重力传感器校准方法

重力传感器校准方法
重力传感器校准方法

G-sensor校准的操作说明

在进行校准操作之前请确定:

1.手机处于关机状态:

2.按侧音量下键+开关键会出现以下图片:

3.出现如图(一)画面时,按侧音量下键进入Item Test如图片(二)界面:

(图片一)

4.按home键,进入列表,按侧音量键到G-Sensor Calibration如图(三)示:

5.按侧下键选择G-sensor Calibration界面如图片四:

(图片四)

*注意测试时请尽量把手机放置在桌面上,以保证测试的数据的准确性。

6.如果数据不准确选择Clear Calibration 清除数据,重新校准如图片(五)

7.清除上一次的校准数据后按侧下键选择Do Calibration(20)如图片六,按home键校准。

(图片六)

上述操作完成后,按返回键返回到最外菜单,选择reboot 重启手机!开机后,可以进入一

些界面如设置,计算器等翻转手机看界面是否翻转正常!

压力传感器标定与校准

压力传感器检定: 1. 静态检定 2. 动态检定 我们把压力传感器的特性分成两类静态特性和动态特性。压力传感器静态特性的 主要指标是灵敏度、线性度、迟滞、重复性、精度、温度漂移和零点漂移等等。一般 我们校准压力传感器都是校准其静态特性,这是因为我们将压力传感器理想化,认为 其固有频率相当大而且本身无阻尼,这时压力传感器的静态特性和动态特性是一样 的。然而在被测压力随时间变化的情况下,压力传感器的输出能否追随输入压力的快 速变化是一个很重要的问题。有的压力传感器尽管其静态特性非常好,但由于不能很 好地追随输入压力的快速变化而导致严重的误差,有时甚至出现高达百分之百的动态 误差。所以我们必须要进行压力传感器动态特性的校准,认真分析其动态响应特性。 压力传感器动态特性可以用它的上升时间、固有频率、幅频特性、相频特性等参数来 描述。 线性度eL (非线性误差):输入输出校准曲线(实际)与选定的拟合直线之间的 吻合 程度; A x )00% y^s 重复性eR :正行程或反行程曲线多次测量时曲线的一致程度; 置信系数 a=2( 95.4%)或 a=3( 99.73%) 迟滞eH 正行程与反行程之间的曲线的不重合度;

dp =± _ % 线性度、迟滞反映 系统误差;重复性反映 偶然误差 根据检定规程一 《压力传感器静态》, 在校准精密 线性压力传 感器时给出 的校准曲 线有二种最小二乘直线和端点平移线。 动态检定: 1. 瞬态激励法(阶跃信号激励) 2. 正弦激励法(正弦信号激励) 动态检定指标、参数:频率响应、谐振频率、自振频率、阻尼比、上升时间、建立时 间、过冲量、灵敏度。 正弦激励法:正弦压力信号输入法是一种间接的检定方法,即被检定的压力传感器和 一个“参考”压力传感器相比较,而“参考”压力传感器具有理想的动态性能。正弦 压力激励法在高 频、高压时,正弦信号往往严重畸变。因此一般只能用于小压力或低 频围的检定。 xlOO% 贝塞尔公式 误差(三者反应系统总误 差)

简单易行的高度表校准方法

简单易行的高度表校准方法 卡表不少款有气压-高度功能,不止登山表才有,但似乎不少人不太会用高度计。 其实气压读数是很准的,根本不用校准。但高度是根据当地气压和参考气压算出来的,不校 正不可能准确。 简单易行的高度表校准方法: 就到楼下一楼平地去校准,就把这里设定为海平面0m。 这样,其他地方的高度表读数就是相对于一楼平面的相对海拔高度。 有效期一天之内,天气没有大的变化之前。 如果你知道某个点的明确绝对海拔,你就去那个地方校准。 比如你们城市的海拔是200m,你们一楼正好代表你们城市海拔的话,在那里把你的登山表校准到200m,然后其他地方的高度表读数就是相对准确的绝对海拔高度。 有效期一天之内,天气没有大的变化之前。 再如果,你有gps,哪怕的shouji的gps也行,去开阔、gps信号良好的地方,根据gps 显示的海拔设定高度计。 那么其他地方的高度表读数也是相对准确的绝对海拔高度。 有效期同样一天之内,天气没有大的变化之前。 17楼奉献130说明书关于“测高计模式”的权威表述,并图文教你“如何设定参考高度”。 老外玩的专业啊,很多登山区域都有这种等高线地图,你需要设计好自己的线路和Checkpoint,使用指南针和高度计,一路行进。这个就是定向运动吧,至少是野外穿越。

在Checkpoint(不是我拽,我不懂怎么翻译)可以根据地图标高校准自己的高度计,使用 绝对海拔。 高度计本来就是应该这样用的。 有gps当然好 现在gps手持机都是什么5合一、n合一的,包括了罗盘、温度、gps、气压-高度等功能。 气压计或气压式高度计在户外是不能被gps取代的,我至少给出3个理由: 1、没有气压,天气趋势看不出来。气压持续降低,降雨可能性加大,宿营要选高一点。 2、如果要探洞,gps就瞎了。必须依靠气压式高度计掌握探洞向下了多少。 3、听说在山体陡峭处、树木密集高大处,gps信号会不好、甚至没有。 gps近几十年才出来的,但是人类登山几百上千年了。 给你一个建议:买个gps-shouji 找信号好的时候多测测你家一楼的绝对海拔,取多次平均值,那应该是很准了。 每天出门,都校准高度表,那就是相对准的绝对海拔。 不好意思,这个办法我怎么现在才想出来,这个法子最简单吧?关于测高计模式和如何 设定参考高度 测高计模式 本表的测高计使用气压传感器探测现在气压,然后用此气压测量值根据 ISA (国际标准大气压)预设值估算现在的高度。您还可以预先指定一个参考高度,本表将根据此参考值计算现在的相对高度。测高计功能还配备有存储器保存测量的数据。 重要 --本表是根据气压估算高度。这即是说在相同位置上所测出的高度会因气压的变化而有所不 同。 --本表采用半导体气压传感器测量高度,其会受温度变化的影响。在进行高度测量时,请注 意避免使手表受到温度变化的影响。 --为避免测量结果受温度突然变化的影响,请在测量过程中将手表戴在手腕上并直接与皮肤 接触。 --切勿在进行高度会产生急剧变化的运动时过份依赖本表的高度测量结果或执行按钮操作。这些运动包括:跳伞、悬挂式滑翔机、滑翔跳伞、驾驶旋翼飞机、驾驶滑翔机或任何其他飞

JJG 860—94压力传感器(静态)检定规程

压力传感器(静态)检定规程 JJG 860—94 本规程主要起草人:许新民(航空工业总公司第304研究所) 郭春山(中国计量科学研究院) 张首君(中国计量科学研究院) 参加起草人:陈景文(航空工业总公司第304研究所) 目次 一概述 二技术要求 三检定条件 四检定项目和检定方法 五检定结果处理和检定周期 附录1 压力传感器检定记录格式 附录2 检定证书内容格式(1) 附录3 检定证书内容格式(2) 压力传感器(静态)检定规程 本检定规程适用于新制造、使用中和修理后的压力传感器的静态检定。 一概述 压力传感器是一种能感受压力,并按照一定的规律将压力转换成可用输出信号(一般为电信号)的器件或装置,通常由压力敏感元件和转换元件组成。 按压力测试的不同类型,压力传感器可分为表压传感器、差压传感器和绝压传感器等。 二技术要求 1压力传感器的准确度等级和允许基本误差应符合表1规定。 表1 2压力传感器的配套应完整,外观不应有影响计量性能的锈蚀和损伤。各部件应装配牢固,不应有松动,脱焊或接触不良等现象。 3压力传感器在外壳上或外壳的铭牌上应清楚地标明其型号和编号。压力传感器的名称、

测量范围、准确度等级、制造厂家、制造日期及工作电源可在外壳或铭牌上标明,或在相应的技术文件中说明。 4差压传感器的高压(+)和低压(-)接嘴应有明确的永久性标志。 5压力传感器的电源端和信号输出端应有明确的区别标志。 6重复性误差。压力传感器的重复性误差不得大于允许基本误差的绝对值。 7回程误差。压力传感器的回程误差不得大于允许基本误差的绝对值。 8线性误差。压力传感器的线性误差的绝对值不得大于允许基本误差的绝对值。非线性压力传感器对此不作要求。 三检定条件 9 压力标准器 压力标准器选择的基本原则是其基本误差的绝对值应小于被检压力传感器基本误差绝对值的1/3。准确度等级为0.05级的压力传感器允许采用一等标准器(±0.02%)作为压力标准器。 压力标准器可选用工作基准活塞式压力计、工作基准微压计、标准活塞式压力计、标准活塞式压力真空计、气体活塞式压力计、标准浮球式压力计、标准液体压力计、补偿式微压计、数字式压力计、精密压力表及其他相应准确度等级的压力计量标准器。 10 检定设备 10.1激励电源。激励电源应按压力传感器要求配套,除非压力传感器对激励电源稳定性无特殊要求,否则其稳定度应为被检压力传感器允许基本误差绝对值的1/5~1/10,可选用精密稳压电源、稳流电源、干电池或蓄电池等。 10.2读数记录装置。检定压力传感器用的读数记录装置基本误差的绝对值应小于被检压力传感器允许基本误差绝对值的1/5~1/10,可选用数字式电压表、数字式频率计、电流表等。 10.3其他设备。真空计、数字式气压计(或标准气压表)、温度计、湿度计、精密电阻箱等。 10.4与压力标准器配套使用的加压(或抽空)系统应在示值检定范围内连续可调。 11 环境条件 11.1检定时的环境温度视被检压力传感器的准确度等级而定,应符合下列要求: 0.01、0.02级20±1℃ 0.05级20±2℃ 0.1、0.2、0.5级20±3℃ 其他等级20±5℃ 11.2检定前,压力传感器应在检定的环境温度下放置2h以上,方可进行检定。 11.3相对湿度:小于80% 大气压力:86~106kPa 四检定项目和检定方法 12 外观检查 12.1使用中的压力传感器应有前次检定证书,新制造的或修理后的压力传感器应有出厂合格证书。 12.2检查压力传感器的外观应符合本规程第2~5条要求。

压力传感器动态标定

压力传感器的动态标定 一、实验目的: 1、熟悉记忆示波器和电荷放大器使用方法; 2、用标定激波管标定传感器的动态参数; 3、计算传感器幅频特性和相频特性。 三、测试仪器设备: 1、记忆示波器1台(TDS210); 2、CY-YD-205 1只,标定对象; 3、电荷放大器YE5850一台,连接石英压力传感器; 4、压电陶瓷传感器CY-YD-203T 1只; 5、电荷放大器KD5002 一台,连接压电陶瓷传感器,用于激波速度测量。 三、实验步骤: ( 1 ) 把石英传感器安装在激波管端壁上,并将石英传感器电缆接到电荷放大器YE5820的输入端,将YE5820的输出端电缆接到示波器ch2的输入端,并且将其上限频率置于100kHZ.灵敏度设在10pc/unit。打开YE5820电荷放大器(开关在背面),“工作/复位”开关置于“复位”位置。 ( 2 ) 把侧壁的压电陶瓷传感器接到电荷放大器KD5002的输入端,并将放大器KD5002的输出接到示波器1通道。将放大器的上限截至频率设在100kHZ,示波器ch1垂直标尺置于500mv/div,ch2的垂直标尺置于20mv/div。 采样频率的设定:考虑到传感器的固有频率约为120kHz,由Shannon 采样定律,F s≥ 2F i,取F s=500kS/s,即cm。也就是说水平标尺调节到500微妙/div为宜。 触发信源选ch1,上升沿单次触发,触发电平可调大一些,几十mv不成问题. ( 3 ) 激波管安装膜片,给气压机充气在4bar左右后,打开压气机阀门,将放大器置于“工作”,示波器”Ready”后, 打开激波管充气阀门,破膜,记录

一种非接触高精度平面高度差检测方法

第7期刘力双,吕乃光等:一种非接触高精度平面高度差检测方法1645 板面积S和介电常数e成正比.当电容传感器的极板间距、面积或介质发生变化时,电容也会发生变化.近年来随着电子技术的发展,电容传感器产品不断在科研、生产中得到应用[1书],传感器的精度和稳定性也在不断提高[7。9].电容传感器具有结构简单、分辨率高和可实现非接触式测量等优点.电容传感器本身也有其明显的缺点,量程小、被测物必须为导体,测量容易受外界环境干扰,随着温度、湿度等外界环境的变化传感器的输出会有一定的漂移. 2平面高度差测量原理 2.1基本原理 两个平面之间距离的非接触测量,如果采用光学方法,必须进行多点测量,测量过程复杂且对被测平面的光学特性要求严格.由于电容传感器的测量本身具有面平均效应,所以使用电容传感器测量平面位置比较合适.平面高度差测量仪器采用了五个电容传感器进行组合测量,测头结构如图2所示,将5套电容传感器安装在同一平面上,五个电容传感器首先调整在同一平面上,如图2所示,四个传感器围绕中心传感器作等距分布.用中心电容传感器C5对工件中心距离进行测量,其它电容传感器对工件外围表面进行测量,测量原理如图3所示. 图2电容传感器分布图 图3平面高度差测量原理 由于工件的中心部分为光学镜面不导电,而电容传感器要求被测面为导体,所以在光学镜面上放置一精密加工且厚度经过精密检定的金属标准块作为电容的电极;由于电容测微仪的量程有限,且具有一定的非线性,所以标准块的厚度选择与被测高度差D相近.由于五个电容传感器处于相同的测量环境中,对环境的敏感是同向的,即环境温度、湿度等的变化引起传感器数据一起变大或变小.这样利用多传感器组合测量,由于测量结果是中心传感器数据与四周传感器数据平均值的差值,从而抵消了单一传感器数据的漂移,提高了测量的稳定性.理想情况下,当调整仪器测头所在平面与金属上表面(基准面)平行时,传感器分别测得距离为d?~ds,则此时平面高度差: D:识一鱼j』生丰旦世+d(2) 4 2.2传感器共面性调整 上述测量方法中,五个电容传感器调节至同一平面是实现测量的关键.调整时不能采用接触式调整法,即将五个传感器平面同时搁置在平板上调整共面.实际调整过程中接触式调整会有较大的接触力,调整过程时,根本无法掌握测头与测量面的接触情况,而且容易发生倾斜,即使五个传感器同时接触上仍然无法保证传感器在同一平面上,因而接触式调整方法不可取. 本文利用电容传感器非接触测量的特性设计了共面调整方法,调整示意图如图4所示.制作一块专用标准平板,经过计量院检定,平面度1肚m.因为电容传感器的测量是利用极板间的整体有效面积,是一种平均效应测量法,因而该平板可视为绝对平板,即高度差为零.利用三个等厚块规,厚度约4mm,垫在乎板与测头之间,这样使得单个传感器有效面所在平面就都与标准平面平行,此时只需调节安装传感器的调节螺钉,调节传感器的上下位置,调节过程中计算机采集传感器的输出数据,通过标定好的系数换算出传感器与标准面之间的距离,当五个传感器距离相等时(实际调节过程中根据传感器的测量范围该距离选取为1.4mm),便说明五个电容传感器测头处于同一平面上. 图4传感器共面性调整示意图 2.3测量时测头与基准面平行的调整 根据测量原理,除了传感器本身要安装在同一平面上,测量时还必须使得传感器测头所在平面与被测 基准面(本工件为金属上表面)保持平行,并且两平面

传感器的标定与校准

标定与校准的概念 新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。 例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢? 这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。简单地说,利用标准器具对传感器进行标度的过程称为标定。具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1-19所示。 图1-19 压电式压力传感器输入――输出关系 校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。因此,校准是指传感器在使用中或存储后进行的性能复测。在校准过程中,传感器的某些指标发生了变化,应对其进行修正。 标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。 1.7.2 标定的基本方法 标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线。例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图1-20所示。

高度传感器标定方法

高度传感器标定方法 由于高度传感器(又称Z浮)的信号会随着自身的使用状况和板材的表面情况而发生轻微变化。因而客户在操作机床时,有时会遇到切割头随动时碰撞板材表面、随动速度缓慢等现象,遇到这些现象时就需要重新标定高度传感器,通常不需要修改西门子系统参数(CLC 电压和速度相关参数)。以Precitec公司的EG8010高度传感器为例,标定方法和步骤如下: 1、装上喷嘴,在切割头下放一块钢板,JOG方式下移动切割头(Z 轴)使喷嘴底部距离钢板表面距离为10毫米左右; 2、打开机床电柜,找到EG8010A控制盒,输入密码“7657”; 3、按一下EG8010控制盒上的旋钮后转动该旋钮 至屏幕上出现菜单; 4、按一下EG8010控制盒上的确认按钮,屏幕上将出现菜 单;再按一下EG8010控制盒上的确认按 钮,屏幕上将出现菜单; 5、按一下EG8010控制盒上的旋钮后转动该旋钮 至屏幕上出现菜单; 6、JOG方式下移动切割头(Z轴)至最高点(Z轴正软件限位), 并取下喷嘴; 7、按一下EG8010控制盒上的确认按钮,屏幕上将出现菜 单;再按一下EG8010控制盒上的确认按 钮,屏幕上将出现菜单;

8、即标定完成。装上喷嘴检查随动动作。 9、系统参数(CLC电压和速度相关参数)一般设为以下数值: N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[0]=-3 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[1]=-2 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[2]=-1 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[3]=-0.7 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[4]=0.7 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[5]=1.5 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[6]=2.5 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[7]=4 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[8]=6 N62510 $MC_CLC_SENSOR_VOLTAGE_TABLE_1[9]=8 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[0]=4000 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[1]=3500 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[2]=2500 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[3]=1200 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[4]=0 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[5]=-800 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[6]=-1500 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[7]=-3000 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[8]=-6000 N62511 $MC_CLC_SENSOR_VELO_TABLE_1[9]=-10000 10、影响随动反应速度的系统参数还有: Z轴速度环增益(MD1407),一般设为0.1~0.2; Z轴位置环增益(MD32200),一般设为7~15; Z轴最大加速度(MD32300),一般设为10~15; 如果没有特殊处理方法,必须要求客户按照以上要点操作。如有异议,需速与公司联系解决。

力传感器标定及称重实验指导书

力传感器标定及称重实验指导书 一. 实验目的 通过本实验了解和掌握力传感器的测量原理和方法。 二. 力传感器工作原理简介 电阻应变计是利用物体线性长度发生变形时其阻值会发生改变的原理制成的,其电阻丝一般用康铜材料,它具有高稳定性及良好的温度、蠕变补偿性能。测量电路普遍采用惠斯通电桥(如图1所示),利用的是欧姆定律,测试输出量是电压差。 图1 惠斯通电桥 本实验采用的电阻应变计采用的是惠斯通全桥电路,当物料加到载物台后,4个应变片会发生变形,产生电压输出,经采样后送到计算机由DRVI快速可重组虚拟仪器平台软件处理。因为电桥在生产时有一些误差,不可能保证每一个电桥的电阻阻值和斜率保持一致。所以,传感器在使用之前必须要经过线性校正,这是由于计算机得到的是经过采样后的数字量,与真实质量之间是一种线性关系,需要由标定来得到这个关系。 图2力传感器实物 在实验中采用的力传感器是LYB-5-A型应变力传感器具有精度高、复现性好的特点。其外形见图2。需要特别强调的是:由于力传感器的过载能力有限(150%),所以,在实际使用过程中应尽量避免用力压传感器的头部或冲击传感器。否则,极易导致传感器因过载而损坏! 三. 实验仪器和设备 1. DRVI可重组虚拟实验开发平台1套 2. 蓝津数据采集仪(LDAQ-EPP2)1套 3. 开关电源(LDY-A)1套 4. 称重台1个 四. 实验步骤及内容 1. 将称重台的传感器输出线与实验台上对应的接口相连。 2. 启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI采集仪主卡检测”进行服务器和数据采集仪之间的注册。联机注册成功后,分别从DRVI工具栏和快捷工具条中启动“DRVI微型Web服务器”和“内置的Web服务器”,开始监听8600和8500端口。 3. 打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具条上的“联

应用重力模型进行交通分布的详细步骤

应用重力模型进行交通分布的详细步骤 第一步:求阻抗矩阵Rij(Impedance Matrix) 交通阻抗可表示为:出行距离和行程时间的长短,以及出行费用的大小等。为真实地反映交通阻抗,依托工程公交规划采用通常使用的平均行程时间表示。小区之间的阻抗——平均行程时间越小表示小区之间阻抗越小,越大表示小区之间阻抗越大,因此以平均行程时间为路权值求各小区之间的最短路径(Shortest Path),其值即为小区之间的阻抗R ij。 1、数据准备 (1)创建路网 图1表示的是TransCAD创建路网的界面。 (2)做选择集。 在Endpoints层,于dataview中选择质心点,将其作为一个选择集。 (3)各路段平均行程时间(Travel time) 其中,平均行程时间=Length/平均车速 2、操作过程 Networks/Paths—Multiple paths调出其对话框如图2所示。

3、运行结果(即为阻抗矩阵),如图3所示。 第二步:重力模型标定(校准)(Gravity Mode Calibration)1、数据准备 (1)公交基础OD矩阵。 (2)阻抗矩阵(Shortest Paths),如图3所示。

重力模型标定(校准)(Gravity Mode Calibration)数据准备: 基年OD矩阵的索引(质心层质心ID)与最短路径矩阵的索引(路网节点层质心ID)不匹配,并且因为下面将在路网节点层上操作,因此必须使基年OD 索引与最短路径矩阵的索引相一致,以使两表数据相对应(转换为“质心ID”)。操作方法:按其对话框4示意操作。 2、操作过程 按对话框(如图5)操作即可。

浮筒液位计标定标准方法

浮筒液位计标定方法 一.工作原理 1、组成 1)扭力杆:扭力杆、角度传感器、电路板、浮筒组成。 2)杠杆:杠杆、力传感器、弹簧、电路板、浮筒组成。 2、工作原理 将浮力经过扭力杆,转换为角位移、在转换为4-20ma电流信号 将浮力经过杠杆转换为力矩力,再由力传感器转换为4-20ma信号 号输出 二、适用过程中常见故障及解决措施 在液位计的运行过程中可能会遇到下列问题; 1、故障现象 现场仪表无显示,变送器输出为一固定电流值或不稳定,电压正常。 原因:变送器的显示板或放大板损坏。 解决措施:更换变送器的显示板或放大板,按照要求重新输入参数,并进行线性调整。 2、故障现象 现场仪表显示与变送器输出一致,但仪表线性不好,零点量程波动大,且输出不稳定。 原因: (1)仪表的扭力管工作性能不稳定。 (2)仪表的浮子挂钩损坏。 解决措施: (1)检查确认扭力管损坏后,更换扭力管,按照要求重新输入参数,并作线性调整。 (2)浮子挂钩严重弯曲变形,重新校正浮子。 3、故障现象 仪表不能正确指示液位,仪表输出随液位变化比较缓慢。 原因: 浮子上有附着物或浮子与舱室有摩擦现象。

解决措施: 在通风口加蒸汽管线,定时用蒸汽吹扫;在仪表外壳增加伴热。 4、故障现象 现场仪表无显示,变送器输出低或显示与输出不吻合。 原因: (1)仪表的显示板损坏。 (2)仪表打放大板损坏 (3)仪表的显示、放大板损坏。 解决措施: (1)更换显示板,进行运作确认。 (2)更换放大板,更换后,若故障消失,重新输入参数,进行线性调整。 (3)更换显示和放大板,重新输入参数进行线性调整。 三、仪表设计参数修改及线性调整 1、工器具准备 24VDC电源、万用表、秤(±1g)、水桶等。 2、计算对应于0%、10%、20%、…90%、100%液位时挂钩所受的重量 测量液位时: :对应于0%液位时的重量即浮子的重量; :对应于100%液位时的重量; 其中D为浮子的直径 h 为测量范围(浮子长度);为测量介质密度。 n =0、25、50、75、100 计算并记录:O%;25%;50%;75%;100%值 测量界面时:则液位对浮筒产生的浮力应为轻组分产生的浮力 与重组分产生的浮力之和,应挂重力为: 依次计算并记录 四、校验方法 1、挂重法 当仪表周期运行或对测量准确度有质疑时,可按下述方法对仪表进行校验(其它型号的浮筒液位计也可按此方法进行校验)。 测量液位时: 被校刻度为0%,应挂重力:

压力传感器标定

燃气联试系统在正式工作之前要进行传感器校标;若测试现场环境发生变化,用户更有必要对传感器重新校标。 本系统用到的传感器有侧燃压力传感器和燃气压力传感器。 1.传感器校标特征图 图5.9 传感器校标特征 2.传感器校标计算公式 标定线的各点压强值对应的高度:(此处侧燃n =7,燃气n =8) 0h =4 04030201h h h h +++ 1h = 414131211h h h h +++ … … n h =2 21n n h h + (5-11) 定义各点压强对应的实际高度:(此处侧燃n =7,燃气n =8) 1P 时,1h -0h =△1h 2P 时,2h -0h =△2h

… … n P 时,n h -0h =△n h (5-12) 计算各标定压强间隔的内插系数:(此处侧燃n =7,燃气n =8) 1k =1 1h △P 2k = 2121 h - h P P -?? … … n k =1 -n n 1h -△h △--n n P P (5-13) 标定压强值求法: m P =1-n P +n K (m H -△1-n h ) (5-14) 其中,m H 为曲线上m 点至零线的高度; n K 为△1-n h 和△n h 之间的换算内插系数; 1-n P 为对应于△1-n h 的压强标定值; m P 为对应m H 高度求得的压强值。 传感器非线性计算公式: △h h △n △h n i n -i ╳100% (5-15) 其中,n 为标定线上的最大台阶数; △n h 为最大标定高度; i h △为第i 阶段的标定高度; i 为标定线是任一个阶梯(i =1、2、3…n ) 计算各点值,取其最大值表示传感器非线性值。 传感器滞后性(迟滞)参数计算公式: i2i1i4i3n 1(h -h h -h ) 4h ??+???╳100% (5-16)

压力传感器标定与校准

压力传感器检定: 1.静态检定 2.动态检定 我们把压力传感器的特性分成两类静态特性和动态特性。压力传感器静态特性的 主要指标是灵敏度、线性度、迟滞、重复性、精度、温度漂移和零点漂移等等。一般 我们校准压力传感器都是校准其静态特性,这是因为我们将压力传感器理想化,认为 其固有频率相当大而且本身无阻尼,这时压力传感器的静态特性和动态特性是一样的。然而在被测压力随时间变化的情况下,压力传感器的输出能否追随输入压力的快速变 化是一个很重要的问题。有的压力传感器尽管其静态特性非常好,但由于不能很好地 追随输入压力的快速变化而导致严重的误差,有时甚至出现高达百分之百的动态误差。所以我们必须要进行压力传感器动态特性的校准,认真分析其动态响应特性。压力传 感器动态特性可以用它的上升时间、固有频率、幅频特性、相频特性等参数来描述。 迟滞e H:正行程与反行程之间的曲线的不重合度; 线性度e L(非线性误差):输入输出校准曲线(实际)与选定的拟合直线之间的吻合程度; 重复性e R:正行程或反行程曲线多次测量时曲线的一致程度; 置信系数a=2(%)或a=3(%) 贝塞尔公式 线性度、迟滞反映系统误差;重复性反映偶然误差。 误差(三者反应系统总误差)e S:e S=±√e H2+e L2+e R2 或e S=e H+e L+e R 根据检定规程一《压力传感器静态》,在校准精密线性压力传感器时给出的校准曲线有二种最小二乘直线和端点平移线。 动态检定: 1.瞬态激励法(阶跃信号激励) 2.正弦激励法(正弦信号激励) 动态检定指标、参数:频率响应、谐振频率、自振频率、阻尼比、上升时间、建立时间、过冲量、灵敏度。

温度传感器标定系统设计

我的毕设 1 FPGA 智能传感器 (1) 智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。 (2) 智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输人信号给出相关的 诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内 部检测链路找出异常现象或出了故障的部件。 (3) 智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测 与应用领域,而微处理器的介人使得智能化传感器能够更加方便地对多种信号进行 实时处理。此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性 能,也能使它们适合于各不相同的工作环境。 (4) 智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需 要将它们存储起来。存储大量信息的目的主要是以备事后查询,这一类信息包括设 备的历史信息以及有关探测分析结果的索引等。 (5) 智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算 机进行通讯联络和交换信息。此外,智能化传感器的信息管理程序也非常简单方便, 譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数 据发送给远程用户等 基于labview 和声卡 本系统主要实现温度的检测与控制,使系统的温度始终保持在要 求的范围内。系统框图如图I所示。首先将温度信号转换为电信号.然 后通过数据采集电路将电信号采集进入计算机,借助LabVIEW软件进 行数据分析、处理和显示.最后通过温度控制接口电路对温度进行实时 监控。系统中温度检测、采集和控制由硬件实现,信号的分析与处理及 后续结果的输出与显示则靠软件完成。 由于声卡采集的信号是音频信号,且幅值受到一定限制,同时我们 在实验中发现声卡对于信号频率采集的灵敏度远远大于对信号幅度的 灵敏度,所以本单元电路包括两部分:通过温度传感器将温度信号转换 为电压信号,再利用v,F(压,频)转换电路将电压信号转换为具有一定 幅值的频率信号,通过声卡采集频率,然后借助I_abVlEW的信号处理 功能对信号进行处理和显示。需要注意的是转换电路的设计既要保证 V腰转换器具有良好的线性度。又要具有合适的频率 (3)加热与降温电路 加热与降温电路的作用,就是利用前级双限电压比较器电路的输出 信号,控制继电器的通断。使其起到一个开关作用,用以控制加热元件与 降温元件的工作。限于学生实验条件,本系统分别采用加热电阻和c叫 风扇作为加热和降温元件。由于电路简单,这里不再给出电路图。。

手机侧边压力传感器校准方法与制作流程

本技术公开了一种手机侧边压力传感器校准方法,该方法通过按压两个传感器中间的点,获取两个传感器端的压力值,以此为基础,把相邻两个压力传感器的校准系数比例关系,再根据相邻压力传感器的比例关系,最终得到所有传感器间的比例关系,通过该比例关系进行压力传感器的校准。通过本技术可以在没有专业校准设备的情况下,获得各传感器的相对校准系数,由此实现快速、准确地校准。 技术要求 1.一种手机侧边压力传感器校准方法,其特征在于该方法通过按压两个传感器中间的点,获取两个传感器端的压力值,以此为基础,把相邻两个压力传感器的校准系数比例关 系,再根据相邻压力传感器的比例关系,最终得到所有传感器间的比例关系,通过该比 例关系进行压力传感器的校准。 2.如权利要求1所述的手机侧边压力传感器校准方法,其特征在于该方法包括如下步骤: 101、启动校准功能后,用户按压第一传感器和第二传感器中间位置201,分别读出四个 压力传感器的信号值为A1,A2,A3,A4; 102、按压第二传感器和第三传感器中间位置202得到B1,B2,B3,B4;

103、按压第三传感器和第四传感器中间位置203,等到C1,C2,C3,C4; 104、计算,获取各传感器的相对校准系数。 105、然后通过相对校准系数,可以精确获知用户按压了什么位置,以此进行校准。 3.如权利要求2所述的手机侧边压力传感器校准方法,其特征在于所述104步骤中,利用公式P1=R1*A1,其中P1为传感器1处的压力值,R1为传感器101的校准系数,A1为传感器101输出的信号量; 当按压两个传感器中间位置201时,传感器101与102感受到的压力值是相同的即: P1=P2R1*A1=R2*A2R2=R1*A1/A2 依此类推: 当按压两个传感器中间位置202时,P2=P3R2*B2=R3*B3R3=R2*B2/B3 当按压两个传感器中间位置203时,P3=P4R3*C3=R4*C4R4=P3*C3/C4 由于测定按压位置的识别只有两个通道间的压力比例相关,与压力大小无关。 因此我们可以设定R1为1.0,则: R1=1.0; R2=A1/A2; R3=(A1/A2)*(B2/B3); R4=(A1/A2)*(B2/B3)*(C3/C4)。 技术说明书 一种手机侧边压力传感器校准方法 技术领域

《压力传感器的静态标定实验》指导书

《自动检测技术》实验指导书 北京交通大学机电学院测控系 2006年9月

实验一压力传感器的静态标定实验 一、实验目的要求 1、了解压力传感器静态标定的原理; 2、掌握压力传感器静态标定的方法; 3、确定压力传感器静态特性的参数。 二、实验基本原理 传感器的标定,就是通过实验建立传感器输入量和输出量之间的关系,同时也确定出不同使用条件下的误差关系。压力传感器的静态标定,主要指通过一系列的标定曲线得到其静态特性指标:非线性、迟滞、重复性和精度等。 三、实验系统 1、系统连接 2、实验设备 活塞式压力计(型号:YS/YU-600型)、标准压力表(精度:0.4级,量程:0~10MPa)、被标定的压力传感器(型号:AF1800,量程:0~10MPa)、数字万用表、标准砝码、工作液体(蓖麻油)。

3、活塞式压力计结构原理 测量活塞以及砝码的重力与螺旋压力发生器共同作用于密闭系统内的工作液体,当系统内工作液体的压力与此重力相平衡时,测量活塞1将被顶起而稳定在活塞筒3内的任一平衡位置上。这时有压力平衡关系: g m m A p )(1 0+= 式中:p 为系统内的工作液体压力;m 与m 0分别为活塞与砝码的质量;g 为重力加速度;A 为测量活塞的有效面积。对于一定的活塞压力计,A 为常数。 在承重托盘上换不同的砝码,由螺旋压力发生器推动工作活塞,工作液体就可处于不同的平衡压力下,因此可以方便而准确地由平衡时所加的砝码和活塞本身的质量得到压力p 的数值。此压力可以作为标准压力,用以校验压力表。如果把被校压力表6上的示值与这一准确的压力p 相比较,便可知道被校压力表的误差大小。也可以关闭a 阀,在b 阀上部接入标准压力表,由压力发生器改变工作液压力,比较被校表和标准表上的示值进行校准。同样,将被校压力表换成压力传感器,就可以通过比较压力传感器测量的压力值和标准表上的示值进行校准,对压力传感器进行静态标定。 4、扩散硅压力传感器 扩散硅压力传感器在单晶硅的基片上扩散出P 型或N 型电阻条,接成电桥。在压力作用下,根据半导体的压阻效应,基片产生压力,电阻条的电阻率产生很大变化,引起电阻的变化,把这一变化引入测量电路。则其输出电压的变化反映了所受到的压力变化。 四、实验方法和要求 1、根据实验设备设计实验电路连线图,装配、检查各种仪器、传感器及压 力表。 2、检查实验电路及油路。

温度压力计的标定算法及软件实现

本文由zhangyufei_123贡献 doc1。 温度压力计的标定算法及软件实现 1.引言 存 储式井温压力计是一种高精度、高分辨率的井下温度和压力测试系统。它可 以完成对井下温度和压力情况的长时间持续监测,尤其适用于测试油井流压、静 压和压力 恢复的任务中。但是国内存储试压力计的大都采用最小二乘法标定仪 器,精确度不高,万分之 5 也很难达到。本文从压力计的标定算法入手,采用离 散点数据逼近的 原理,利用更高次的数值逼近的算法,提高压力计的测量精度。 2.存储式井温压力计简介 存储式井温压力计系统(以后简称压力计系统)可以相对独立的分为硬件系统和 软件系统两部分。 软硬件系统之间是基于特定的通讯协议并通过串口进行数据 交换。 软件系统负责标定硬件系统,对硬件系统设置参数,读取硬件采集的数据并进行 数据解释处理。串口通讯程序是整个软件的最底层,数据处理、图形绘制和仪器 标定都是通过它与硬件仪器交换数据的,这段程序与通讯协议有关。 硬件系统工作于井下,由 PIC 单片机芯片控制压力、温度传感器采样数据,并将 数据存储于存储芯片中或直接发送给软件系统, 该单片机的程序严格按照通讯协 议编写,与软件系统的串口通讯程序进行互操作。 在 数据处理过程中有下列名词。测量数据就是原始数据,是直接由硬件仪器采 集的通过二进制转化为十进制的计数值数据。工程数据,就是将原始数据带入一 定的公式 计算后,得到的与原始数据对应的一个数据。标准数据则是在标定过 程中使用的,如标准压力,标准温度等。在数据处理过程中,我们测量的工程数 据都是标准数据 的逼近值。 3.压力计系统的数据处理公式 仪器采集的数据是原始数据,原始数据向工程数据的转化是软件的主要任务,转 化过程利用数学公式表示为: Ve = f (Vo ) 表示原始值; 表示工程值; ( )表示函数关系式。 通过实验数据来确定上述公式的函数关系式 f()的过程就是仪器标定的过程。将 试井中测量的原始数据利用函数关系式 f()计算出工程数据的过程就是数据解 释的过程。 通常温度传感器的稳定性比较好,受外界干扰的因素少,通过实验温度原始数据 与工程数据的对应关系满足线性关系。 Vte = K * (Vto ? B) (公式 1) 根据上述公式,试验只需要从试验数据中选取两组值,即可计算出关系式中的常 数系数 K 和 B 得值。因此对温度的标定非常简单。 压 力的标定是比较复杂的。由于压力传感器的一般采用电气特性的设计原理, 不管采用电位器的特性,还是电阻应变片的特性,在高温下,都会随温度的升高 而使恒定 的压力在经过传感器采集后产生飘移,这就是温飘现象。这种现象的 存在,如果不对其进行补偿,肯定会影响到压力测量的准确度以及精度。 表 1 中的数据是已实现的标定软件在标定过程中记录的测量数据, 首行首列都是 标定用到的标准数据,表中为试验采集的测量数据。表中数据可以看出压力传感 器采 集的数据受到温度的影响,产生温飘现象。所以在计算压力工程值的过程 中必须考虑到温度对工程值的影响,需要温度对其进行补偿。 利用离散数据的最佳平方逼近理论, 当 ( 是未知数的个数, 是参与运算的向 量的维数)时的最佳平方逼近公式: 温度值 C) 30.0000 (。 压力(MPa) 频率 1 (KHz) 0.0000 2.0052 5.0000 2.1103 10.0000 2.2203 20.0000 2.4387 30.0000 2.6560 40.0000 2.8740 50.0000 3.0910 55.0000 3.2000 60.0000 3.3080 表 1 压力标定实验数据表 50.0000 频率 2 (KHz) 1.9960 2.1037 2.02133 2.4325 2.6527 2.8718 3.0910 3.2008 3.3100 80.0000 频率 3 (KHz) 1.9790 2.0892 2.2007 2.4238 2.6475 2.8697 3.0938 3.2050 3.3158 100.0000 频率 4 (KHz) 1.9667 2.0782 2.1915 2.4170 2.6432 2.8683 3.0942 3.2067 3.3190 120.0000 频率 5 (KHz) 1.9550 2.0670 2.1812 2.4100 2.6390 2.8665 3.0957 3.2095 3.3232 利用矩阵的运算可以计算出系数 的值。最后得出: , 就是压力值 Y 的最佳平方逼近。因此在压力数据处理中,测量并利用公式 2 计算 出的 值来近似表示标准的压力值,因此公式中 的取值越接近 , 对 Y 的逼近程 度越高,但同时对逼近离散点之间的值的逼近有一定的负面影响,因此 的取值 应该综合考虑这方面的影响。而标定的过程就是利用公式 2 确定 系数的过程。 4.

重力模型的解释及系数计算方法

重力模型法(gravity model)是一种最常用的方法,它根据牛顿的万有引力定律,即两物体间的引力与两物体的质量之积成正比,而与它们之间距离的平方成反比类推而成。下式为Casey(1955)提出的重力模型。 其中,:i,j小区的人口; d为i,j小区间的距离,α为系数。上式的约束条件为: s.t. 同时满足守恒条件的α是不存在的,因此,将重力模型修改如下: 其中,为交通阻抗函数。 交通阻抗函数的几种形式: 指数函数: (1) 幂函数: (2) 组合函数: (3) 为参数。

单约束型B.P.R.模型 其中,调整系数。 发生侧得到保证,即: 以下以幂指数交通阻抗函数为例介绍其计算方法: 第1步令m=0,m为计算次数。 第2步给出n(可以用最小二乘法求出)。 第3步令 第4步求出 第5步收敛判定。若下式满足,则结束计算;反之,令m+1=m,返回第2步重复计算。 , 作业:按上次作业给出的现状OD表和将来生成、发生与吸引交通量,利用下式重力模型 和弗拉塔算法,求出将来OD表。收敛标准。 重力模型: 其中,,,。读者也可以利用以前给出的现状分布交通量和表4-1示现状行驶时间,估计出这3个参数。

表4-1 现状行驶时间表4-2将来行驶时间 解:利用重力模型求解分布交通量如下: 同理,可以计算出其它各交通小区之间的交通量如下表所示。 重力模型的优点: a.直观上容易理解; b.能考虑路网的变化和土地利用对人们的出行产生的影响; c.特定交通小区之间的OD交通量为零时,也能预测; d.能比较敏感地反映交通小区之间行驶时间变化的情况。 重力模型的缺点: a.重力模型仅仅是将物理法则简单直观上容易理解; b.能考虑路网的变化和土地利用对地应用到社会现象,尽管有类似性,需要更加贴合人们出行的方法; c.一般,人们的出行距离分布在全区域并非为定值,而重力模型将其视为定值; d.交通小区之间的行驶时间因交通方式和时间段的不同而异,而重力模型使用了同一时间;

相关文档
最新文档