李代数sl(2,C)上的经典Yang—Baxter方程的解及其应用
代数方程的解法及应用

代数方程的解法及应用一、代数方程的定义与分类1.代数方程的概念:含有未知数的等式称为代数方程。
2.代数方程的分类:a)一元一次方程:形式为ax + b = 0,其中a、b为常数,a≠0。
b)一元二次方程:形式为ax^2 + bx + c = 0,其中a、b、c为常数,a≠0。
c)二元一次方程:形式为ax + by = c,其中a、b、c为常数,a、b≠0。
d)多元方程:含有多个未知数的方程。
二、代数方程的解法1.解的概念:使方程两边的代数式相等的未知数的值称为方程的解。
a)因式分解法:将方程化为几个整式的积的形式,从而求出未知数的值。
b)公式法:利用求根公式求解一元二次方程。
c)配方法:将方程转化为完全平方的形式,从而简化方程求解。
d)消元法:将方程组中的方程相加、相减或相乘,消去一个或多个未知数,从而求解。
e)图像法:利用函数图像求解方程的解。
三、代数方程的应用1.实际问题与方程的建立:a)利润问题:成本、售价、利润与数量的关系。
b)面积问题:几何图形的面积与边长、角度的关系。
c)速度问题:路程、速度、时间的关系。
d)增长率问题:增长率、增长量与原始数量的关系。
2.方程在生活中的应用:a)财务管理:投资、贷款、利息等问题。
b)物品配置:资源分配、优化问题。
c)生产计划:生产成本、产量、利润等问题。
d)社会问题:人口增长、环保等问题。
四、方程的变形与求解步骤1.方程的变形:a)移项:将方程中的未知数移至等式的一边。
b)合并同类项:将方程中的同类项合并。
c)系数化简:将方程中的系数化为1。
2.求解步骤:a)分析方程的类型与特点。
b)选择合适的解法。
c)按照解法求解。
d)检验解的正确性。
五、方程的解的性质与判定1.解的性质:a)唯一性:一元一次方程和一元二次方程通常有唯一解。
b)无限性:线性方程组和多项式方程的解可能无限多。
c)存在性:非线性方程可能无解或存在多个解。
2.解的判定:a)有解:方程两边代数式相等时,方程有解。
yang baxter方程

yang baxter方程
Yang-Baxter方程是一个数学方程,涉及到代数和数学物理学领域。
它是由中文数学家杨振宁和美国数学家Baxter于20世纪70年代提出的。
该方程定义了三个线性空间V,W和Z之间的线性映射R。
如果R 满足以下方程:
R12R13R23 = R23R12R13
其中R12 = R I I,R13 = I R I,R23 = I I R,I是恒等映射,表示张量积,则称R为Yang-Baxter映射。
这个方程在代数和数学物理学中都有非常广泛的应用。
在代数学中,它与李群的可积表示理论相关;在数学物理学中,它与量子群、统计物理等领域有紧密联系。
Yang-Baxter方程的研究在数学和物理学中都有重要意义,它不仅是研究李群、量子群和统计物理等领域的重要工具,还对解决其它代数问题有一定的启示作用。
- 1 -。
Long-range SL(2) Baxter equation in N=4 super-Yang-Mills theory

a r X i v :h e p -t h /0609068v 3 20 D e c 2006Long-range SL (2)Baxter equation in N =4super-Yang-Mills theoryA.V.BelitskyDepartment of Physics,Arizona State UniversityTempe,AZ 85287-1504,USAAbstract Relying on a few lowest order perturbative calculations of anomalous dimensions of gauge invariant operators built from holomorphic scalar fields and an arbitrary number of covariant derivatives in maximally supersymmetric gauge theory,we propose an all-loop generalization of the Baxter equation which determines their spectrum.The equation does not take into account wrapping effects and is thus asymptotic in character.We develop an asymptotic expansion of the deformed Baxter equation for large values of the conformal spin and derive an integral equation for the cusp anomalous dimension.1IntroductionFour-dimensional nonabelian gauge theories were found to possess integrable structures.Initiallythey had been discovered in evolution equations for scattering amplitudes in multi-color limit of high-energy QCD[1,2].Subsequently it was demonstrated that hidden symmetries also arisein thefield-theoretical dilatation operator whose eigenvalues determine anomalous dimensionsof gauge invariant composite operators of elementaryfields in underlying models.Integrability was revealed in one-loop anomalous dimensions of twist-L maximal-helicity quasipartonic Wilsonoperators in QCD[3]by identifying the former with eigenenergies of the L−site XXX Heisenbergspin chain[4].The magnet turns out to be noncompact,for the spin operators acting on its sites transform in the infinite-dimensional representation of the collinear subgroup SL(2,R)ofthe conformal group SO(4,2).Since the one-loop phenomenon is spawned by gluons,invariably present in Yang-Mills theories,—supersymmetric or not,—they all necessarily exhibit the same,universal integrable structures.The differences arise due to distinct particle contents of themodels:while only holomorphic sectors are integrable in QCD and its nearest supersymmetric N=1,2siblings[5],the maximal supersymmetry of the N=4super-Yang-Mills theory extends integrability to all operators[6,7,8,5].Recent perturbative studies build up a growing amountof direct evidence that integrability persists in certain closed compact[7,8]and noncompact [9,10,11,12,13]subsectors of gauge theories even in higher orders of perturbation theory.Thus,while ruled out for gauge theories with N<4supercharges,it is plausible that the max-imally supersymmetric Yang-Mills theory is completely integrable.An additional confirmation for this conjecture comes from studies of multi-loop multi-leg scattering amplitudes which display intriguing iterative structures[14,15].These arguments suggest that the spectrum of all-loop anomalous dimensions in N=4SYM theory is determined by a putative long-range integrable spin chain with the dilatation operator being its Hamiltonian.In this note we probe the underlying integrable long-range magnet by proposing its multi-loopperturbative structure within the framework of the Baxter Q−operator[16].This approach isbased on the existence of an operator Q(u)depending on a spectral parameter u and acting on the Hilbert space of the magnet.For different values of u it forms a family of mutually commuting operators,simultaneously commuting with the spin-chain Hamiltonian as well.Although in the present circumstances,the formalism is equivalent to the Bethe Ansatz approach,it possesses certain advantages.First,the eigenvalue Q(u)of the Baxter operator Q(u)determines the single-particle wave function of the chain in the representation of separated variables[17].Second,the equation for the Q−operator,—known as the Baxter equation,—is polynomial,to be contrasted with a set of coupled transcendental Bethe equations.Third,it allows for a straightforward asymptotic analysis when quantum numbers of the chain are large as will be demonstrated below.Currently we restrict our consideration to the closed noncompact SL(2)sector of the gauge[18,19]theory which is spanned by single-trace maximal R−charge Wilson operators built from the holomorphic scalarfields X=φ1+iφ2and covariant derivatives,O n1n2...n L(0)=tr{(iD+)n1X(0)(iD+)n2X(0)...(iD+)n L X(0)}.(1.1) Here D+=Dµnµis projected on the light cone with a null vector nµ,n2=0,in order to factor out the maximal Lorentz-spin component from the operator in question.These Wilson operators mix with each other under renormalization group evolution and acquire anomalous dimensionsat all orders of perturbative series in coupling constant1∞ n=1g2nγ(n).(1.2)γ(g)=Wefind it convenient to use the expansion parameter g related to the’t Hooft coupling constant λvia√N cg=2 ln Q(0)(i2 ln Q(0)(−i2)−ln Q(0)(−i2 of the scalarfield X,u±=u±i1Their complete two-loop planar mixing matrix has been recently computed in Ref.[13].the number of its nodes on the real u −axis coinciding with the spin N of the operator.The polynomialQ (u )=N n =1(u −u n (g )),(2.2)fulfills these properties and is real Q ∗(u )=Q (u ∗)for u ∗=u .In Ref.[13]we found from available two-[22,23,9,10]and three-loop[24,25,26]diagrammatic calculations of anomalous dimensions that the Baxter equation possesses the formx L +e σ+(x +)Q (u +i )+x L −e σ−(x −)Q (u −i )=t (u )Q (u ),(2.3)with the dressing factors depending on the renormalized spectral parameter [27]x [u ]=1u 2−g 2 ,x ±=x [u ±].(2.4)The multi-loop transfer matrix 2t (u )=2u L +q 1(g )u L −1+q 2(g )u L −2+···+q L (g )(2.5)acquires the “missing”term ∼u L −1at g 2−order,i.e.,q 1(g )∼O (g 2),while the rest of the chargesstart from O (g 0),q k (g )=q (0)k +O (g 2).The additional dressing factors σ±obey the complexconjugation condition (σ−(x −))∗=σ+(x +)for ℑm u =0and encode the renormalization of the noncompact charges q k (g )at higher orders.An analysis yielded the following result to three-loop order [13]σ±(x )=−g 22) ′−g 42) ′′+x ln Q (±i2[ln Q (u )]′+g 4384[ln Q (u )](5)+O (g 8) u =i/2u =−i/2.(2.7)The anomalous dimensions found using these equations reproduced exactly available perturbative predictions.One can demonstrate that the condition of the pole-free transfer matrix at Bethe roots u n (g ),t (u n )=0immediately produces the three-loop Bethe Ansatz of Ref.[28].3Multi-loop conjectureThe above representation (2.6)of the dressing factors σ±can be brought to a very suggestive ly,a quick inspection allows one to rewrite these terms as an expansion in terms of the Chebyshev polynomials of the second kind U k ,σ±(x )=2g 1−t 2 ln Q (±i 2x n +1U n (t )2Note that with this transfer matrix the resulting Baxter equation breaks down already at order O (g 2n )in coupling constant with n =L .It turns out that one can correctly incorporate order n =L corrections by replacing the leading term in t (u )with the following combination 2u L →x L ++x L −−(i 2)L .with n max =2,valid to O (g 3)in the approximation of Eq.(2.6).Having this representation at our disposal,we may naturally extend the first few terms of the available perturbative series to all orders in coupling g ,by sending n max →∞.Using the summation theorem for Chebyshev polynomials,one can sum the infinite series up into the function −(arccot t +2x/g 1−t 2)/√2πx 10dz 1−1dt 1−t 2 ln Q ±iz t +¯z g 2πln Q ±i √u 2−g 2πln Q ±i √2L defining the quadratic Casimirq (0)2=−J (0)(J (0)−1)−12L +12L →J =N +12(γ+(g )−γ−(g )).(3.4)Consequently,we may naturally identify the addendum with the anomalous dimensions of a multiplicatively renormalizable composite operators,γ(g )=γ+(g )−γ−(g ).Making use of the explicit form of the dressing factors σ±,we find the integral representation of γ(g )in terms of the solution to the Baxter equation,γ(g )=i g 21−t 2 ln Q i 2−g t ′.(3.5)The Taylor expansion shows that the lowest three orders in g 2coincide with Eq.(2.7).The Baxter equation (2.3)can be solved analytically order-by-order in coupling constant for specific values of L and N ,e.g.,for L =4,N =2eigenvalue with zero quasimomentum reads 3,γ(g )=5±√2g 2−17±5√8g 4+585±207√160g 6−5185±2039√640g 8+O (g 10).(3.6)However,it has a limited range of applicability being asymptotic in character:it allows tofind the anomalous dimensions up to order O(g2n)only for operators of length L≥n.This restriction arises from the breaking of its polynomiality above a boundary value of n,i.e.,for L≤n.Analogous limitations apply to the Bethe Ansatz equations of Ref.[27].A generic dependence of γ(g)on the parameters L and N is not known however and below we will develop an asymptoticscheme tofind it in the large spin limit.4Asymptotic expansionThe large−N behavior of anomalous dimension is of special interest in its own right since itgoverns the Sudakov asymptotics of scattering amplitudes[32,33],and in light of gauge/string duality,for it can be compared(at strong coupling)to energies of quasiclassical strings[34,35,36,37,38].Recall atfirst that the anomalous dimensions of twist−L operators occupy a band of width L−2,with the upper and lower boundaries scaling like[4,18]γlower(g)=2Γcusp(g)ln N,γupper(g)=LΓcusp(g)ln N,(4.1) and the coefficientΓcusp(g)being the cusp anomalous dimension[39,40],known to one-[39],two-[40,22,23,18]and three-loop orders[25,26,15].The minimal anomalous dimensionγlower(g)ofhigh-twist operators develops the asymptotic behavior identical to the one of twist-two operators [37,12].Since the single-logarithmic regime is realized for L e L≪N with L,N→∞[37],this allows one to evade the limitation of the asymptotic character of the Baxter equation and toderive an all-loop equation for the cusp anomalyΓcusp.Notice that although we have to solve the problem with large quantum numbers,we cannotapply traditional WKB expansion for Q(u)(see,e.g.,Ref.[4])since the latter is valid for the spectral parameter which scales as u∼N1while the energy is determined by the Baxter function Q(u)evaluated at the argument u=±i,(4.2)Q(0)(u)we can rewrite the Baxter equation in the formu L−u L+φ(0)(u)+The solution to it is based upon different scaling behavior of the right-and left-hand sides with N.For the spectral parameter u∼N0,the solution is given by an infinite fraction.Keeping the leading terms only we come to two difference equationsu L+Q(0)+(u+i)=t(0)(u)Q(0)+(u),u L−Q(0)−(u−i)=t(0)(u)Q(0)−(u).(4.4) The additive corrections to their right-hand sides go as O(1/q(0)n),where q(0)n is a conserved charge which scales with the maximal power of N.For cyclically symmetric statesθ=0,the asymptotic solution to(1.5)readsQ(0)(u)=Q(0)+(u)Q(0)−(−i2),(4.5)in terms of the solution to the two-term recursion relations(4.4)written with the help of the rootsδk of the transfer matrix t(0)(u)=2(u−δ1)(u−δ2)...(u−δL)[37],Q(0)∓(u)=2±iuLk=1Γ(±iu+iδk)2).(4.6)Now recall that we are interested only in the trajectory with the lowest energy only.The latter does not depend on the twist of the operator,i.e.,it is L−independent.The reason for this being that for the corresponding state only the quadratic Casimir q(0)2is large while all other integrals of motion become anomalously small.For the roots of the transfer matrix this is translated into the statement that just two rootsδ1=δL are much larger than the rest ofδ’s which are negligible [37],yielding the relationδ21≃−q(0)2/2.(4.7) In this case the genus−(L−2)hyperelliptic Riemann surface parametrizing the magnet,withits moduli determined by the conserved charges q(0)k ,degenerates into a sphere,i.e.,the spectralcurve of twist-two operators[37].This implies that all zones but one of allowed classical motion in separated variables collapse into points.In this limit the transfer matrix reduces to t(0)(u)≃u Lτ(0)(u)=u L(2−N2/u2)and the solutions to the recursion relations(4.4)becomes symmetric under the interchange u→−u and equal,Q(0)+(u)=Q(0)−(u).In the infinite-spin limit,we then find that the leading behavior of the Baxter function isi ln Q(0)±(u) ′=ψ(−iu+iδ1)+ψ(−iu−iδ1)+...≃2ln N+...,(4.8)where in the last step we imposed the condition that the evaluation of the anomalous dimensions (1.4)requires u∼N0and thus it can be neglected compared to N.This consideration immedi-ately suggests that for the minimal-energy trajectory in the single-logarithmic asymptotics the dressing factors u L±in the left-hand side of Eq.(4.4)are irrelevant.Thus they can be reduced to u L±→u L and cancelled with the factor extracted from the transfer matrix t(0)(u),making the equation L−independent,as expected.The latter is clearly seen in the quasiclassical approach when one assumes the spectral parameter to scale with N,i.e.,u=Nˆu andˆu∼1.We will use the same argument below to write the all-loop Baxter equation for the lowest trajectory.4.2Beyond one loopLet usfind the equation for the minimal trajectory starting from the multi-loop Baxter equation (2.3).Again,we have to separate only terms which generate leading behavior in the large-spin limit.The transfer matrix degenerates on the minimal trajectory to the one of twist-twooperators,i.e.,t(u)≃u L−2(2u2+q1u+q2).Notice however that only O(g0)contributions to the charges q1,2(g)can induce the leading effect in the large−N limit since the quantum corrections grow at most logarithmically with N→∞.Therefore,we can replace t(u)≃t(0)(u)in the right-hand side of(2.3).Hence the reduced Baxter equation admits the formeσ+(x+)Q(u+i)+eσ−(x−)Q(u−i)=τ(0)(u)Q(u).(4.9) Introducing again the ratio of the Baxter functions Q analogous to Eq.(4.2),we can write again two asymptotic equations for the two components of Q.However,since we are interested solely in the lowest trajectory,both equations generate the same contributions to the anomalous dimension.Therefore,we may consider only one of the resulting equations,e.g.,eσ+(x+)Q(u+i)=τ(0)(u)Q(u).(4.10) Next,introducing the one-and all-loop Hamilton-Jacobi functions,S(0)(u)=ln Q(0)(u),S(u)=ln Q(u),(4.11) Eq.(4.10)can be rewritten by virtue of the one-loop degenerate Baxter equation(4.4)for the lowest trajectory as followsS(u+i)−S(0)(u+i)−S(u)+S(0)(u)+σ+(x+)=2πim.(4.12) Here m displays the ambiguity in choosing the branch of the logarithm.Since the anomalous dimension(3.5)is expressed in terms of the derivative of the Hamilton-Jacobi function,it is instructive to differentiate both side of Eq.(4.12)with respect to ing the perturbative decomposition of the all-order Hamilton-Jacobi functionS(u)=S(0)(u)+g2S h(u),with S h(u)=∞ n=1g2(n−1)S(n)(u),(4.13)and rescaling S′h by extracting its single logarithmic behavioriS′h(u)=Σ(u)ln N,(4.14) wefinally arrive at the equation for the cusp anomalyΣ(u+i)−Σ(u)+1u2+−g21−1dt1−t22−gt)=0.(4.15)The cusp anomalous dimension is then found in terms ofΣmaking use of Eq.(3.5)asΓcusp(g)=g2+g4 1−1dt1−t2Σ i2,one immediately realizes that thefirst two terms give the imaginary part ofΣfor real u.Then the use of a dispersion relation for the rescaled Hamilton-Jacobi function in the last term allows us to bring the equation into the form of a Fredholm equation of the second kind.Then the large−x asymptotics of the solution to this integral equation yields the cusp anomaly2x[u]ℑm S h(u+i5Weak-coupling expansionWe will seek the solution to the cusp equation (4.15)intheform[2,20]Σ(u)=10dωωiu −1¯ω−iu −1 Σ lnω2 Σ(p )+Γcusp (g )2∞0dp ′e −p ′/2p ′J 1(p ′) −J 1(p ′) J 0(p )−2g 2.(5.4)At the same time,we can use Eq.(4.16)for the anomalous dimension in terms of the Hamilton-Jacobi function,such that we getΣ(0)=−1−g∞0dp sinh p/2∞ n =0g 2n Σn (p ),(5.6)where the prefactor is extracted for the latter convenience,and substituting it into the cuspequation(5.2),wefind for the few lowest order functionsΣ0(p)=−1,Σ1(p)=π28p2,Σ2(p)=−118ζ(3)p−π2192p4,Σ3(p)=73π68− 596ζ(3) p+π496ζ(3)p3+π2p49216,....The p-independent term in these expressions determines the cusp anomaly according to Eq.(5.4). The lowest six orders ofΓcusp readΓcusp(g)=g2−π2720g6(5.7)−73π68 g8+ 887π848ζ(3)2−5479001600−π448ζ(3)ζ(5)−5164ζ(3)ζ(7) g12+ 7680089π1248384ζ(3)2+ζ(3)41920ζ(3)ζ(5)−17π2128ζ(3)ζ(7)−27332ζ(3)ζ(9)g14+....The two-and three-loop coefficients agree with Feynman diagram calculations of Refs.[22,23,18] and[25,26,15],respectively,and the rest with available predictions of Ref.[12].The calculation can be extended to few dozens of terms in the series(5.6),but the results are too cumbersome to display here.6OutlookIn this note we proposed a multi-loop asymptotic Baxter equation for anomalous dimensions of arbitrary twist−L,spin−N single-trace holomorphic Wilson operators in maximally supersym-metric Yang-Mills theory.We developed an approach for the asymptotic solution of the resulting equation for large values of spin N and derived an all-order equation for the cusp anomaly which governs the Sudakov asymptotics of anomalous dimensions.The problem with the asymptotic nature of the equation was overcome by studying the lowest-energy trajectory which is insensitive to the twist of the operator in the single logarithmic regime L e L≪N,L,N→∞.There are many questions which remain to be addressed.One has to constrain the amount of ambiguity left in restoration of higher loop effects from the lowest few terms of perturbative series for the dressing factors.The analysis of the strong-coupling expansion ofΓcusp is of special interest in light of available predictions for it from string theory[34].A preliminary analysis reveals however that g=∞is an essential singularity of the cusp equation.Next,one has to understand how to incorporate wrapping effects to the Baxter equation(2.3)and to identify aputative microscopic spin chain standing behind it.An ultimate goal would be to generalize the all-order Baxter equation to all sectors of N =4super-Yang-Mills theory which is conceivably described by a long-range graded magnet.Note addedRecently a new calculation was published of the four-loop cusp anomalous dimension using the unitarity technique [42].Their numerical finding explicitly demonstrates that the prediction (5.7)basedon theBaxterequation (2.3)with the dressing factor(3.1)is incorrect starting from four loops.In a companion paper [43],a modified form of the cusp equation was proposed which takes into account a non-trivial dressing factor in Bethe equations of Ref.[21].Presently we use the result of Ref.[42,43]in order to fix the form of the four-loop correction to the Baxter equation (2.3)and find anomalous dimensions of local Wilson operators.It was suggested [42],that to reconcile within error bars the result of their numerical calculation with the one coming from the cusp equation,the sign of the ζ2(3)in four-loop contribution of Eq.(5.7)has to be flipped.This requires the following additive modification of the four-loop cusp anomaly (5.7),Γcusp (g )=−ζ(3)2p ′ +O (g 3),(6.2)in agreement with Ref.[21].Here the favored value of the constant is α=1u ++gt →1x 2++O (g 6).(6.3)A simple analysis allows to unambiguously restore the correction term to the dressing factors (3.1)of the Baxter equation (2.3).Namely,the former get shifted asσ±(x )→σ±(x )+∆±(x ),(6.4)with∆±(x )=∓iαg 6π√2−gt ) ′+O (g 7).(6.5)Taking into account this extra term,the anomalous dimensions of Wilson operators acquire additional contributions.For instance,the four-loop term in Eq.(3.6)gets corrected byγ(g )=···−α5±√8g 8+O (g 10).(6.6)2αp , Σ3(p )=···+124αp (π2+p ).This explicitly demonstrates that the attempt to rescue the principle of maximal transcendental-ity[26]in the cusp anomalous dimension withα=1[13]A.V.Belitsky,G.P.Korchemsky,D.M¨u ller,Towards Baxter equation in supersymmetricYang-Mills theories,hep-th/0605291.[14]C.Anastasiou,Z.Bern,L.J.Dixon,D.A.Kosower,Phys.Rev.Lett.91(2003)251602.[15]Z.Bern,L.J.Dixon,V.A.Smirnov,Phys.Rev.D72(2005)085001.[16]R.J.Baxter,Annals Phys.70(1972)193;Exactly Solved Models in Statistical Mechanics,Academic Press(London,1982).[17]E.K.Sklyanin,Lect.Notes Phys.226(1985)196;Quantum inverse scattering method.Se-lected topics,“Quantum Group and Quantum Integrable Systems,”ed.Mo-Lin Ge,World Scientific,(Singapore,1992)pp.63–97,hep-th/9211111;Progr.Theor.Phys.Suppl.118 (1995)35.[18]A.V.Belitsky,A.S.Gorsky,G.P.Korchemsky,Nucl.Phys.B667(2003)3.[19]N.Beisert,Nucl.Phys.B676(2004)3.[20]G.P.Korchemsky,Nucl.Phys.B443(1995)255.[21]N.Beisert,M.Staudacher,Nucl.Phys.B727(2005)1.[22]A.V.Kotikov,L.N.Lipatov,Nucl.Phys.B661(2003)19;(E)Nucl.Phys.B685(2004)405.[23]A.V.Kotikov,L.N.Lipatov,V.N.Velizhanin,Phys.Lett.B557(2003)114.[24]B.Eden,C.Jarczak,E.Sokatchev,Nucl.Phys.B712(2005)157;B.Eden,C.Jarczak,E.Sokatchev,Y.S.Stanev,Nucl.Phys.B722(2005)119.[25]S.Moch,J.A.M.Vermaseren,A.Vogt,Nucl.Phys.B688(2004)101.[26]A.V.Kotikov,L.N.Lipatov,A.I.Onishchenko,V.N.Velizhanin,Phys.Lett.B595(2004)521;(E)Phys.Lett.B632(2006)754.[27]N.Beisert,V.Dippel,M.Staudacher,J.High Ener.Phys.0407(2004)075.[28]M.Staudacher,J.High Ener.Phys.0505(2005)054.[29]D.M¨u ller,Phys.Rev.D49(1994)2525;Phys.Rev.D58(1998)054005;A.V.Belitsky,D.M¨u ller,Nucl.Phys.B537(1999)397.[30]N.Beisert,Nucl.Phys.B659(2003)79.[31]M.Bianchi,B.Eden,G.Rossi,Y.S.Stanev,Nucl.Phys.B646(2002)69.[32]J.C.Collins,Adv.Ser.Direct.High Ener.Phys.5(1989)573.[33]G.P.Korchemsky,Mod.Phys.Lett.A4(1989)1257;G.P.Korchemsky,G.Marchesini,Nucl.Phys.B406(1993)225.[34]S.S.Gubser,I.R.Klebanov,A.M.Polyakov,Nucl.Phys.B636(2002)99.[35]S.Frolov,A.A.Tseytlin,J.High Ener.Phys.0206(2002)007.[36]M.Kruczenski,J.High Ener.Phys.0212(2002)024;J.High Ener.Phys.0508(2005)014.[37]A.V.Belitsky,A.S.Gorsky,G.P.Korchemsky,Nucl.Phys.B748(2006)24.[38]K.Sakai,Y.Satoh,A large spin limit of strings on AdS5×S5in a non-compact sector,hep-th/0607190.[39]A.M.Polyakov,Nucl.Phys.B164(1980)171.[40]G.P.Korchemsky,A.V.Radyushkin,Nucl.Phys.B283(1987)342.[41]S.E.Derkachov,G.P.Korchemsky,A.N.Manashov,Nucl.Phys.B566(2000)203;Nucl.Phys.B661(2003)533.[42]Z.Bern,M.Czakon,L.J.Dixon,D.A.Kosower,V.A.Smirnov,The four-loop planar am-plitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, hep-th/0610248.[43]N.Beisert,B.Eden,M.Staudacher,Transcendentality and crossing,hep-th/0610251.[44]A.H.Mueller,Phys.Rev.D18(1978)3705.。
求解杨-Baxter方程的方法

求解杨-Baxter方程的方法
马中骐
【期刊名称】《兰州大学学报:自然科学版》
【年(卷),期】1991(0)S1
【摘要】本文系统研究了3种求解杨-Baxter方程的方法,指出这些方法各自适用的条件,举例说明普遍求解带谱参数的杨-Baxter方程三角解,目前还是一个尚未解决的问题。
【总页数】12页(P44-55)
【关键词】杨-Baxter方程;量子包络代数;谱分解
【作者】马中骐
【作者单位】中国科学院高能物理研究所
【正文语种】中文
【中图分类】N55
【相关文献】
1.余量子杨-BaXter方程及其代数刻划 [J], 郝志峰;冯良贵;杨德贵
2.杨—Baxter方程的一个推论 [J], 梁安民
3.杨-Baxter方程的对称性 [J],
4.吴方法和带参数杨—Baxter方程的求解技术 [J], 王世坤;吴可
5.杨— Baxter方程的一个推论 [J], 梁安民
因版权原因,仅展示原文概要,查看原文内容请购买。
齐次Rota-Baxter3-李代数(Ⅱ)

齐次Rota-Baxter3-李代数(Ⅱ)白瑞蒲;马越;侯帅;亢闯闯;巴一【期刊名称】《黑龙江大学自然科学学报》【年(卷),期】2018(035)004【摘要】无限维单3-李代数Aw=∑FLm上权为λ的齐次Rota-Baxter算子R是Aw的Rota-Baxter算子,且满足R(Lm)=f(m)Lm,其中f:Z→F.当λ不等于零时,3-李代数的权为λ的Rota-Baxter算子完全由权为1的Rota-Baxter算子所决定.研究Aw上满足f(0)=0,∫(1)=-1,权为1且f在无穷多个偶数上取非零值的14类齐性Rota-Baxter算子的结构;在3-李代数Aw的基底空间A上,利用齐次Rota-Baxter 算子构造齐次Rota-Baxter 3-李代数(A,[,,]j,Rj),1≤j≤7,其中弓是由fj确定的齐次Rota-Baxter算子.【总页数】6页(P396-401)【作者】白瑞蒲;马越;侯帅;亢闯闯;巴一【作者单位】河北省机器学习与计算智能重点实验室,保定071002;河北大学数学与信息科学学院,保定071002;河北大学数学与信息科学学院,保定071002;河北大学数学与信息科学学院,保定071002;河北大学数学与信息科学学院,保定071002;河北大学数学与信息科学学院,保定071002【正文语种】中文【中图分类】O152.5【相关文献】1.齐次Rota-Baxter3-李代数(Ⅰ) [J], 白瑞蒲;亢闯闯;马越;侯帅;巴一2.李代数的正规列和齐次自同构 [J], 高孝成;王敬国3.Rota-Baxter3-李超代数 [J], 王波李代数,CS李代数与对称自对偶李代数 [J], 朱林生5.齐次Rota-Baxter 3-李代数(Ⅲ) [J], 白瑞蒲;侯帅;亢闯闯;马越;巴一因版权原因,仅展示原文概要,查看原文内容请购买。
半单李代数分类-定义说明解析

半单李代数分类-概述说明以及解释1.引言1.1 概述半单李代数是李代数中的一类重要结构,它在数学和物理学中具有广泛的应用。
半单李代数的分类是研究和理解这些代数结构的重要方法之一。
本文将介绍半单李代数的定义、性质以及分类方法,并以具体的实例来说明分类的过程和结果。
在数学领域,李代数是一种具有代数结构的数学对象,它由一个线性空间和一个满足特定性质的二元运算组成。
这个二元运算通常被称为李括号,并满足反对称性和雅可比恒等式。
李代数在表示论、几何学和数学物理学等领域中起着重要作用。
半单李代数是李代数的一种特殊情况,它的定义比较简单,但却蕴含着丰富的代数结构。
半单李代数不是可约的,即不能通过任何非平凡的李理想进行分解。
这使得半单李代数成为研究对象时具有一定挑战性的代数结构。
本文将介绍半单李代数的基本性质,包括它的Lie-Poisson结构和其可表示性的特点。
同时,我们将探讨半单李代数的分类方法,其中包括通过Cartan矩阵、Dynkin图、根系以及李代数的结构进行分类的方法。
通过详细的分类过程,我们可以看到不同类型的半单李代数之间的联系和区别。
此外,本文还将给出一些特殊类型半单李代数的分类实例,包括A型、B型、C型和D型的半单李代数。
通过具体案例的讨论,读者可以更加深入地理解半单李代数的分类方法和结果。
通过本文的阅读,读者将能够对半单李代数有一个全面的了解,了解其定义、性质、分类方法以及分类实例。
同时,读者也可以进一步了解半单李代数在数学和物理领域的应用,并对未来的研究方向提供一定的启示和展望。
1.2 文章结构文章结构部分的内容可以描述以下内容:文章结构部分旨在介绍本文的组织和内容安排。
通过明确的结构,读者可以清晰地了解文章的框架,从而更好地理解文章的主题和内容。
本文共包括五个主要部分,各部分内容如下:1. 引言:本部分主要对半单李代数分类问题进行概述,并介绍文章的结构和目的。
2. 半单李代数的定义和性质:本部分将详细介绍半单李代数的定义及其基本性质。
结合超代数上的超结合Yang-Baxter方程

结合超代数上的超结合Yang-Baxter方程安慧辉【摘要】主要研究结合超代数上的超结合Yang-Baxter方程.首先给出结合超代数上Rota-Baxter算子和O-算子的定义,得到结合超代数上奇的Rota-Baxter算子与李超代数上奇的Rota-Baxter算子之间的关系,找到结合超代数上的超结合Yang-Baxter方程的解与结合超代数上的O-算子之间的关系.最后给出了结合超代数上超结合Yang-Baxter方程的解与超2-上循环之间的关系.【期刊名称】《辽宁师范大学学报(自然科学版)》【年(卷),期】2019(042)002【总页数】6页(P152-157)【关键词】超结合Yang-Baxter方程;O-算子;2-上循环【作者】安慧辉【作者单位】辽宁师范大学数学学院,辽宁大连 116029【正文语种】中文【中图分类】O152.5自从20世纪80年代以来, 经典Yang-Baxter方程成为数学和数学物理中的一个重要研究课题[1-3], 许多学者对经典Yang-Baxter方程的解做了系统的研究. Rota-Baxter算子是G.Baxter首先提出的[4],Rota在对它的研究中做了重要的贡献[5]. O-算子是Rota-Baxter算子的推广[6]. 经典Yang-Baxter方程与Rota-Baxter算子有非常密切的联系, 当李代数上存在非退化的不变双线性函数时,李代数上经典Yang-Baxter方程的反对称解与Rota-Baxter算子是一一对应的. 在文献[7]中,作者研究了李超代数上超经典Yang-Baxter方程的偶的超反对称解. 本文主要考虑在结合超代数上的超结合Yang-Baxter方程的奇的解.1 结合超代数上的Rota-Baxter算子和O-算子定义1.1[8] (1)设A=A0+A1是Z2阶化的线性空间,∘是A上的代数运算, 如果满足(x∘y)∘z=x∘(y∘z) (∀x,y,z∈A),则称A为结合超代数.(2)设A=A0+A1是结合超代数, V是Z2阶化的线性空间, l,r:A→End(V)为线性映射,如果对于任意x,y∈A满足l(xy)=l(x)l(y),r(xy)=(-1)|x‖y|r(y)r(x),l(x)r(y)=(-1)|x‖y|r(y)l(x),则称(V,l,r)为结合超代数A的双模.若(V,l,r)为结合超代数A的双模, 则(V*,r*,l*)也为A的双模.定义1.2 设A=A0+A1是结合超代数, (V,l,r)为A的双模,T:V→A为线性映射,如果T满足T(u)T(v)=T((-1)|T‖u|+|T|l(T(u))v+(-1)|T‖u|+|u‖v|r(T(v))u), ∀u,v∈V,则称T为关于(V,l,r)的O-算子.特别地, 设L,R:A→End(A)为左乘、右乘运算, A上关于双模(A,L,R)的O-算子R称为Rota-Baxter算子, 即线性变换R:A→A满足R(x)R(y)=R((-1)|R‖x|+|R|R(x)y+xR(y)), ∀x,y∈A.命题1.1 设A=A0+A1是结合超代数, R为A上的Rota-Baxter算子, 定义[x,y]=xy-(-1)|x‖y|yx, ∀x,y∈A,则R为A上的李超代数(A,[,])的Rota-Baxter算子.证在文献[7]中,作者考虑了|R|=0的情形, 我们考虑|R|=1的情况, 此时[R(x),R(y)]=R(x)R(y)-(-1)(|x|+1)(|y|+1)R(y)R(x), ∀x,y∈A.直接计算可得因此, R为A上的李超代数(A,[,])的Rota-Baxter算子.2 结合超代数上的O-算子与超结合Yang-Baxter方程的解设A=A0+A1是结合超代数, 如果r∈A⊗A满足r12r13-(-1)|R|r23r12+r13r23=0,(1)则称r为A上的超结合Yang-Baxter方程的解,式(1)称为超结合Yang-Baxter方程.定理2.1 设A=A0+A1是结合超代数, 如果r∈A⊗A超反对称且|r|=0或者r∈A⊗A超对称且|r|=1, 则r为A上的超结合Yang-Baxter方程的解当且仅当r(a*)r(b*)=r((-1)|r‖a*|+|r|R*(r(a*))b*+(-1)|r‖a*|+|a*‖b*|L*(r(b*))a*),∀a*,b*∈A*.(2)证设e1,e2,…,em为A0的基, f1,f2,…,fn为A1的基,为e1,e2,…,em,f1,f2,…,fn的对偶基. 设A上的代数运算的结构常数为其中,i,j=1,2,…,m;k,l=1,2,…,n.(1)如果r∈A⊗A超反对称且|r|=0, 则r可以表示为⊗⊗fl,此时aij=-aji,bkl=blk. 通过直接计算可得由〈a*⊗b*,r〉=〈a*,r(b*)〉(∀a*,b*∈A*)知如果a* 由式(2)可知与ea⊗ej⊗eq的系数等价.如果a*由式(2)可知与fc⊗fl⊗eq的系数等价.如果a*由式(2)可知与fb⊗ej⊗ft的系数等价.如果a*由式(2)可知与ed⊗fl⊗ft的系数等价.(2)如果r∈A⊗A超对称且|r|=1, 则r可以表示为⊗fk+fk⊗ei), 通过直接计算可得由〈a*⊗b*,r〉=(-1)|r‖b*|〈a*,r(b*)〉(∀a*,b*∈A*)知如果a*由式(2)可知与ej⊗ed⊗ei的系数等价.如果a*由式(2)可知与ej⊗fb⊗fk的系数等价.如果a*由式(2)可知与fl⊗fc⊗ei的系数等价.如果a*由式(2)可知与fl⊗ea⊗fk的系数等价.定理2.2 设A=A0+A1是结合超代数, (V,l,r)为A的双模. 设R:V→A为线性映射.(1)若|R|=0, 则r=R-σ(R)为A(r*,l*)V*上的超结合Yang-Baxter方程的解当且仅当R是A上关于(V,l,r)的O-算子.(2)若|R|=1, 则r=R+σ(R)为A(r*,l*)V*上的超结合Yang-Baxter方程的解当且仅当R是A上关于(V,l,r)的O-算子.证设e1,e2,…,em,f1,f2,…,fn为A的基, v1,v2,…,vs,w1,w2,…,wt为V的基,为v1,v2,…,vs,w1,w2,…,wt的对偶基.(1)若|R|=0, 因为Hom(V,A)≅A⊗V*,R可以表示为⊗⊗此时⊗⊗⊗⊗R(wk),因此, |R|=0时结论成立.(2)若|R|=1, 则⊗⊗⊗⊗R(wk),直接计算可得r12r13+r23r12+r13r23=⊗⊗⊗⊗⊗⊗(R(vp)R(vi)-R(r(R(vi))vp)+R(l(R(vp))vi))+⊗⊗(R(wq)R(vi)+R(r(R(vi))wq)-R(l(R(wq))vi))+⊗⊗⊗⊗⊗⊗(R(wq)R(wk)-R(r(R(wk))wq)-R(l(R(wq))wk))+因此, |R|=1时结论成立.3 结合超代数上的超2-上循环设A=A0+A1是结合超代数, 如果A上存在非退化不变超对称的双线性函数B(,)满足B(x,y)=(-1)|x‖y|B(y,x), B(xy,z)=B(x,yz), ∀x,y,z∈A,此时A与A*等价, r∈A⊗A可看作A上的线性变换.若|r|=0且r超反对称, 则r是超结合Yang-Baxter方程的解当且仅当r满足r(x)r(y)=r(r(x)y+xr(y)), ∀x,y∈A.若|r|=1且r超对称, 则r是超结合Yang-Baxter方程的解当且仅当r满足r(x)r(y)=r((-1)|x|+1r(x)y+xr(y)), ∀x,y∈A.因此, 当A上存在非退化不变超对称的双线性函数时, 超结合Yang-Baxter方程的解与Rota-Baxter算子是一一对应的.定义3.1 设A=A0+A1是结合超代数, B:A⊗A→F为A上的双线性函数, 如果B满足(-1)|x‖z|B(x,yz)+(-1)|x‖y|B(y,zx)+(-1)|y‖z|B(z,xy)=0, ∀x,y,z∈A,(3)则称B为结合超代数A上的超2-上循环.定理3.1 设A=A0+A1是结合超代数,r∈A⊗A非退化,B是A上由B(x,y)=〈r-1(x),y〉(∀x,y∈A)确定的双线性函数.若|r|=0且r超反对称, 则r是超结合Yang-Baxter方程的解当且仅当B为A上的超2-上循环.若|r|=1且r超对称, 则r是超结合Yang-Baxter方程的解当且仅当B为A上的超2-上循环.证∀x,y,z∈A, 由r非退化知存在a*,b*,c*∈A*使得x=r(a*),y=r(b*),z=r(c*),因此,式(3)等价于(-1)(|a*|+|r|)(|c*|+|r|)〈a*,r(b*)r(c*)〉+(-1)(|a*|+|r|)(|b*|+|r|)〈b*,r(c*)r(a*)〉+(-1)(|b*|+|r|)(|c*|+|r|)〈c*,r(a*)r(b*)〉=0.此外, 〈L*(x′)d*,y′〉=(-1)|x′‖d*|〈d*,x′y′〉,〈R*(x′)d*,y′〉=(-1)|x′‖d*|+|x′‖y′|〈d*,y′x′〉.(1)若|r|=0且r超反对称, 由〈a*,r(b*)〉+(-1)|a*‖b*|〈b*,r(a*)〉=0可得(-1)|a*‖c*|〈a*,r(b*)r(c*)〉+(-1)|a*‖b*|〈b*,r(c*)r(a*)〉+(-1)|b*‖c*|〈c*,r(a*)r(b*)〉=-(-1)|b*|(|a*|+|c*|)〈c*,r(L*(r(b*))a*)〉-(-1)|b*‖c*|〈c*,r(R*(r(a*))b*)〉+(-1)|b*‖c*|〈c*,r(a*)r(b*)〉=(-1)|b*‖c*|〈c*,r(a*)r(b*)-r(R*(r(a*))b*)-(-1)|a*‖b*|r(L*(r(b*))a*)〉.因此, |r|=0且r超反对称时结论成立.(2) 若|r|=1且r超对称, 由〈a*,r(b*)〉-(-1)|a*‖b*|+|a*|+|b*|〈b*,r(a*)〉=0可得(-1)(|a*|+1)(|c*|+1)〈a*,r(b*)r(c*)〉+(-1)(|a*|+1)(|b*|+1)〈b*,r(c*)r(a*)〉+ (-1)(|b*|+1)(|c*|+1)〈c*,r(a*)r(b*)〉=(-1)|b*|(|a*|+|c*|)+|b*|+|a*|+|c*|〈c*,r(L*(r(b*))a*)〉+(-1)|b*‖c*|+|b*|+|a*|+|c*|+1〈c*,r(R*(r(a*))b*)〉+(-1)|b*‖c*|+|b*|+|c*|+1〈c*,r(a*)r(b*)〉=(-1)|b*‖c*|+|b*|+|c*|+1〈c*,r(a*)r(b*)-(-1)|a*|+1r(R*(r(a*))b*)-(-1)|b*‖a*|+|a*|r(L*(r(b*))a*)〉.因此, |r|=1且r超对称时结论成立.参考文献:【相关文献】[1] BELAVIN A A. Dynamical symmetry of integrable quantum systems[J].Nucl PhysB,1981,180(2):189-200.[2] FADDEEV L D,TAKHTAJAN L.The quantum inverse scattering method of the inverse problem and the Heisenberg XYZ model[J].Russ Math Surv,1979,34:11-68.[3] CHARI V,PRESSLEY A.A guide to quantum groups[M].Cambridge:Cambridge University Press,1994.[4] BAXTER G.An analytic problem whose solution follows from a simple algebraic identity[J].Pacific J Math,1960,10(3):731-742.[5] ROTA G C. Baxter operators, an introduction[C]∥KUNG J P S.Gian-Carlo Rota on combinatorics: Introductory papers and commentaries. Boston:Birkhauser,1995.[6] BORDEMANN M.Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups[J].Comm Math Phys,1990,135(1):201-216.[7] WANG Y,HOU D,BAI C. Operator forms of the classical Yang-Baxter equation in Lie superalgebras[J].Int J Geom Meth Modern Phys,2010,7(4):583-597.[8] ABDAOUI K,MABROUK S,MAKHLOUF A.Rota-Baxter operators on pre-Lie superalgebras and beyond[J].arXiv:1512.08043.。
有关杨—巴克斯特方程的理论成果综述

有关杨—巴克斯特方程的理论成果综述一、杨—巴克斯特方程的基本原理及内涵杨—巴克斯特方程是一种重要的描述波动现象的数学模型,它被广泛应用于自然界和工程界中的各种波动现象的研究。
杨—巴克斯特方程的基本原理是描述一种可压性流体的运动,在此运动中,流体质点之间的相对位置、速度和加速度是最基本的物理量。
这种运动可以被不同类型的波浪所描述,如水波、声波、光波等。
在杨—巴克斯特方程的内涵中,表示流体质点之间的相互作用的力很重要。
这个力可以是广义上的内力和外力之和。
该方程中的每一个项都具有一个特定的物理含义,并且不同的项之间也存在特定的关系,如波长、速度等。
通过对这些项之间关系的研究,我们可以深入了解波动现象的性质及其在自然界和工程界的应用。
总结:杨—巴克斯特方程的基本原理是描述一种可压性流体的运动,其内涵是表示流体质点之间的相互作用的力,方程中不同项之间存在特定的关系,通过研究这些关系可以深入了解波动现象的性质及其应用。
二、杨—巴克斯特方程在水波传播中的应用杨—巴克斯特方程在水波传播中有着广泛的应用,主要用于研究海洋学和水文学等领域的问题。
其中,最重要的应用是研究海浪的性质和形成机制。
海浪是海洋中最常见的波浪,其形成机制受到很多因素的影响,例如风力、海水深度、海底形态等。
通过建立杨—巴克斯特方程的模型,可以对海浪的传播速度、波长、振幅等特征进行预测和控制。
此外,杨—巴克斯特方程还被广泛应用于潮汐的研究。
潮汐是海洋中重要的大气环流,其形成机制涉及到地球自转、月球和太阳的引力力等因素。
通过对杨—巴克斯特方程的研究,我们可以对潮汐的周期、振幅、相位等特征进行分析和预测。
总结:杨—巴克斯特方程在水波传播中有着广泛的应用,主要用于研究海浪和潮汐的特性,可以对其传播速度、波长、振幅等进行预测和控制。
三、杨—巴克斯特方程在声波传播中的应用杨—巴克斯特方程在声波传播中也有着广泛的应用,主要用于声学、天文学、地质物理学等领域的研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李代数sl(2,C)上的经典Yang—Baxter 方程的解及其应用
作者:华秀英刘文德崔云安张海燕赵寒妹
来源:《哈尔滨理工大学学报》2015年第05期
摘要:针对复数域C上特殊线性李代数sl(2,C)的经典Yang-Baxter方程解的问题,利用sl(2,C)的基元素,通过计算Yang-Baxter算子在其基元素上的作用的方法,得到了sl (2,C)的经典Yang-Baxter方程的一些解,进而给出了sl(2,C)上的某些左对称代数结构.
关键词:李代数;经典Yang-Baxter方程;左对称代数
DOI:10.15938/j.jhust.2015.05.024
中图分类号:0151.21
文献标志码:A
文章编号:1007-2683(2015)05-0119-04
0 预备知识
Rota-Baxter代数始于上世纪60年代,源于G.Baxter在概率论中对波动理论的积分方程的代数研究,其在代数学和组合学中的重要作用引起了G.C.Rota,F.V.Atkinson和P.Cartier等数学家的兴趣并对其做了深入的研究。
近年来,大多数Rota-Baxter算子的研究都在结合代数上,文中给lJ{{了维数≤3的结合代数上0权Rota-Baxter算子,而在中给出了维数≤3的结合代数上1权的Rota-Baxter算子,文给出了二阶矩阵构成的四维结合代数上0权的Rota-Baxter算子,文证明了有限维实可除代数上的Rota-Baxter算子都是平凡的,文给出了两个变元外代数上的Rota-Bax- ter算子.后来,又将Rota-Baxter算子扩展到了李代数和李超代数上,文研究了复数域上导代数维数等于1的2维和3维李代数的Rota-Baxter算子,文刻画了特征零的代数
闭域上四维Filiform李超代数L1,2上的Yang- Baxter方程的解,文给出了三维幂零李超代数的Yang-Baxter算子,文计算了特征不为2的域上的一般线性李超代数gl(IIl)的齐次Rota-Baxter算子.而本文研究了李代数s/(2,C)上的经典Yang-Baxter方程的解及解的应用.文最早提出了Yang-Baxter方程并阐述了它在物理中的应用,由于它丰富的理论基础和应用价值,Yang-Bax-ter方程的研究是比较活跃的课题也是必要的,
定义1设G是一个李代数,如果G上的线性算子R满足:
其中A∈C.则称线性算子R是G上的一个Rota-Baxter算子(特别地,在李代数中权0的Rota-Baxter算子R称为G上的一个Yang-Baxter算子),G是一个权为A的Rota-Baxter代
数,权为0时,上述方程变为称为G的经典Yang-Baxter方程,权为0的Yang-Baxter算子称为G的经典Yang-Baxter方程的解.
作为Yang-Baxter算子的应用,我们可以利用Yang-Baxter算子来构造左对称代数,
引理l 设G是一个李代数,R是G上经典Yang-Baxter方程的解,那么在G上定义一个新的运算:
则(G,*.)构成一个左对称代数.
2 李代数sl (2,C)上的经典Yang-Baxter方程的解
sl(2,C)是复数域上所有迹为零的2x2阶方阵构成的结合代数,定义李积:[A,B]
=AB-BA,VA,B∈sl(2,C),则(sl(2,C),[,])构成李代数,称为特殊线性李代数.李代数sl(2,C)的基为x:满足(1)式的R即为李代数sl(2,C)上的经典Yang-Baxter 方程的解.
3 结语
本文讨论了复数域C上三维特殊线性李代数sl(2,C)的权为零的Rota-Baxter算子问题,即sl(2,C)上的经典Yang-Baxter方程的解的问题,将Rota- Baxter算子作用在s/(2,C)的基底元素上,把算子问题转化为方程组问题,分情况讨论,得到了sl(2,C)的权为零的一些Rota-Baxter算子,进而确定了sl(2,£)上的一些左对称代数结构.。