F(x)=f(2x +1)+1f(2x+1)的值域是________.答案:[2,103]分析:由给定条件求出f(2x +1)的值域,换元借助对勾函数性质即可得解. 因函数y =f(x)的值域是[12,3],从而得函数t =f(2x +1)值域为[12,3],函数F(x)变为y =t +1t,t ∈[12,3],由对勾函数的性质知y =t +1t在[12,1]上递减,在[1,3]上递增,t =1时,y min =2,而t =12时,y =52,t =3时,y =103,即y max =103,所以原函数值域是[2,103]. 所以答案是:[2,103]16、(1)函数y =x 45的定义域是________,值域是________; (2)函数y =x −25的定义域是________,值域是________; (3)函数y =x 32的定义域是________,值域是________; (4)函数y =x −34的定义域是________,值域是________.答案: R [0,+∞) (−∞,0)∪(0,+∞) (0,+∞) [0,+∞) [0,+∞) (0,+∞) (0,+∞) 分析:画出对应幂函数的图像,结合幂函数的图像特征,写出定义域与值域 (1)幂函数y =x 45图像如图所示,定义域为R ,值域为[0,+∞),(2)幂函数y =x −25图像如图所示,定义域为(−∞,0)∪(0,+∞),值域为(0,+∞),(3)幂函数y =x 32图像如图所示,定义域为[0,+∞),值域为[0,+∞),(4)幂函数y=x−34图像如图所示,定义域为(0,+∞),值域为(0,+∞),所以答案是:(1)R;[0,+∞),(2)(−∞,0)∪(0,+∞);(0,+∞),(3)[0,+∞);[0,+∞),(4)(0,+∞);(0,+∞).解答题17、已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=−x2+2x.(1)求x<0时,函数f(x)的解析式;(2)若函数f(x)在区间[−1,a−2]上单调递增,求实数a的取值范围.(3)解不等式f(x)≥x+2.答案:(1)f(x)=x2+2x;(2)(1,3];(3)(−∞,−2]分析:(1)设x<0,计算f(−x),再根据奇函数的性质f(x)=−f(−x),即可得对应解析式;(2)作出函数f(x)的图像,利用数形结合思想,列出关于a的不等式组求解;(3)由(1)知分段函数f(x)的解析式,分类讨论解不等式再取并集即可.(1)设x<0,则−x>0,所以f(−x)=−(−x)2+2(−x)=−x2−2x又f(x)为奇函数,所以f(x)=−f(−x),所以当x<0时,f(x)=x2+2x,(2)作出函数f(x)的图像,如图所示:要使f(x)在[−1,a −2]上单调递增,结合f(x)的图象知{a −2>−1a −2≤1,所以1<a ≤3,所以a 的取值范围是(1,3].(3)由(1)知f(x)={−x 2+2x,x ≥0x 2+2x,x <0,解不等式f(x)≥x +2,等价于{x ≥0−x 2+2x ≥x +2或{x <0x 2+2x ≥x +2,解得:∅或x ≤−2综上可知,不等式的解集为(−∞,−2]小提示:易错点睛:本题考查利用函数奇偶性求解分段函数解析式、根据函数在区间内的单调性求解参数范围的问题,易错点是忽略区间两个端点之间的大小关系,造成取值范围缺少下限,属于基础题. 18、求下列函数的值域:(1)f (x )=x 2+2x +1(x ∈{−2,−1,0,1,2}); (2)f (x )=2x+1x−3(3)f (x )=√−2x 2+x +3; (4)f (x )=x −√1−2x . 答案:(1){0,1,4,9} (2)(−∞,2)∪(2,+∞) (3)[0,5√24](4)(−∞,12]分析:(1)将−2,−1,0,1,2代入f (x )求解即可;(2)形如y =ax+b cx+d (ac ≠0,ad ≠bc )的函数常用分离常数法求值域,y =ax+b cx+d =a c +b−ad c cx+d ,其值域是{y |y ≠a c }.(3)根据二次函数的顶点式求解值域,再结合根式的定义域求解即可.(4)形如y =ax +b +√cx +d(ac ≠0)的函数常用换元法求值域,先令t =√cx +d ,用t 表示出x ,并注明t 的取值范围,再代入原函数将y 表示成关于t 的二次函数,最后用配方法求值域.(1)因为f (−2)=1,f (−1)=0,f (0)=1,f (1)=4,f (2)=9,所以函数f (x )的值域为{0,1,4,9}.(2)因为f (x )=2x+1x−3=2(x−3)+7x−3=2+7x−3,且7x−3≠0,所以f (x )≠2,所以函数f (x )的值域为(−∞,2)∪(2,+∞). (3)因为f (x )=√−2x 2+x +3=√−2(x −14)2+258,所以0≤f (x )≤5√24,所以函数f (x )的值域为[0,5√24]. (4)设t =√1−2x (换元),则t ≥0且x =−12t 2+12,令y =−12t 2−t +12=−12(t +1)2+1. 因为t ≥0,所以y ≤12,即函数f (x )的值域为(−∞,12].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函 数》复习题
一、 求函数的定义域
1、求下列函数的定义域:
⑴y =
⑵y =
⑶01
(21)111
y x x =+-++
-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1
(2)f x
+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m
的取值范围。
二、求函数的值域
5、求下列函数的值域:
⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=
+ ⑷31
1
x y x -=+ (5)x ≥ ⑸
y = ⑹ 22
5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼
y =⑽
4y =
⑾y x =-6、已知函数222()1
x ax b
f x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式
1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,
()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且
1
()()1
f x
g x x +=
-,求()f x 与()g x 的解析表达式 四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 223y x x =++ ⑵y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是
8、函数236
x
y x -=
+的递减区间是 ;函数y =的递减区间是
五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3
)
5)(3(1+-+=
x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;
⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3
44
2
++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 4
3
)
11、若函数()f x =R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<<
13、函数()f x = )
A 、[2,2]-
B 、(2,2)-
C 、(,2)(2,)-∞-+∞U
D 、{2,2}- 14、函数1
()(0)f x x x x
=+≠是( )
A 、奇函数,且在(0,1)上是增函数
B 、奇函数,且在(0,1)上是减函数
C 、偶函数,且在(0,1)上是增函数
D 、偶函数,且在(0,1)上是减函数
15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪
=-<<⎨⎪≥⎩
,若()3f x =,则x =
16、已知函数f x ()的定义域是(]01,,则g x f x a f x a a ()()()()=+⋅--<≤12
0的定义域为 。
17、已知函数2
1mx n
y x +=
+的最大值为4,最小值为 —1 ,则m = ,n = 18、把函数1
1
y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的
图象的解析式为
19、求函数12)(2--=ax x x f 在区间[ 0 , 2 ]上的最值
20、若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。
21、已知a R ∈,讨论关于x 的方程2680x x a -+-=的根的情况。
22、已知1
13
a ≤≤,若2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-。
(1)求函数()g a 的表达式;(2)判断函数()g a 的单调性,并求()g a 的最小值。
23、定义在R 上的函数(),(0)0y f x f =≠且,当0x >时,()1f x >,且对任意,a b R ∈,
()()()f a b f a f b +=。
⑴求(0)f ; ⑵求证:对任意,()0x R f x ∈>有;⑶求证:()f x 在
R 上是增函数; ⑷若2()(2)1f x f x x ->,求x 的取值范围。
函 数 练 习 题 答 案
一、 函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1{|220,,1}2
x x x x x -≤≤≠≠≠且 2、[1,1]-; [4,9] 3、5[0,];2
11(,][,)3
2
-∞-+∞U 4、11m -≤≤ 二、 函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7
[,3)3
y ∈
(5)[3,2)y ∈- (6)1
{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±= 三、 函数解析式:
1、2()23f x x x =-- ; 2(21)44f x x +=-
2、2()21f x x x =--
3、4()33
f x x =+
4
、()(1f x x =-
;(10)
()(10)
x x f x x x ⎧+≥⎪=⎨<⎪⎩ 5、21()1f x x =- 2()1x g x x =-
四、 单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3] (3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-
7、[0,1]
8、(,2),(2,)-∞--+∞ (2,2]- 五、 综合题:
C D B B D B
14
、(,1]a a -+ 16、4m =± 3n = 17、1
2
y x =
- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- , max ()(2)34f x f a ==-
(2)01a <≤时,2min ()()1f x f a a ==-- ,max ()(2)34f x f a ==- (3)12a <≤时,2min ()()1f x f a a ==-- ,max ()(0)1f x f ==- (4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-
19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪
=<<⎨⎪-+≥⎩
Q (,0]t ∈-∞时,2()1g t t =+为减函数
∴ 在[3,2]--上,2()1g t t =+也为减函数
∴
min ()(2)5g t g =-=, max ()(3)10g t g =-=
20、21、22、(略)。