说明反应谱的振型
《振型分解反应谱法》课件

振型分解反应谱法的应用前景
支撑结构的设计和评估
结构设计师和工程师可以利用振 型分解反应谱法,解决实际工程 中的动力响应问题。
工程抗震加固
对已经存在的结构进行加固和改 造时,可以使用振型分解反应谱 法进行更加精细的工程分析,在 不拆除原有结构的同时,提高结 构抗震能力。
地震灾害对策和减灾措施
应用振型分解反应谱法,制定防 灾预案,提高灾害应对和减灾能 力。
振型分解反应谱法
综合振型分解法和反应谱法的优势,识别结构响应来源并计算其动力响应。在大型和复杂结 构抗震分析中应用广泛。
振型分解反应谱法的步骤
数据采集和准备
收集地震动数据,进行处理和筛 选。
滤波处理
去除噪音,提取有效信息。
振型识别和分离
根据振动理论进行振型分解,分 离出不同频率的振型组合。
反应谱计算
振型分解反应谱法的总结和展望
1 现有研究进展
当前振型分解反应谱法的应用领域已经涵盖了建筑、桥梁、风电、海洋、地基、地铁等 众多领域。
2 未来研究方向
应用人工智能技术优化振型分解反应谱法的分析精度和速度,以及开发更加智能化的分 析工具。
3 机遇和挑战
随着大型基础设施建设和城市更新进程加快,结构的抗震设计和评估的需求日益增长。 振型分解反应谱法将有广阔的市场前景,也面临着挑战。
根据结构振型组合和地震动谱计 算每个组合的动力响应。
振型分解反应谱法的数学基础
1
谱分解定理的定义和原理
将一个线性有界算符分解成一组特征向量和特征值,用于结构振动分析。
2
单自由度系统的反应谱
单自由度结构的动力响应,是地震加速度历时曲线和结构自振响应的乘积。
3
多自由度系统的反应谱
振型分解反应谱法

结构设计系列之振型分解反应谱法苏义前言我国规范对于常规结构设计有两个方法:底部剪力法和振型分解反应谱法。
其中,底部剪力法视多质点体系为等效单质点体系,且其地震作用沿高度呈倒三角形分布,当结构层数较高或体系较复杂时,其计算假再用,因部剪时,其计算假定不再适用,因此规范规定底部剪力法仅适用于高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构。
因此,一般结构均采用振型分解反应谱法。
振型分解反应谱法的基本步骤:通过体系的模态分析,求出多自由度体系的振型通过体系的模态分析求出多自由度体系的振型向量、参与系数等等;然后把每个振型看作单自由度体系,求出其在规定反应谱的地震加速度作用下产生的地震效应;最后把所有振型的地震效应式进行叠,得到体系震应应按一定方式进行叠加,就会得到体系地震效应的解。
注意注意:振型分解反应谱法只适用于弹性分析,对于弹塑性体系,由于力与位移不再具有对应关系,性体系,由于力与位移不再具有一一对应关系,该法不再适用。
目录一模态分析二反应谱分析三振型组合方法四方向组合方法一、模态分析模态分析也被称作振型叠加法动力分析,是线性体系地震分析中最常用且最有效的方法。
它最主要的优势在于其计算一组正交向量之后,可以将大型整体平衡方程组缩减为相对数量较少的解耦二阶平解阶微分方程,这样就明显减少了用于数值求解这些方程的计算时间。
模态分析为结构相关静力分析提供相关结构性能,包括结构静力地震作用分析和静力风荷载分析。
模态分析是其它动力分析的基础,包括反应谱分析和时程分析。
一、模态分析特征向量分析用于确定体系的无阻尼自由振动的模态和频率,分析这些自振模态是理解结构性能很好的工具。
下面我们以不考虑阻尼的高层建筑为例,了解一下关下面我们以不考虑阻尼的高层建筑为例,了解下关于无阻尼自由振动的一些基本概念。
一、模态分析对于一般的高层建筑,我们可以将其看作多自由度体系。
根据每个质点的力学平衡条件,建立每个质点的振动平衡方程式,联立这些方程式,即为多自由度体系的振动平衡方程组。
振型分解反应谱法 21页

c 1.5 n1 2n1
n 1 c 1 n c 0.75
抗震规范规定 c0.85
FEK1Geq (底部剪力作用的标准值)
1 基本周期的水平地震影响系数
由T1查设计反应谱
G eq 结构等效重力荷载代表值
结构总的重力荷载代表值的85%
F EK 总的水平地震作用标准值
S
S2j
例 3—4 三层结构,80,北京 Ⅲ类场地。
多遇地震的层间地震剪力,ζ=0.05
m1 27t0 m1 27t0
解:(1)求T1,T2,T3(方法后面要讲实用方法)
T1 0 .467 s T 2 0 .208 s T3 0 .134 s
X1T 0.334 0.6671.000 XT2 0.667 0.6661.000 XT3 4.019 3.0351.000
总的水平地震作用
n
n
FEK Fl 11 HlGl
F F 于是 i
l1
HiGi
n
EK
l1
HlGl
三、顶部附加地震作用l1的计算
经过计算发现底部剪力法对于层数比较多的结构(自振周期长 T总1≽的1地.4T震g)作,用顶拿部出水一平部地分震,作作用为计集算中结力果作偏用小在,顶所部以。规范规定:将
2 T2 2 0 .156 s
⒉用振型分解反应谱法计算
X X1 12 1 1 0..0 40 8 0 8 X X2 22 1 11 .7 .010 00
第一振型
F1i 11x1iGi
1T T1 g0.9ma x00.3 .255 0.9 80.1 60.1158
x1,x2,....x..j, 1,2,......j,
振型分解反应谱法

附录一振型分解反应谱法振型分解反应谱法作为弹性多自由体系的主要分析方法,很有必要对振型分解反应谱法如有有充分的了解。
本文仅作为大家参考之用,理解上的错误或者不当,敬请谅解。
1 、单自由度体系在地震作用下的运动如图(1)所示,根据达朗贝尔原理有:f c f I f s 0也即:mu cu ku mu g 方程两边同时除以m ,可化为:2u 2 u u u g (3)2c式中,2k/m ,令2m c,为体系阻尼比。
2 、多自由度体系在地震作用下的运动类似于单自由度体系分析过程,体系运动方程为:[m]{u} [c]{u} [k]{u} [m]u g (4)无阻尼体系自由振动时,u g 0,c 0 ,上式即为:[m]{ u} [k]{u} {0} 5)根据方程解的特征,设其解的形式为:{u} { } sin( t ) 6)代入( 5)式有:([k] 2[ m]){ } sin( t ) {0} (7)由于sin( t ) 0则([k] 2[m]){ } {0} 8)另外,{ } {0} ,故特征方程为:[k] 2[m] 0 9)22由(9)式可以求出2,进而可以求得各阶振型对应的圆频率i2,再代入(8)式可求对应于各个i2的特征向量{ i} ,即为振型。
振型:多自由度体系自由振动时,各质点在任意时刻位移比值是一定的,不随时间变化,10)即体系自由振动过程中形状保持不变。
振型是结构形状保持不变的振动形式, 振型的形状是 唯一的。
N 个自由度的体系具有 N 个振型。
则结构的变形总可以表示成这 N 个振型的线性组合:Nu q i ii1其中qi 称为正则坐标。
3、振型的正交性由于 [k]{ }2[m]{ } {0}(11) 则 [k]{ r } r 2[m]{ r } {0}(12)(12)式两边同时左乘 { n }T , (n r ) ,得到:{ n }T[k]{ r }r 2{ n } T[m]{ r }(13)同理,{ r }T [k]{ n }n 2{ r }T[m]{ n } ,该式两边同时转置一次,得到:{ n }T[k]{ r } n 2{ n } T[m]{ r }(14)( 13),( 14)两式左右对应相减,得到:( r 2n 2){ n }T [m]{ r }0 (r n ) (15)因为 r 2n 2所以 { n }T [m]{ r }(r n ) (16) 同理亦有{ n }T[k]{ r } 0(r n )(17)即所说的振型关于质量和刚度矩阵满足正交性质。
振型分解反应谱法

❖根据线性代数的知识,特征方程存在非零解的
充要条件是系数行列式等于零,即得到频率方
程:
| [K ] 2[M ] | 0
第三章 建筑结构抗震原理
§4 多自由度体系地震反应分析
❖根据特征方程: ([K] 2[M ]){} 0
❖对应于频率方程中的每一个根,都存在特征方 程的一个非零解{ϕj},称为振型向量,或叫特 征向量,或叫模态向量。
第三章 建筑结构抗震原理
§5 地震分析振型分解反应谱法
❖采用振型分解法可求得体系各质点的位移、速 度和绝对加速度时程曲线,但对于工程实践而 言,振型分解法还是较为复杂,且运用不便。
❖注意到工程抗震设计时仅关心各质点反应的最 大值,给合单自由度体系的反应谱理论,在振 型分解法的基础上,可导出更实用的振型分解 反应谱法。
}T
[
M
]{i
}
{i
}T
[
K
]{
j
}
2 j
{i
}T
[
M
]{
j
}
❖左式不变,而对右式进行转置运算可得
{
j
}T
[
K
]{i
}
2 i
{
j
}T
[
M
]{i
}
{
j
}T
[
K
]{i
}
2 j
{
j
}T
[
M
]{i
}
第三章 建筑结构抗震原理
•8/180
§4 多自由度体系地震反应分析
2.振型正交性 ❖对ωj≠ωi,则有:
{ j }T [M ]{i } 0
n
n
❖根据前述 Fi (t) mi j ji (xg (t) j (t)) Fji (t)
振型分解反应谱法

q1 (t ) 和
q2 (t )
确定后,质点的位移
u1 (t )
和
u2 (t )
也将随之确定。
2019/2/6
第8讲 振型分解反应谱法
3
式(3-55)也可以这样理解:体系的位移可看作是由 各振型向量乘以相应的组合系数和后叠加而成的。换句 话讲,这种方法是将实际位移按振型加以分解,故称为 振型分解法。另外,由于和是随时间变化的,因此,同 一振型在不同时刻对总位移“贡献”的大小是不一样的。
第
8讲
振型分解反应谱法
考虑两个自由度的体系。将质点和在水平向地震作用 下任一时刻的位移和用其两个振型的线性组合表示, 即:
u1 (t ) 11q1 (t ) 21q2 (t )
u2 (t ) 12 q1 (t ) 22 q2 (t )
(3-55a)
(3-55b)
2019/2/6
0.05
例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。 抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。 解: (1)求体系的自振周期和振型 m 180t
型组合公式,称为完全二次项组合法,简称CQC法:
S
ij S i S j i 1 j 1
m
m
(3-65)
式中 ,s-----水平地震作用效应; m-----参与振型组合的振型数,一般可取2~3个振型, 当基本自振周期 T1>1.5s
或房屋高宽比大于5时,振型个数可适当增加;
2019/2/6
一般的多自由度线弹性体系,式(3-55)可写成如下形式
{u(t )} { j }q j (t ) [ ]{q(t )} 3-56
j 1
n
振型分解反应谱法
n
j
ij 1 ,下面证明它是成立的:
1 as is (i 1, 2,3, , n)
即:
s 1
(1)
式中: ij
1 a111 a212 an 1n 1 a2 21 a2 22 an 2 n (2) 1 a1 n1 a2 n 2 an nn 为振型矩阵的元素:a j 为常系数,由式(1)可唯一确定。
多质点弹性体系在地面水平运动影响下,质点 i 上的总惯性力是:
Fi (t ) mi [ xg (t ) xi (t )]
为了推导简便,将 xg (t) 写成如下形式:
xg (t ) xg (t ) j ij
j 1
n
振型分解反应谱法
使上式成立的唯一可能是 将1按振型展开:
n
sin j (t )d
第 i 质点相对于结构底部的位移可求出如下:
xi (t ) T i ,:q q j . ij j . j (t ). ij
j 1 j 1
n
n
振型分解反应谱法
利用振型矩阵关于刚度矩阵和质量矩阵的正交性将多质点体系分解为 一个一个单质点体系来考虑,从而使问题得以简化。下面说明如何利 用单质点弹性体系水平地震作用的反应谱来确定多质点弹性体系的地 震作用问题,即所谓的振型分解反应谱法。
振型分解反应谱法
广义模态位移可用杜哈美积分写出:
j qj j
或
t
0
xg ( )e
j j ( t )
sin j (t )d
q j (t ) j . j (t )
j (t ) 1
振型分解反应谱法ppt课件
qn (t)}T
----振型矩阵 [] [{1} {2}
{n}]
{ j} ----为体系的第j个振型向量。
§4 多自由度体系地震反应分析
利用振型关于质量矩阵的正交性及式(3-60), 可以导出广义坐标(qj(t))与一般位移(ui(t))反应 的关系。将式(3-60)两端分别前乘{ j }T [M ]
根据线性代数的知识,特征方程存在非零解的
充要条件是系数行列式等于零,即得到频率方
程:
| [K ] 2[M ] | 0
§4 多自由度体系地震反应分析
根据特征方程: ([K] 2[M ]){} 0
对应于频率方程中的每一个根,都存在特征方 程的一个非零解{ϕj},称为振型向量,或叫特 征向量,或叫模态向量。
分别对振型i、j列出运动方程:
[K]{i} i2[M ]{i}[K]{j
}
2 j
[
M
]{
j
}
左式(a)两边乘以向量{ϕj}的转置{ϕj}T,右式两 边乘以向量{ϕi}的转置{ϕi}T,则有:
{ j}T [K ]{i} i2{ j}T [M ]{i}
{i
}T
[
K
]{
§4 多自由度体系地震反应分析
M jqj (t) Cjqj (t) K jqj (t) {j}T[M ]{I}xg (t) ( j 1, 2, , n)
注意到
2 j
Kj
/Mj
,2 j j
Cj
/ M j ,上式可化成
q
j
(t)
2
j
j
q
j
(t
)
振型分解反应谱法求结构的最大位移和底部最大剪力_概述说明以及解释
振型分解反应谱法求结构的最大位移和底部最大剪力概述说明以及解释1. 引言1.1 概述本文讨论的是振型分解反应谱法在求解结构的最大位移和底部最大剪力方面的应用。
在工程设计和结构分析中,了解结构的抗震性能是至关重要的,因为地震荷载可能会对结构造成巨大影响。
因此,准确估计结构在地震作用下的位移和剪力变化对于设计可靠、安全稳定的建筑物至关重要。
1.2 文章结构本文共分为五个部分进行详细介绍。
首先,在引言部分我们将概述本文的主题和研究目的。
然后,我们将详细讨论振型分解反应谱法的理论基础、求解过程以及其应用范围与限制。
接着,在第三部分中,我们将探讨如何使用等效静力法原理来求解结构的最大位移,并给出相应的求解步骤和计算公式。
第四部分将重点研究底部最大剪力的求解,包括底部剪力分布特点、剪力计算方法及公式导出过程,并通过数值模拟和实验验证结果对比来进行进一步分析。
最后,我们将在结论与展望部分总结主要研究结论,并对存在问题提出改进方向的展望。
1.3 目的本文的主要目的是介绍和解释振型分解反应谱法在求解结构最大位移和底部最大剪力中的应用。
通过阐述相关理论基础、求解过程以及实例分析,旨在为工程师和研究人员提供一种有效的方法来评估建筑物在地震作用下的抗震性能。
此外,本文还将探讨该方法存在的限制,并提出改进方向,以促进该领域未来的研究和应用发展。
2. 振型分解反应谱法2.1 理论基础振型分解反应谱法是结构动力学中常用的一种分析方法,通过将结构的地震作用响应按照不同振型进行分解,进而求解结构在各个振型下的最大位移和底部最大剪力。
该方法基于以下两个理论基础:首先是振型理论。
振型是描述结构在地震激励下的运动状态的数学函数形式。
结构可通过特征向量与自由振荡频率确定其对应的振型形态。
其次是反应谱理论。
反应谱是一种表征动力响应强度与频率关系的曲线。
通过将地震输入转化为加速度-频率坐标系上的曲线,可以获取到某个特定周期(频率)下结构对地震作用响应的峰值。
振型分解反应谱法
3104
50
2
0
0.00003 4 0.058 2 15 0
12 307.6 1 17.54rad / s
22 1625.8 2 40.32rad / s
X12 X11
m112 k11
k12
60307.6 8104 3104
n i 1
j 1
j x ji
Gi G
n
式中 G Gi (结构总重量)
i 1
FEK 则结构总的水平地震作用(底部剪力)
n
nn
FEK
V
2 jo
1G
(
x ) j
Gi 2
1 j ji G
j 1
j1 i1
1cG
其中
nn
c
(
) i
Gi 2
0
0 m2
x1 x2
0 0
k11 k21
k12 k22
2
m1
0
0
m2
0
k11
k21
2m1
k22
k12
2
m2
0
8104 60 2 3104
3104
m1 270t m1 270t
解:(1)求T1,T2,T3(方法后面要讲实用方法)
T1 0.467s T2 0.208s T3 0.134s
X
T 1
0.334
0.667