用比例尺解决问题
用比例尺解决实际问题

1.一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
2.甲乙两地实际距离是500米,画在一张图纸上的距离为1厘米,这幅图纸的比例尺是。
3.甲乙两地相距1600千米,画在比例尺是1 :5000000的地图上,应画多少厘米?4.在一幅比例尺是1 :3000000的地图上,甲乙两地的距离是7.5厘米,甲乙两地的实际距离是多少千米?5.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?6.某建筑工地挖一个长方形的地基,把它画在比例尺是1 :100000的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?7.从井冈山到韶山的实际距离是475千米,在一幅1 :2500000的地图上应画多少厘米?8.学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?9.在比例尺是1:200000的地图上,量得两地距离是30厘米,这两地的实际距离是多少千米?10.南京到上海约320千米,画在1:4000000的地图上,两地间的图上距离是多少厘米?11.在一一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?12.在一幅比例尺是1:4500000的地图上,量得甲地到乙地的距离是20厘米,甲地到乙地的实际距离是多少千米?13.地图的比例尺是,北京到天津某地的距离画在该地图上是4.8厘米,求两地的实际距离多少?14.兰州到乌鲁木齐的铁路线大约长1900km。
在比例尺是1:40000000的地图上,它的长是多少? 15. 在一幅比例尺是80000001的地图,量得甲、乙两城之间的路长12.5cm。
一辆汽车以平均每小时80km的速度从甲城开往乙城,需多少个小时才能到达?16.在一幅比例尺是1:5000的平面图上,量得一段公两个修路队,路长16.8厘米。
把修筑这段公路任务按3:5分配给甲、乙两个修路,这两个队各要修多少米?17.在比例尺是1/5000的地图上,量得一所学校的平面图长6厘米,宽4厘米。
比例练习题及答案

比例练习题及答案在数学学科中,比例是一个重要的概念,经常用于解决实际问题。
本文将带您进行一些比例练习题,并附上详细的答案解析。
练习题一:某比例尺为1:2000的地图上,两个城市的实际距离为35公里。
请问在该地图上,这两个城市之间的距离是多少毫米?解析:比例尺表示地图上的1单位对应于实际距离的多少单位。
根据比例尺1:2000,1毫米对应2000米。
通过单位转换,35公里可以转换为35000米,所以在地图上的距离为35000 ÷ 2000 = 17.5毫米。
练习题二:甲队和乙队比赛,比分为3:4。
已知甲队得到了27分,求乙队得到的分数是多少?解析:根据比例关系,甲队的得分与乙队的得分之间的比例为3:4。
设乙队得分为x,则甲队得分为27,所以有3:4 = 27:x。
通过求解比例关系,可以得到x = 36,因此乙队得到的分数为36分。
练习题三:一根长为2.4米的绳子需要切成8段,每段的长度都相等。
请问每段绳子的长度是多少厘米?解析:根据题目条件,将绳子切成8段,每段长度相等,设每段长度为x,则有2.4米 = 240厘米 = 8x。
通过求解方程可以得到x = 30,因此每段绳子的长度为30厘米。
练习题四:某工厂中,甲班和乙班的男女比例分别是5:4和7:5。
如果甲班男生有45人,求乙班的男生人数。
解析:根据题目条件,甲班的男女比例为5:4,乙班的男女比例为7:5。
已知甲班男生有45人,设乙班男生为x人,则有5:4 = 45:x。
通过求解比例关系,可以得到x = 36,因此乙班的男生人数为36人。
练习题五:某材料由甲、乙、丙三种成分组成,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
如果总质量为400克,求甲、乙、丙三种成分各自的质量。
解析:根据题目条件,甲的质量占总质量的30%,乙的质量占总质量的45%,丙的质量占总质量的25%。
已知总质量为400克,设甲、乙、丙的质量分别为x、y、z克,所以有30:45:25 = x:y:z。
2023春人教版六年级数学下册 用比例解决问题练习(课件)

下图是小明和他最喜欢的篮球运动员的合影,这名篮球运动员的身高
是多少米?
我身高1.4米。
小明
小明图上身高 运动员图上身高 小明实际身高 = 运动员实际身高
小东
小明图上身高 小明实际身高 =比例尺
厘米 米 厘米 米
兰兰
下图是小明和他最喜欢的篮球运动员的合影,这名篮球运动员的身高
是多少米?
我身高1.4米。
兰兰
厘米 千米
在同一幅地图上,量得甲、乙两地的距离是12cm,甲、丙两地 的距离是8厘米,如果甲、乙两地的实际距离是2100km,那么甲、丙 两地的实际距离是多少?
文文
在同一幅地图上,量得甲、乙两地的距离是12cm,甲、丙两地 的距离是8厘米,如果甲、乙两地的实际距离是2100km,那么甲、丙 两地的实际距离是多少?
我身高1.4米。
小明
4.5cm
2.8cm
在同一幅地图上,量得甲、乙 两地的距离是12cm,甲、丙两地的 距离是8厘米,如果甲、乙两地的 实际距离是2100km,那么甲、丙两 地的实际距离是多少?
ห้องสมุดไป่ตู้ 下图是小明和他最喜欢的篮球运动员的合影,这名篮球运动员的身高
是多少米?
我身高1.4米。
小明
小明图上身高 小明实际身高 =比例尺 兰兰
小东
食品加工厂用500kg的稻谷加工出350kg大米。照这样计算, 6吨稻谷可以加工出多少吨大米?(用比例方法解答)
稻谷千克数 稻谷吨数 大米千克数 = 大米吨数
小东
兰兰
食品加工厂用500kg的稻谷加工出350kg大米。照这样计算, 6吨稻谷可以加工出多少吨大米?(用比例方法解答)
大米千克数 大米吨数 稻谷千克数 = 稻谷吨数
比例的应用题

比例的应用题比例是数学中常用的一个概念,它用于衡量和比较不同数量之间的关系。
在生活和工作中,比例的应用十分广泛,可以帮助我们解决各种实际问题。
本文将通过几个实例,详细说明比例在不同场景中的应用。
一、商品打折假设某商店正在进行促销活动,某件商品原价为300元,现在打8折出售。
我们可以通过比例来计算出打折后的价格。
首先,我们需要将原价与折扣相乘,得出实际支付的金额:300 * 0.8 = 240(元)因此,打折后的价格为240元。
二、地图比例尺地图是我们日常生活中常用的导航工具。
在地图上,经常会标注比例尺,它表示地图上的一定长度对应实际距离的比例关系。
例如,某地图上的比例尺为1:5000,这意味着地图上的1个单位距离相当于实际距离的5000个单位。
如果我们需要确定两个地点之间的实际距离,可以通过比例尺进行计算。
假设两个地点在地图上的距离为4个单位,我们可以使用比例尺计算实际距离:4 * 5000 = 20000(单位)因此,两个地点的实际距离为20000单位。
三、速度和时间的关系在交通工具的运行中,速度和时间是密切相关的。
通过比例,我们可以计算出两个因素之间的关系,并进一步推导出其他相关的信息。
例如,一辆汽车以每小时60公里的速度行驶,我们想要知道它行驶100公里所需的时间。
可以通过比例来计算:60公里 : 1小时 = 100公里 : x小时根据比例关系,我们可以得出:60x = 100x = 100/60x ≈ 1.67因此,该汽车行驶100公里需要约1.67小时。
四、食谱调料比例在烹饪过程中,食谱调料的比例很重要,它直接影响到菜肴的味道和口感。
通过比例,我们可以确定不同食材的用量,以达到理想的效果。
例如,某道菜的食谱要求酱油和盐的比例为2:1。
如果我们需要制作500克的菜肴,可以通过比例计算出酱油和盐的用量。
首先,假设酱油的用量为x克,那么盐的用量为1/2 * x克。
则有:x + 1/2 * x = 500通过计算可得:3/2 * x = 500x ≈ 333克因此,制作该菜肴时,酱油的用量应为333克,盐的用量为166克。
六年级数学下册《用比例解决问题》练习题及答案解析

六年级数学下册《用比例解决问题》练习题及答案解析学校:___________姓名:___________班级:_____________一、选择题1.一条2厘米的线段,选用下面比例尺()画出的平面图最大。
A.1∶200B.1∶5000C.1∶1D.2∶12.老师买了同样数目的田格本、横线本和练习本。
他发给每个同学1个田格本、3个横线本和5个练习本。
这时横线本还剩24个,那么田格本和练习本共剩了()个。
A.48B.50C.54D.563.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是()立方分米。
A.144B.24C.724.一幅地图的比例尺是1∶1000000,下列说法不正确的是()。
A.这是一个数值比例尺B.说明要把实际距离缩小为11000000后,再画在图纸上C.图上距离相当于实际距离的1 1000000D.图上1厘米相当于实际1000000米5.下列各数中,()不能与2、8、10组成比例。
A.58B.85C.52D.406.甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2∶3,乙瓶中盐、水的比是3∶5,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。
A.519B.521C.524D.31807.一个水池有甲乙两个水管。
单独开甲管,2小时可以把空池注满;单独开乙管,3小时可以把空池注满。
如果同时打开甲乙两管,()小时可以把空池注满。
A.1B.15C.115D.58.希望小学合唱队共有队员108人,则()一定不是男队员和女队员人数的比。
A.5∶4B.7∶5C.8∶7D.19∶17 9.表示x和y成正比例关系的式子是().A.x+y=9B.y=1.5x C.=0D.xy+1=510.学校把560棵树的种植任务,按照六年级三个班的人数分配给各班。
一班有47人,二班有45人,三班有48人。
二班应种树()。
A.192棵B.188棵C.180棵11.在一幅地图上,用20厘米的线段表示50千米的实际距离,那么这幅地图的比例尺是()。
比例尺的解决问题

比例尺的解决问题
1、一个长方形机件长4.5毫米,宽2.4毫米,按8:1的比例尺画在图纸上,长和宽各应画多长?
2、在比例尺是1/400000的地图上量得长春到吉林的距离是35厘米,已知一列客车每小时行70千米,这列客车从长春到吉林要行多少小时?
3、在比例尺是1:2000的图纸上量得一个圆形花坛的直径是3厘米,这个圆形花坛的实际面积是多少平方米(∏取3.14)
4、在比例尺是1:1500的图纸上量得一个操场的长是5厘米,宽是4.4厘米,求这个操场的实际面积是多少平方米。
5、在比例尺是1:4000000的地图上量得甲、乙两地的距离是30厘米。
两列火车同时从甲、乙两地相对开出。
已知甲车每小时行65千米,乙车每小时行55千米,几小时后两车才能相遇?
6、新立屯计划挖一条排水渠,在比例尺是1/100的设计图上,水渠长80厘米,宽3厘米,深1.5厘米。
按图施工,这条水渠共挖土多少立方米?
7、在一幅比例尺是1:5000000的地图上,量A B两地的距离是2.2厘米,在另外一幅比例尺是1:2000000的地图上,A B两地的距离是多少?。
2023年人教版数学六年级下册用比例解决问题教案(优选3篇)
人教版数学六年级下册用比例解决问题教案(优选3篇)〖人教版数学六年级下册用比例解决问题教案第【1】篇〗——《用比例解决问题》说课稿3篇《用比例解决问题》说课稿1说教学内容:教科书第59页的例5和相关的“做一做”。
说教学目标:1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点:掌握用正比例的方法解答应用题。
说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:1.教法:创设情境,质疑引导。
经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备:教学挂图、小黑板说教学过程:一、联系实际,复习迁移1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
二、探索新知,培养能力1.教学例5(1)出示挂图:观察画面,说出题中告诉我们哪些信息?(2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?(3)提出:你能用以前学过的方法解答(4)学生试着解答,并汇报解法。
可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8=1.6×10 =1.25×12.8=16(元) =16(元)(5)激励引新师:这两种方法都合理,还可以有什么方法解答呢?学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。
如何解决小学数学中的比例尺问题
如何解决小学数学中的比例尺问题在小学数学教学中,比例尺问题是一个常见的数学题型。
解决比例尺问题需要学生理解比例的概念,并能够运用比例关系进行计算。
本文将介绍解决小学数学中的比例尺问题的几种常见方法。
一、理解比例尺的概念比例尺是表示实际尺寸与图上尺寸之间的比例关系,常用于地图、模型等比例绘制。
在解决比例尺问题之前,学生需要明确比例尺的含义,即实际尺寸与图上尺寸的比值。
二、直接比较法直接比较法是解决比例尺问题的一种常见方法。
通过观察实际尺寸和图上尺寸之间的关系,学生可以直接比较两者的大小并计算出比例尺。
举个例子,假设一张地图上表示实际距离为300米的公路,而图上的该公路长度为6厘米。
那么我们可以通过直接比较得到比例尺:300米:6厘米,即1:50。
三、倍数关系法倍数关系法是解决比例尺问题的另一种常见方法。
学生可以通过观察实际尺寸和图上尺寸之间的倍数关系,来计算比例尺。
例如,假设一张地图上表示实际距离为500米的道路长度为4厘米。
我们可以观察到实际尺寸与图上尺寸之间存在倍数关系。
通过计算500米是4厘米的几倍,即可得到比例尺:500米:4厘米,即125:1。
四、转换单位法在解决比例尺问题时,有时会涉及到不同单位之间的转换。
学生可以通过转换单位的方法来解决这类问题。
举个例子,假设一张地图上表示实际距离为2公里的公路长度为8厘米。
我们可以将公路长度单位转换成米,即2公里=2000米。
然后通过直接比较法或倍数关系法计算出比例尺。
五、综合运用法有时候,解决比例尺问题需要学生综合运用上述方法。
学生可以根据题目所给的信息和要求,选择合适的方法来解答问题。
六、实际应用让学生在实际生活中应用比例尺进行练习和应用,能够更好地巩固他们的数学能力。
老师可以引导学生观察和测量周围环境中的实际尺寸,并将其绘制在纸上,然后让学生计算出相应的比例尺。
结语解决小学数学中的比例尺问题需要培养学生的比例思维和观察力。
通过理解比例尺的概念,掌握几种解决问题的方法,并在实际应用中进行练习和巩固,学生能够更好地解决比例尺问题。
《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间
正
一定,
和
成
比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24
=
20×18
=
15
答:可以站15行.
=
24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?
解简单的比例尺问题
解简单的比例尺问题比例尺是地图上的基本度量工具,用以表示地图上地理距离与实际距离之间的比例关系。
在实际应用中,我们经常需要解简单的比例尺问题,以便更好地理解和使用地图。
本文将介绍一些常见的比例尺问题,并提供解决方法。
一、找出地图上的比例尺在解决比例尺问题之前,我们首先需要找出地图上标明的比例尺。
比例尺通常以一个线段表示,线段上标有刻度。
这个刻度就是地图上的距离与实际距离之间的比值。
例如,某地图上的比例尺为1:1000。
这意味着地图上的1个单位长度相当于实际距离中的1000个单位长度。
如果地图上刻度尺的长度为10个单位长度,那么实际距离就是10 * 1000 = 10000单位长度。
二、计算实际距离一旦找到地图上的比例尺,我们可以使用它来计算实际距离。
通常情况下,题目会给出地图上的距离,我们需要计算出对应的实际距离。
例如,某地图上两个城市之间的距离是4.5厘米,比例尺为1:50000。
我们可以通过以下计算得到实际距离:实际距离 = 地图上的距离 * 比例尺= 4.5 * 50000= 225000厘米= 2.25公里三、计算地图上的距离除了计算实际距离,有时候我们也需要根据给定的实际距离计算地图上的距离。
这时,我们可以使用类似的方法进行计算。
例如,某地的实际距离是6公里,比例尺为1:25000。
我们可以通过以下计算得到地图上的距离:地图上的距离 = 实际距离 / 比例尺= 6 * 1000 / 25000= 0.24厘米四、估算实际距离有时候,地图上的比例尺可能没有给出具体的刻度,而是以文字形式表示,如“1英寸代表10英里”。
这时,我们可以使用比例关系估算出实际距离。
例如,假设地图上的比例尺为“1英寸代表10英里”,并且地图上两个城市之间的距离为2.5英寸。
我们可以按照比例关系计算出实际距离:实际距离 = 地图上的距离 * 比例尺中的数值= 2.5 * 10= 25英里五、应用举例1. 若地图上两个城市之间的距离为6厘米,比例尺为1:40000,我们可以计算出实际距离为多少?答:实际距离 = 地图上的距离 * 比例尺= 6 * 40000= 240000厘米= 2.4公里2. 若某地的实际距离为15公里,比例尺为1:50000,我们可以计算出地图上的距离为多少?答:地图上的距离 = 实际距离 / 比例尺= 15 * 1000 / 50000= 0.3厘米六、总结解决简单的比例尺问题需要找出地图上的比例尺,并应用比例关系进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)。
2、判断题。 、判断题。 工程队要修一段长4800米的公路,前4天 米的公路, 工程队要修一段长 米的公路 天 共修路960米,照这样计算,修完这段路共 米 照这样计算, 共修路 需要多少天?判断下面的比例的是否正确。 需要多少天?判断下面的比例的是否正确。 (解:设修完这段路共需要x天。) 设修完这段路共需要 天 ①
1、按要求做题。 、按要求做题。 小明买了4支圆珠笔用了 元 小明买了 支圆珠笔用了6元。小刚想 支圆珠笔用了 支同样的圆珠笔, 买3支同样的圆珠笔,要用多少钱? 支同样的圆珠笔 要用多少钱? (1)题中的(圆珠笔单价 一定,也就 )题中的( )一定, 买笔总钱数 和( 买笔数量 ) 是说两人的( 是说两人的( ) 的比值是相等的,所以( 的比值是相等的,所以( 买笔总钱数 )和 比例。 ( 买笔数量 )成( 正 )比例。 x (2)设要用 元。列比例是 6 )设要用x元 = 4 3 (
题中有哪两种相关联的量? 题中有哪两种相关联的量? 请小组合作完成“ 用比例解决问题( 请小组合作完成“《用比例解决问题(一)》 学习记录卡” 学习记录卡”。
这样列方程行吗?为什么? 这样列方程行吗?为什么? 10 用水量 用水量 8 12.8水费 用水量 8 = A、 、 = B、 、 水费12.8 x 水费 用水量10 x 水费
(2)小兰的身高1.5m,她的影子长 )小兰的身高 , 2.4m。如果同一时间、同一地点测到一 。如果同一时间、 棵树的影子长4m,这棵树有多高? 棵树的影子长 ,这棵树有多高?
4、先补充问题再用比例解答。 、先补充问题再用比例解答。 王师傅4小时加工了 小时加工了200个零件,照 个零件, 王师傅 小时加工了 个零件 这样计算, 这样计算,__________? ? 5、一条绳子长126米,剪下 米共做了 条 、一条绳子长 米共做了5条 米 剪下9米共做了 跳绳。 跳绳。剩下的绳子还可以做多少条这样的 跳绳? 跳绳?
960 4800 = 4 x
4 x ③ 960 = x ② = 4 4800 960 4800
3、用比例解答下面各题。 、用比例解答下面各题。 千米, (1)甲乙两地之间的公路长 )甲乙两地之间的公路长350千米,一 千米 辆汽车从甲地开往乙地, 小时行驶了 小时行驶了140 辆汽车从甲地开往乙地,2小时行驶了 千米。照这样的速度, 千米。照这样的速度,这辆汽车从甲地开 往乙地一共需要行驶多少小时? 往乙地一共需要行驶多少小时?
1、用比例解决问题该怎样检验? 、用比例解决问题该怎样检验? 2、用比例解决问题的步骤是怎样的? 、用比例解决问题的步骤是怎样的? 要注意什么? 要注意什么?
阅读P59学习的内容,提出自己的疑问。 学习的内容,提出自己的疑问。 阅读 学习的内容 (1)为什么学习了算术方法,还要学 )为什么学习了算术方法, 习用比例解? 习用比例解? (2)以后遇到这样的题目时,该用什 )以后遇到这样的题目时, 么方法解答? 么方法解答?