推荐-数学建模旅游线路的优化设计 精品 精品
数学建模最佳旅游路线的选择模型

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 12 所属学校(请填写完整的全名):鲁东大学参赛队员 (打印并签名) :1. 张亭2. 任雪雪3. 卜范花指导教师或指导教师组负责人 (打印并签名):日期: 2010 年 8 月 2 日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):最佳旅游路线的选择模型摘要:本文研究的是最佳旅游路线的选择问题,此问题属于旅行商问题,我们建立了路径最短,花费最少,省钱、省时、方便三个模型。
根据周先生的不同需求,我们用改良圈算法和多目标规划解决了该问题,之后我们结合实际情况对三个模型进行科学地误差分析,并分析了该算法的复杂性。
针对问题一,题目中给出了100个城市的经纬度,要求我们为周先生设计一条最短的旅行路线,即从驻地出发,经过每个城市恰好一次,再回到驻点。
由此可知,此问题属于旅行商问题。
首先,我们按附件所给各城市的顺序编号1,2,,100,以两城市间的直线距离代替实际距离。
然后,我们运用改良圈算法求解旅行商问题,以任意两点之间的最短距离矩阵为权重,利用1100100(,)w i j ⨯邻接矩阵构造无向图1UG ,据题意不知周先生的起始地点,因此利用Matlab 软件重复进行100次改良圈算法即以每一个城市为出发点,从100个Hamilton 圈得到了最优圈1circle ,即最短的旅行路线。
B题-最佳旅游路线设计

2011年第八届苏北数学建模联赛承诺书我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们的参赛报名号为:2795参赛组别:本科参赛队员(签名) :队员1:队员2:队员3:2011年第八届苏北数学建模联赛编号专用页参赛队伍的参赛号码:竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2011年第八届苏北数学建模联赛题目旅游线路的优化设计摘要随着我国全面建设小康社会的推进,人民的生活质量不断提高,旅行游览活动作为一种新型的高级社会消费形式逐步受到人们的亲睐。
旅游作为一种经济活动,游客如何在时间和费用有限的情况下最大程度的享受旅游的乐趣显得尤其重要。
本文从实际情况出发,建立了离散型目标优化模型和动态规划模型,对模型进行了全方面的论述,并针对本题不同的要求设计出相应的旅游行程表。
建模过程中,首先用科学分析的方法,确定主要因素并对其作数学抽象,再针对各因素综合运用多种数学方法进行分析求解。
第一,我们用主要目标法建立了“离散型单目标优化模型”,并分别确定了五个问题的目标函数以及约束条件;第二,我们将旅游景点看作地图中的点,利用图论中著名的哈密顿回路问题和顺序递推的方法建立了“动态优化模型”;第三,通过查询数据,并利用数理统计的方法求解模型中的参数,从而得出一个与实际接近的完整数学模型。
求解问题过程中,首先把路途时间(路费)、景点停留时间(门票)、住宿时间(住宿费用)和其它时间(其它费用)综合考虑,借鉴历史上著名的货郎担问题的解法巧妙的将路程优化问题转化旅游时间和旅游费用的优化问题,在利用“Floyd算法”时分别将旅游时间和旅游费用作为权成功解决问题一与问题二。
数学建模论文-旅游线路的优化设计

数学建模论文-旅游线路的优化设计一、问题重述随着人们的生活不断提高,旅游已成为提高人们生活质量的重要活动。
江苏徐州有一位旅游爱好者打算在今年的五月一日早上8点之后出发,到全国一些著名景点旅游,由于跟团旅游会受到若干限制,他(她)打算自己作为背包客出游。
他预最后回到徐州。
选了十个省市旅游景点,如附表1(见附录I)所示。
假设(A)城际交通出行可以乘火车(含高铁)、长途汽车或飞机(不允许包车或包机),并且车票或机票可预订到。
(B)市内交通出行可乘公交车(含专线大巴、小巴)、地铁或出租车。
(C)旅游费用以网上公布为准,具体包括交通费、住宿费、景点门票(第一门票)。
晚上20:00至次日早晨7:00之间,如果在某地停留超过6小时,必须住宿,住宿费用不超过200元/天。
吃饭等其它费用60元/天。
(D)假设景点的开放时间为8:00至18:00。
问题:根据以上要求,针对如下的几种情况,为该旅游爱好者设计详细的行程表,该行程表应包括具体的交通信息(车次、航班号、起止时间、票价等)、宾馆地点和名称,门票费用,信息。
在景点的停留时间等(1) 如果时间不限,游客将十个景点全游览完,至少需要多少旅游费用,请建立相关数学模型并设计旅游行程表。
(2) 如果旅游费用不限,游客将十个景点全游览完,至少需要多少时间,请建立相关数学模型并设计旅游行程表。
(3) 如果这位游客准备2000元旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(4) 如果这位游客只有5天的时间,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(5) 如果这位游客只有5天的时间和2000元的旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
二、问题假设1、忽略乘坐出租车时经过收费路段所交的费用;2、在每个城市中停留时,难免会遇到等车、堵车等延时情况,在此问题中我们不做考虑;3、所有旅馆都未客满,并且忽略从旅馆到火车站或景点的时间;4、列车车次和飞机航班没有晚点等情况发生;5、列车和飞机的票足够,没有买不到票的情况发生;6、景点的开放,列车和航班的运营不受天气的影响;7、绘图时,经线和纬线近似平行分布;8、将城市和路径的关系转化为图论问题;9、在时间的认识上,我们把当天的8点至次日的8点作为一天。
数学建模最佳旅游路线的选择模型优选资料

数学建模最佳旅游路线的选择模型优选资料在当今社会,旅游已经成为人们生活中不可或缺的一部分。
无论是为了放松身心、领略不同的风土人情,还是为了增长见识、丰富人生阅历,人们都热衷于踏上旅程。
然而,如何在众多的旅游景点中选择出一条最佳的旅游路线,成为了许多旅行者面临的难题。
这时候,数学建模就能够发挥出其强大的作用,为我们提供科学合理的决策依据。
数学建模是一种通过数学语言和方法来描述和解决实际问题的手段。
在旅游路线选择的问题上,数学建模可以帮助我们综合考虑各种因素,如景点的吸引力、交通便利性、旅行时间和费用等,从而找到最优的解决方案。
接下来,我们将介绍几种常见的用于选择最佳旅游路线的数学建模方法。
一、图论模型图论是数学的一个重要分支,它可以很好地应用于旅游路线的规划。
我们可以将旅游景点看作图中的节点,景点之间的道路看作图中的边,边的权重可以表示距离、时间或费用等。
通过图论中的算法,如最短路径算法(Dijkstra 算法、FloydWarshall 算法等),我们可以找到从起点到终点的最短路径,或者在一定限制条件下(如时间或费用预算)的最优路径。
例如,如果我们想要在有限的时间内游览尽可能多的景点,就可以使用最短时间路径算法来规划路线。
假设我们有 5 个景点 A、B、C、D、E,它们之间的距离和所需时间如下表所示:|起点|终点|距离(km)|时间(h)||::|::|::|::|| A | B | 50 | 1 || A | C | 80 | 15 || A | D | 120 | 2 || A | E | 100 | 15 || B | C | 60 | 1 || B | D | 90 | 15 || B | E | 70 | 1 || C | D | 70 | 1 || C | E | 50 | 05 || D | E | 80 | 1 |如果我们的时间限制为 5 小时,从景点 A 出发,那么通过 Dijkstra 算法可以计算出最优的游览路线为 A B E C D,总时间为 45 小时。
运用数学模型优化旅游线路设计

运用数学模型优化旅游线路设计旅游线路设计是一项复杂的任务,需要考虑众多因素,如旅游景点的位置、时间、距离等。
而数学模型可以帮助我们优化旅游线路的设计,使得旅游线路更加合理、高效。
我们可以运用图论模型来解决旅游线路中的路径选择问题。
图论是研究顶点和边之间关系的数学分支,可以通过建立图模型来描述旅游景点之间的距离、连通关系等。
在图模型中,每个旅游景点可以表示为一个顶点,而两个旅游景点之间的距离则可以表示为边的权重。
通过使用最短路径算法,比如Dijkstra算法或Floyd-Warshall算法,我们可以找到从一个旅游景点到另一个旅游景点的最短路径,从而确定游览的顺序和路径。
我们可以运用约束优化模型来考虑旅游线路中的时间限制和资源分配问题。
约束优化模型可以将旅游线路设计问题转化为一个数学优化问题,通过设定目标函数和约束条件来找到最优解。
我们可以将每个旅游景点的吸引力、游览时间和交通成本等视为目标函数的参数,然后通过设置约束条件来限制旅游线路的总时间、总费用等。
通过求解这个优化问题,我们可以得到一个最优的旅游线路设计方案。
我们还可以运用网络流模型来解决旅游线路中的资源分配问题。
网络流模型是一种用于描述资源流动和分配的数学模型,可以帮助我们合理分配旅游资源,如交通工具、食宿设施等。
通过建立一个网络图模型,将旅游景点和资源之间的关系转化为节点和边,我们可以使用最大流算法来确定每个旅游景点所需的资源量,从而实现资源的均衡和合理分配。
运用数学模型可以帮助我们优化旅游线路的设计。
通过运用图论模型解决路径选择问题、约束优化模型解决时间限制和资源分配问题,以及网络流模型解决资源分配问题,我们可以得到一个更加合理、高效的旅游线路设计方案。
这些数学模型的运用,不仅可以提高旅游线路的满意度和效益,还可以为旅游行业的发展提供科学依据。
2020年(旅游行业)最佳旅游线路数学建模

(旅游行业)最佳旅游线路数学建模最佳旅游路线设计摘要本文主要研究最佳旅游路线的设计问题。
在满足相关约束条件的情况下,花最少的钱游览尽可能多的景点是我们追求的目标。
基于对此的研究,建立数学模型,设计出最佳的旅游路线。
第一问给定时间约束,要求为主办方设计合适的旅游路线。
我们建立了一个最优规划模型,在给定游览景点个数的情况下以人均总费用最小为目标。
再引入0—1变量表示是否游览某个景点,从而推出交通费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。
推荐方案:成都→都江堰→青城山→丹巴→乐山→成都,人均费用为949元(此处不考虑旅游人数对游览费用的影响)。
第二问放松时间约束,要求代表们游遍所有的景点,该问题也就成了典型的货郎担(TSP)问题。
同样使用第一问的模型,改变时间约束,使用lingo编程得到最佳旅游路线为:成都→乐山→峨眉→海螺沟→康定→丹巴→四姑娘山→青城山→都江堰→九寨沟→黄龙→成都,人均费用为3243元。
第三问要求在第一问的基础上充分考虑代表们的旅游意向,建立模型求解。
通过对附件一数据的观察,我们使用综合评判的方法,巧妙地将代表们的意愿转化为对相应旅游景点的权重,再对第一问的模型稍加修改,编程求出对应不同景点数的最佳路线。
推荐路线:成都→乐山→都江堰→青城山→丹巴→成都,人均费用为927元。
对于第四问,由于参观景点的人数越多每人承担的费用越少,因此我们要考虑的是尽量使得两组代表在共同旅游的时间内在相同的景点游览。
正是基于此,我们建立模型求解。
推荐路线:第一组:成都→乐山→丹巴→都江堰→青城山→成都第二组:成都→都江堰→青城山→峨眉→乐山→成都,两组在都江堰会合并且共同游览了都江堰和青城山,人均费用为971元。
第五问中,首先我们修改了不合理数据,并用SPSS软件对缺省数据进行了时间序列预测。
其次我们合理定义了阴雨天气带来的损失,以人均总花费最小和阴雨天气带来的损失最小为目标,建立加权双目标规划模型。
数学建模论文:最佳旅游路线

数学建模论文
最佳旅游路线设计
摘要
为了提出合适的旅游线路,从实际情况出发考虑,本文建立了合适的线路 选择模型,并给出了一些结果。
问题一为既考虑旅游消费,又考虑旅游的景点数的旅游线路选择问题。本 文对去各景点间的路费、景点门票、在景点内每天的平均消费加以考虑,建立了 0 1规划模型。对于多目标模型,我们采用适当的拟合将多目标转化为单目标。 并使用 lingo 软件编程得出最优旅游线路及合适的旅游时间为: 二号线:成都→ 乐山→峨嵋,最合适的旅游时间均为 1 天;三号线:成都→四姑娘山→丹巴,最 合适的旅游时间均为 1 天;四号线:成都→都江堰→青城山,最合适的旅游时间 为都江堰 2 天,青城山 1 天;五号线:成都→康定, 最合适的旅游时间为 1 天。 并对最优线路给出了详细的评价。
n ——10 天中的总消费(单位:元)
tij ——在第 i 条线路第 j 个景点观赏的总时间(单位:天) 模型二中:
xij ——路线决策变量( 0 1变量) mij —— i 景点到 j 景点间的路费(单位:元) L ——总路费(单位:元)
模型三中:
si ——去第 i 条线路的满意度 ri0 ——去第 i 条线路的满意度上限 ri1 ——去第 i 条线路的满意度下限 k ——整个旅游过程中的满意度之和
通过数学建模设计四川11名景最佳旅游路线

某 旅 游 团 组 织 参 观 四 川 省 境 内 的 著 名 自 然 和 人 文 景 观 , 步设想有 如下线路可供选择 : 初 号线 : 都一 九寨沟 、 龙. 成 黄
一
4 3 O 4 0 2 0 1 3 0 8 4 8 7 0 2 O 5 3 0
0 4 0 4O 2O 2 O 3 O 2 2 1 3 4 O 3 0
7 0
2 .每 个 景 点 的旅 游 天 数 为 2天 , 初 步 设 想 的 每 条 路 则
线 的旅 游 周 期 为 4天 .
六 、 型 的建 立 与 求 解 模
3 .每 个 景 点 的 同定 消 费 为 1 0元 . 0
问题 : 比照 T P巡 回旅 行 商 问 题 , 立 T P模 型 , 用 S 建 S 利
三 、 号 Mn x .
目标 函 数 =所 选 择 两 城 市 之 间 的 距 离 求 和 取 最 小 .
Il 1 1
问题 符 号 说 明 :
Ⅳ 各 地 方 .v 一 成 都 , 一 九 寨 沟 , 黄 龙 ,v一 乐 : , Ⅳ Ⅳ一 ,4
数 学 学 习与 研 究 2 1 . 7 O O 1
四 姑 2 5 5O 4 0 3 0 4 0 O l0 10 2 O 3 0 5 5 5 6 8 2 1 9 0 0 2 0
二号线 : 都一乐 山 、 眉山. 成 峨 号 线 : 都 一 四姑 娘 山 、 巴. 成 丹 四号 线 : 都 一 都 江 堰 、 城 山. 成 青
娘山
丹 巴 3 O 5 0 6 6 5 57 4 0 41 1 O O 3 O 31 l 0 1 0 0 7 0 1 l O 9 4
都 江 堰 7 4 O 5 2 0 2 0 1 O 3 O 0 0 8 3 0 0 3 9 1 青 城 山 8 4 0 6 2 0 2 0 2 O 3 0 1 0 9 3 O 1 4 O 1 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、问题重述随着人们的生活不断提高,旅游已成为提高人们生活质量的重要活动。
江苏徐州有一位旅游爱好者打算在今年的五月一日早上8点之后出发,到全国一些著名景点旅游,最后回到徐州。
由于跟团旅游会受到若干限制,他(她)打算自己作为背包客出游。
他预选了十个省市旅游景点,如附表1(见附录I)所示。
假设(A)城际交通出行可以乘火车(含高铁)、长途汽车或飞机(不允许包车或包机),并且车票或机票可预订到。
(B)市内交通出行可乘公交车(含专线大巴、小巴)、地铁或出租车。
(C)旅游费用以网上公布为准,具体包括交通费、住宿费、景点门票(第一门票)。
晚上20:00至次日早晨7:00之间,如果在某地停留超过6小时,必须住宿,住宿费用不超过200元/天。
吃饭等其它费用60元/天。
(D)假设景点的开放时间为8:00至18:00。
问题:根据以上要求,针对如下的几种情况,为该旅游爱好者设计详细的行程表,该行程表应包括具体的交通信息(车次、航班号、起止时间、票价等)、宾馆地点和名称,门票费用,在景点的停留时间等信息。
(1) 如果时间不限,游客将十个景点全游览完,至少需要多少旅游费用?请建立相关数学模型并设计旅游行程表。
(2) 如果旅游费用不限,游客将十个景点全游览完,至少需要多少时间?请建立相关数学模型并设计旅游行程表。
(3) 如果这位游客准备2000元旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(4) 如果这位游客只有5天的时间,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(5) 如果这位游客只有5天的时间和2000元的旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
二、问题假设1、忽略乘坐出租车时经过收费路段所交的费用;2、在每个城市中停留时,难免会遇到等车、堵车等延时情况,在此问题中我们不做考虑;3、所有旅馆都未客满,并且忽略从旅馆到火车站或景点的时间;4、列车车次和飞机航班没有晚点等情况发生;5、列车和飞机的票足够,没有买不到票的情况发生;6、景点的开放,列车和航班的运营不受天气的影响;7、绘图时,经线和纬线近似平行分布;8、将城市和路径的关系转化为图论问题;9、在时间的认识上,我们把当天的8点至次日的8点作为一天。
三、符号说明四、问题分析4.1问题一的分析针对问题一,要求求出将旅游景点全游览完,所需的最少旅游费用。
这和TSP问题,即旅行商问题有些类似,所以本文将问题向TSP问题进行一定的转化,从而进行求解。
因为运用传统的动态规划解法,解法的空间复杂性和时间复杂性都十分庞大,不利于求解,所以采用蚁群算法,通过计算机Matlab软件进行编程得到路程最短的旅行路线。
因题目要求时间不限,用最少的旅游费用游览全部景点,而考虑到不同交通工具的速度和票价都不相同,各个旅馆的住宿费用也不相同,所以我们对其行程进行详细的安排,尽量减少其在交通和住宿上的费用,减少不必要的花费。
最后得出一个最少旅游费用的旅游行程表。
4.2问题二的分析针对问题二,要求求出将旅游景点全游览完,所需的最少时间。
因为考虑到交通工具的不同导致时间上的差异问题,所以仅用问题一的模型不能求解。
但是由于任意两座城市之间都能相连接起来,且每座城市只经过一次,所以将任意两座城市之间的路程转变为时间,建立最优化模型,通过计算机Lingo 软件进行编程,到时间最短的旅游路线。
然后,根据题目要求,再对其行程进行详细的安排,尽量避免不必要的时间。
最后得出一个最短时间的旅游行程表。
4.3问题三的分析针对问题三,题目给出了限制条件,旅游费用不超过2000元。
只用2000元游览完全部景点是不可能的,所以我们对其行程进行优化。
首先,将问题一的旅游行程根据旅游景点和交通路线划分成21个部分(包括10个景点和11条交通线路),并计算出每一个部分所要花费的旅游费用。
然后,对旅游行程进行优化计算,为了简化运算,我们假设交通线路上花费的费用只是简单相加。
通过除去旅游景点计算出2000元以下的费用最优解。
最后得出一个2000元以下的旅游行程表。
4.4问题四的分析针对问题四,题目也给出了限制条件,旅游时间不超过5天。
只用5天游览完全部景点是不可能的,所以我们对其行程进行优化。
解法与问题三大致相同。
首先,对问题二的旅游行程也根据旅游景点和交通路线划分成21部分(包括10个景点和11条交通线路),并计算出每一个部分所要花费的时间。
然后,对旅游行程进行优化计算,为了简化运算,我们假设交通线路上花费的时间只是简单相加。
通过除去旅游景点计算出5天以内的时间最优解。
最后得出一个5天以内的旅游行程表 4.5问题五的分析针对问题五,题目给出了两个限制条件,旅游费用不超过2000元,并且旅游时间在5天以内。
只用5天和2000元游览完10个景点是不可能的,所以我们对其进行优化。
由于飞机价格非常高,所以我们基于第三问,并且结合第四问的数据对其进行优化。
首先,对旅游行程也根据旅游景点和交通路线划分成21部分(包括10个景点和11条交通线路),并计算出每一部分所要花费的时间和费用。
然后,对旅游行程进行优化计算,为了简化运算,我们假设交通线路上花费的时间和费用只是简单相加。
通过除去旅游景点计算出2000元以下和5天以内的时间最优解。
最后得出一个最优旅游行程表。
五、 模型的建立与求解5.1问题一的求解5.1.1建立图论的数学模型将各个旅游景点之间的关系转化为图论问题,并做以下分析:建立有向图(,)G V A =。
其中12{,,......,}n V V V V =称为图G 的顶点集,V 中的每一个元素(1,2,......)i V i n =称为该图的一个顶点,在该题中表示n 城市;12{,,......}n A a a a =称为图G 的弧集,A 中的每个元素(,)k i j a V V =称为该图的一条从i V 到j V 的弧,在此题中表示各个城市两两连线的集合。
[1]设城市个数为n ,ij d 表示两个城市i 与j 之间的距离,ij x =0或1(1表示走过城市i 到城市j 的路,0表示没有选择走这条路)。
本题可以向TSP 问题进行转化,则TSP 问题的数学模型为:min ij ij i jd x ≠∑5.1.2建立蚂蚁算法的数学模型(1)状态转移规则因为蚂蚁k 不能重复经过一个城市,所以建立禁忌表(1,2,......)k tabu k m =来记录蚂蚁走过的城市,禁忌表随着时间做动态变化。
建立蚂蚁k 由i 城市转移到j 城市的状态转移概率如下:[][][]()() ()()() 0 k ij ik kkis is ij s tabu kt t j tabu t t p t j tabu αβατητηβ⊄⎧⎡⎤⎣⎦⎪∉⎪=⎨⎪⎪∈⎩∑ (1)上式中α为信息启发式因子,表示路径的相对重要性,是对所积累的信息素影响作用的一个加权值;β为期望启发式因子,表示能见度的相对重要性;每只蚂蚁必须依据以城市距离和连接边上信息素的数量为变量的概率函数,决定选择下一个城市的概率。
每只蚂蚁必须根据禁忌表和概率函数寻找下一个城市,以保证该蚂蚁从起点出发经过所有城市有且只有一次,并且最终返回到起点。
(2)信息素的全局更新规则当m 只蚂蚁成功的完成一次寻径过程之后,将选出目标函数值最小的路径,用以完成全局信息素的更新,使得较优解保留下来,对后继蚂蚁产生影响,加快收敛到最优解的速度。
设i ,j 为两个相连接点,则有:()()()(,)1,,ij ij ij i j i j i j τρτρτ←−−-+⨯∆ (2)其中,变量(),ij i j τ∆是在t 时刻,节点,i j 之间路上信息素的增加量()()1,(),0ij if i j global best tourL i j otherwise τ-⎧∈--∆=⎨⎩短 ρ是位于[0,1]上的“激素”挥发因子;L 短为到目前为止所找到全局最短路径长度。
(3)信息素的局部更新对于第k 只蚂蚁,在建立一个解得过程中也同时进行激素迹的更新,如果节点,i j 是它所选择路径上的两个相邻节点,规则如下:()()()()1ij ij ij t t t τρτρτ←−−-+⨯∆否则,不更新。
其中,0ρ<<1,0()ij t ττ∆=,0τ是各条路上的信息素的初始值,通常取同一值,表示同一环境。
信息素的更新策略有很多种方法,每种更新策略的主要差别体现在()kij t τ∆的求法上。
我们规定蚂蚁在完成一个循环后更新所有路径上的信息素,其方程式为:() k i,j 0 kkij Q L t τ⎧⎪∆=⎨⎪⎩蚂蚁本次循环经过()否则 (3) 上式中Q 表示蚂蚁携带信息素的量,其值的大小影响算法的收敛速度;k L 表示第k 只蚂蚁在本次循环中所走的路程总长度。
5.1.3基于蚁群算法的实现步骤[2]本题基于蚁群算法的实现步骤如下: 1step :初始化。
时间0t =,循环次数0c n =,设置最大循环次数为max c n ,()00ij τ∆=;2step :循环次数c n ++;3step :蚂蚁个数k ++;4step :蚂蚁选择可以到达的城市,按照状态转移规则移动到下一个城市j ; 5step :对于城市j ,由于已经到达,所以添加到禁忌表中;6step :判断所有城市是否都经过,若未完全经过,表明蚂蚁个数没有达到m ,则转向执行3step ,否则执行7step ;7step :由于信息素改变,要求按照公式(2)(3)更新最短路径信息素,使得较优解保留,加快收敛到最优解的速度;8step :若max c c n n <表明没有满足终止条件,即转向执行2step ,否则执行9step ; 9step :输出最优结果。
5.1.4模型的求解(1)求解城市之间的距离首先,假设经线和纬线近似平行分布,根据附表2(见附录I )可知11座城市的经纬坐标。
建立直角坐标系,以纬度最低的城市所在的纬线为x 轴,以经度最小的城市所在的经线为y 轴,计算11座城市的坐标。
将城市进行编号,计算相应城市间的距离得到附表3(见附录I ),得到编程数据(见附录II )。
(2)求解最短路径利用上述蚁群算法的步骤,使用附录II 的数据,编写Matlab 程序,得出以下结果: Shortest_Route =6 9 5 4 3 1 2 117 10 8图一:Matlab 模拟图对上述结果进行处理,根据城市编号求出最优解为:徐州→常州→舟山→黄山→九江→武汉→洛阳→西安→祁县→北京→青岛→徐州由上面结果可以在中国地图上模拟出最短路线,如下:图二:问题一模拟路径图5.1.5设计旅游行程表和求出总费用我们根据蚁群算法得出游览全部景点的最短路径,在得出的最短路径的基础上,我们通过查阅火车票价、车次、运营时间,宾馆价格、名称等大量资料和数据,尽可能的减少其在行程上的花费,设计出如下旅游行程表:日期时间行程价格(元)5月1日8:30—15:45乘坐L8449次列车(徐州——常州)34 16:00——21:00游览常州市0 21:00——7:00住宿于常州蓝色快舟营销人连锁旅店1205月2日7:00——8:00乘坐公交去中华恐龙园4 8:00——16:00游览中华恐龙园160 16:00——17:00乘坐公交返回4 17:00——22:30游览常州市0 22:30——5:20乘坐K75次列车(常州——宁波)735月3日5:30——8:00乘坐758W公交到白峰码头——乘坐船到普陀山16 8:00——14:00游览普陀山200 14:00——16:00返回宁波站16 16:00——22:15乘坐K8500次列车(宁波——宣城)63 22:15——1:30候车0并且得出最少的总旅游费用为3438元。