河北高频考点强化训练:三视图的有关判断及计算
高考三视图强化训练30题

高考三视图强化训练30题三视图之间的关系。
正视图的是几何体的高,长;侧视图的是几何体的高,宽。
俯视图的是几何体的长,宽;1.(2014新课标全国卷Ⅰ,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2 B.4 2 C.6 D.42.(2014安徽,5分)一个多面体的三视图如图所示,则该多面体的体积为()A.233 . B476 C. 6 D.73.(2014重庆,5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.304.【2015高考新课标2,理6】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D.51A.81B.71C.615.(2014重庆,5分)某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .726.(2014辽宁,5分)某几何体三视图如图所示,则该几何体的体积为( )A .8-π4B .8-π2C .8-πD .8-2π7.(2014四川,5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是 ()A .3B .2 C. 3 D .18.(2014浙江,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 29.(2013浙江,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 310.(2013新课标全国Ⅰ,5分)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π11.【2015高考新课标1,文理11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r=( ) (A)1(B)2(C)4(D)812.【2015高考新课标2,理9】已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π13.(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.514.(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .15.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B .C .D.216.(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.217.(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .18.(2015•泉州模拟)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm319.(2015•衢州一模)如图是某几何体的三视图,则该几何体的体积为()A.1 B .C .D .20.(2015•西宁校级模拟)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2 B .C .D.321.(2015•金华一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C .D .22.(201 1(2016文理).某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.23.(2016年北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13 C.12D.124.(2016年山东高考)有一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为(A )π32+31(B )π32+31(C )π62+31 (D )π62+125.(2016年四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是__________.26.(2016年天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.27.(2016年全国II 高考)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π28..(2016年全国III高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18+(B)54+(C)90 (D)8129.[2014·湖北卷] 在如图1-1所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()1A.①和②B.①和③C.③和②D.④和②30.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为()(A)(B)(C)(D)。
(完整版)三视图与对称图形知识点及习题练习

(一)投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。
俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。
左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
(二)轴对称1、定义:把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形:把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
(三)旋转1、定义:把一个图形绕某点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
(四)中心对称1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
专题三视图及组合体的计算问题

专题三视图及组合体的计算问题三视图与组合体问题题型一三视图的识图与计算常考查:①三视图的识别与还原问题;②以三视图为载体考查空间几何体的表面积、体积等问题.主要考查学生的空间想象能力及运算能力,是近几年高考的热点.【例1】已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为[审题导引]条件中的俯视图与侧视图给出了边长,故可根据三视图的数量关系进行选择.[规范解答]空间几何体的正视图和侧视图的“高平齐”,故正视图的高一定是2,正视图和俯视图“长对正”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合以上可知,这个空间几何体的正视图可能是 C.[答案]C方法总结:(1)可以从熟知的某一视图出发,想象出直观图,再验证其他视图是否正确;(2)视图中标注的长度在直观图中代表什么,要分辨清楚;(3)视图之间的数量关系:正俯长对正,正侧高平齐,侧俯宽相等.(4)“眼见为实、不见为虚”.【突破训练1】三棱锥D-ABC及三视图中的主视图和左视图分别是如图所示,则棱BD的长为_________.42题型二三视图求体积【例2】如图是某三棱柱被削去一个底面后的直观图与侧(左)视图、俯视图.已知CF=2AD,侧(左)视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示.求该几何体的体积.解如图,取CF的中点P,过P作PQ∥CB交BE于Q,连接PD,QD,AD∥CP,且AD=CP.四边形ACPD为平行四边形,∴AC∥PD.1211+2某2∴V=V三棱柱PDQCAB+VDPQEF=某2in60°某2+某某3=33.232求体积常见技巧(1)几何体的“分割”:几何体的分割即将已知的几何体按照结论的要求,分割成若干个易求体积的几何体,进而求之.(2)几何体的“补形”:与分割一样,有时为了计算方便,可将几何体补成易求体积的几何体,如长方体、正方体等.另外补台成锥是常见的解决台体侧面积与体积的方法.【突破训练2】已知某几何体的三视图如右图所示,则该几何体的体积为A.1112B.C.D.63123题型三三视图求面积【例3】一个几何体的三视图及其尺寸(单位:cm)如图2所示,则该几何体的侧面积为cm.160注:空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分是“侧面积还是表面积”.【突破训练3】已知某几何体的三视图如图所示,则该几何体的表面积等于()A.题型四组合体问题该类问题命题背景宽,常以棱柱、棱锥、圆柱、圆锥与球的内切、外接形式考查,多以选择、填空题的形式出现,试题较容易.【例4】设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为().7211222A.πaB.πaC.πaD.5πa33[审题视点]确定球心的位置,寻找直角三角形,通过直角三角形求球的半径.233B[设三棱柱上底面所在圆的半径为r,球的半径为R,由已知r=·a =a.3231212127222又∵R=r+a=a+a=a,2341272722∴S球=4πR=4π·a=πa,故选B.]123方法总结:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.【突破训练4】已知球的直径SC=8,A,B是该球球面上的两点,AB=23,∠SCA=∠SCB258正视图558侧视图58俯视图160B.160C.64322D.88823=60°,则三棱锥S-ABC的体积为A.23B.43C.63D.83【例5】一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是那么这个三棱柱的体积是A.9632,33B.163C.243D.483【突破训练5】正方体的内切球与其外接球的体积之比为()A.1∶3B.1∶3C.1∶33D.1∶9【例6】已知表面积为24的球外接于三棱锥S-ABC,且BAC3,BC4,则三棱锥SABC的体积最大值为A.163282162B.C.D.333325,4【突破训练6】点A,B,C,D在同一个球面上,ABBC2,AC=2,若球的表面积为则四面体ABCD体积最大值为A.112B.C.D.2423,解析:根据题意知,△ABC是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC的中点上,设小圆的圆心为Q,球的表面积为球的半径为r,,r=,四面体ABCD的体积的最大值,底面积S△ABC不变,高最大时体积最大,就是D到底面ABC距离最大值时,h=r+四面体ABCD体积的最大值为某S△ABC某h==2.=,故选:C.【例7】一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为2,2,3,则此球的表面积为()A.17πB.16πC.15πD.14π【突破训练7】已知正方体外接球的体积是32,那么正方体的棱长等于()3(A)22(B)234243(C)(D)333。
三视图有关计算

通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。
在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。
以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。
”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱 B.10箱 C.11箱 D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示。
这堆货箱共有3+1+1+2+1+1=9(箱)。
二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。
第1列均为1层,第2列最高2层,第3列最高3层。
左视图为A时,第1行、第2行最高均为3层。
几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。
此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。
左视图为B时,第一行均为1层,第二行最高为3层。
《新高考数学专题强化》考点32 空间几何体的三视图与直观图20200901

(1)棱柱(2)棱锥(4)正棱锥:考点32 空间几何体的三视图与直观图知识梳理1 .简单多面体的结构特征棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边也都互相平行,由这些面所围成的多面体叫做棱柱.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的多面体叫做棱锥.正棱锥:如果一个棱锥的底面是多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱台:用一个平行于底面的平面去截棱锥,在截面和底面之间的部分叫做棱台.多面体的结构特征:底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等底面:是多边形侧面:都是有一个公共顶点的三角形(3)棱台:棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分侧棱:相等侧面:都是全等的等腰三角形(5)正四面体:一个特殊的正三棱锥,它的各个面都是全等的正三角形2.简单旋转体(1)圆柱可以由矩形绕一边所在直线旋转得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线旋转得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆或圆绕直径所在直线旋转得到.3 .三视图及其特征(1)空间几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽.③看不到的线画虚线,看的到的线画实线.(3)由三视图换原实物图时,一般从最能反映物体特征的视图出发,然后结合另两个视图进行换原.4 .斜二测画法与物体的直观图(1)基本几何体的直观图常用斜二测画法,规则是:①在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使∠x′O′y′=45°,它们确定的平面表示水平平面;②已知图形中平行于x轴或y轴的线段在直观图中分别画成平行于x′轴和y′轴的线段;③已知图形中平行于x轴的线段在直观图中保持原长度不变;平行于y轴的线段,长度为原来的12 .2(2)用斜二测画法画出的平面图形的直观图的面积S′与原平面图形的面积S之间的关系是S′=S.典例剖析1下列结论正确的是________ .①各个面都是三角形的几何体是三棱锥②以正方形的一条对角线旋转一周围成的几何体叫圆锥③棱锥的侧棱长与底面多边形的边长都相等,则此棱锥可能是正六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线答案④解析三棱锥的侧面是有公共顶点的三角形,选项①错;由正方形的一条对角线旋转一周围成的几何体为两个圆锥形成的一个组合体,选项②错;六棱锥的侧棱长大于底面多边形的边长,选项③错;选项④正确.故选④.下列命题中,正确的是________ .①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱答案④解析对于①,两个侧面是矩形并不能保证侧棱与底面垂直,故①错误;对于②,侧面都是等腰三角形,不能确保此棱锥顶点在底面在底面的射影在底面正多边形的中心上,且也不能保证底面是正多边形,故②错误;对于③,侧面是矩形不能保证底面也是矩形,因而③错误.准确弄懂简单几何体的概念是解题的关键2一几何体的直观图如图,下列给出的四个俯视图中正确的是________ .①②③④答案②解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选②.①圆柱③四面体(1)某空间几何体的正视图是三角形,则该几何体不可能是________ .②圆锥④三棱柱(2) 已知一个几何体的三视图如图所示,分析此几何体的组成为________ .4①上面为棱台,下面为棱柱②上面为圆台,下面为棱柱③上面为圆台,下面为圆柱④上面为棱台,下面为圆柱答案(1)①(2) ③解析(1)由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形,故选①.(2) 由俯视图可知,该几何体的上面与下面都不可能是棱台或棱柱,故排除选项①、②、④.故选③.1. 注意空间几何体的不同放置对三视图的影响.2. 由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则;3. 由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.3如图△A′B′C′是△ABC的直观图,那么△ABC是________ .①等腰三角形②直角三角形③等腰直角三角形④钝角三角形答案①解析由斜二测画法知②正确.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为________ .2答案 4解析 设原梯形的面积为 S ,则 = , ∴S =4.直观图的面积 S ′与原平面图形的面积 S 之间的关系是S ′= S .S 444当堂练习1.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是________ .2.以下关于几何体的三视图的叙述中,正确的是________ .①球的三视图总是三个全等的圆②正方体的三视图总是三个全等的正方形③水平放置的正四面体的三视图都是正方形④水平面放置的圆台的俯视图是一个圆3. 在棱柱中________ .①只有两个面平行②所有的棱都平行③所有的面都是平行四边形④两底面平行,且各侧棱也互相平行4.一个几何体的三视图如图所示,则该几何体的直观图可以是________ .②③④5.一个几何体的三视图均为等腰直角三角形(如图),则该几何体的直观图为________①.①②③④课后作业1.下列说法正确的命题的序号是________ .①圆锥的顶点和底面圆周上任意一点的连线是圆锥的母线.②连接圆柱上、下底面圆周上的两点的线段是圆柱的母线③在圆台的上下两底面圆周上各取一点,则这两点的连线是圆台的母线.④圆柱的任意两条母线所在的直线是互相平行的.2 .下列几何体各自的三视图中,有且仅有两个视图相同的是________ .3 .如图,网络纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是________ .4 .正方体的截平面不可能是:①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是________ .5 .以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形.其中,真命题的个数为________ .6.如图所示是水平放置的三角形的直观图,A′B′∥y′轴,则原图形中△ABC是________7.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1 的等腰梯形,那么原平面图形的面积是________ .8 .水平放置的矩形ABCD长AB=4,宽BC=2,以AB,AD为轴作出斜二测直观图A′B′C′D′,则四边形A′B′C′D′的面积为________ .9.有一个几何体的三视图如图所示,这个几何体应是一个________ ..10.如图, 直三棱柱 ABC -A 1B 1C 1 的侧棱长为 2, 底面是边长为 2 的正三角形,正视 图是边长为 2 的正方形, 则其左视图的面积为________ .11. 已知正三角形 ABC 的边长为 a , 那么△ABC 的平面直观图△A ′B ′C ′的面积为________12.如图是一个几何体的正视图和俯视图. (1)试判断该几何体是什么几何体. (2)画出其侧视图, 并求该平面图形(侧视图)的面积.8.。
2019河北中考数学《6.3视图与投影》教材知识梳理

第三节视图与投影视图的识别与相关计算(4次)1.下图中的三视图所对应的几何体是( B ),A) ,B) ,C) ,D)2.(2019河北3题2分)图中几何体的主视图是( A ),A) ,B) ,C) ,D)3.(2009河北10题2分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( C )A.20B.22C.24D.26正方体展开图的还原及相关计算(3次)4.(2019河北中考)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( A )A.① B.② C.③ D.④5.(2019河北6题2分)将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG6.(2019河北10题3分)图①是边长为1的六个小正方形组成的图形,它可以围成图②的正方体,则图①中小正方形顶点A,B在围成的正方体上的距离是( B )A.0 B.1 C. 2 D. 37.(20196沧州中考)如图是某几何体的三视图,则该几何体的体积是( C )A.18 3 B.54 3 C.108 3 D.216 38.(2019邯郸十一中模拟)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( D ),A) ,B) ,C) ,D)9.(2019唐山九中模拟)从一个边长为3 cm的大立方体挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( C ),A) ,B) ,C) ,D),中考考点清单)投影平行投影由平行光线照射在物体上所形成的投影,叫做平行投影正投影投影线垂直照射在投影面上的物体投影叫做正投影中心投影由一点射出的光线照射在物体上所形成的投影,叫做中心投影几何体的三视图1.一个几何体的正投影,又叫做这个几何体的视图.从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.2.三种视图的关系(1)主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.(2)在画三视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等,看得见的轮廓线要画成实线,看不见的轮廓线要画成虚线.3.常见几何体的三视图几何体主视图左视图俯视图4.常见几何体的体积和面积的计算公式名称几何体体积表面积正方体①__a3__ 6a2长方体abc ②__2(ab+bc+ac)__三棱柱h·S底面2S底面+h·C底长圆锥13πr2hπr2+πlr(l为母线长)圆柱πr2h 2πr2+2πrh球43πR34πR2【方法技巧】要求解几何体的体积或面积,就要先确定几何体的形状:1.由三视图确定出实物的形状和结构;2.由部分特殊图确定出实物的形状和结构.立体图形的展开与折叠5.常见几何体的展开图常见几何体展开图图示(选其一种)两个圆和一个矩形一个圆和一个扇形两个全等的三角形和三个矩形6.正方体表面展开图的类型一四一型二三一型三三型二二二型【警示】由上面几个展开图可以看出,不会出现两种形式的图形即“凹”字型和“田”字型.如下面2个图形:图①与图②两种形式不是正方体的表面展开图.7.立体图形的折叠一个几何体能展开成一个平面图形,这个平面图形就可以折叠成相应的几何体,展开与折叠是一个互逆的过程.,中考重难点突破)几何体的三视图【例1】(2019内江中考)下列几何体中,主视图和俯视图都为矩形的是( ),A) ,B) ,C) ,D) 【解析】A.此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误; B.此几何体的主视图是矩形,俯视图是矩形,故此选项正确; C.此几何体的主视图是矩形,俯视图是圆,故此选项错误;D.此几何体的主视图是梯形,俯视图是矩形,故此选项错误。
高中数学 三视图 知识点总结及解题技巧专题汇总
高中数学三视图知识点总结及解题技巧专题汇总高中数学三视图知识点总结及解题技巧专题汇总三视图是指物体向投影面投影所得到的图形。
将物体在三个相互垂直的平面内作垂直投影所得的三个图形,称为三视图,分别为主视图(正)、俯视图和侧(左)视图。
正投影是指投影线互相平行,并都垂直于投影面的投影。
识图技巧包括试图位置、侧面与试图的关系、看图要领和选取的几何体。
一般三视图的放置方式是按照标准位置,便于尺寸的对应。
当几何体的侧面与投影面不平行时,该侧面的视图形状不是真实的形状,只有当侧面与投影面平行时,视图才能真实地反映几何体侧面的形状。
在看图时,主、俯视图长对正;主、侧视图高平齐;俯、侧视图宽相等。
在三视图考题中,选取的几何体一般有三种,包括常见的几何体、被平面截取后得到的几何体和组合体。
解题要领包括先确定底面、找视图中有线线垂直的地方和注意三视图与几何体的摆放位置直接相关。
大多数试题中下、俯视图的图形都是几何体底面的真实形状。
关键线往往对应着几何体中线面垂直、面面垂直的地方。
几何体的高很多情况就是视图平面图形的高,求几何体的体积时这一点显得尤为重要。
同样一个几何体若摆放位置不同,那么三视图的形状也会有变化。
典型例题讲解:某几何体的三视图如下,确定它的形状。
通过分析俯视图,可以知道底面是直角三角形;通过主视图,可以确定SA在几何体中是一条与底面垂直的棱。
重新画出三视图,放到标准位置,方便长度关系的计算。
由对应关系,可以算得底面三角形的高应为2,故底面的面积为4.高为2,则体积为18/3=6.综上所述,了解三视图的概念和识图技巧,掌握解题要领和典型例题的解法,能够有效提高解决三视图问题的能力。
已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是多少?分析:1)看俯视图,确定底面为一个正方形。
2)看正视图和俯视图,最右边应该垂直于底面,且与底面垂直的是一个三角形的面。
3)这样就可以确定了,这个几何体是一个四棱锥,底面是正方形,一个侧面是等腰三角形且与底面垂直。
七年级数学上册专题提分精练判断几何体的三视图(解析版)
专题02 判断几何体的三视图1.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为4B.左视图的面积为2C.俯视图的面积为5D.搭成的几何体的表面积是20【答案】A【解析】【详解】试题解析:A、从正面看,可以看到4个正方形,面积为4,故A选项正确;B、从左面看,可以看到3个正方形,面积为3,故B选项错误;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、搭成的几何体的表面积是22,故D错误.故选A.2.由一些大小相同的小正方体搭成的几何体的主视图与左视图如图所示,搭成这个几何体的小正方体的个数不可能为()A.10B.9C.8D.7【答案】A【解析】【详解】最少时为7个,最多时为9个,故选A.3.如图,将一个长方体内部挖去一个圆柱,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选:A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.如图所示是一个放在水平面上的几何体,它的主视图是()A.B.C.D.【答案】B【解析】【分析】根据主视图是从正面看到的图形,可得答案.【详解】从正面看是一个上下平行,左右大肚子的图形,故排除A、D;由于几何体中部是空的,主视图需要画虚线.故选:B.【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.5.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.【答案】C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.6.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个或5个B.4个或5个C.5个或6个D.6个或7个【答案】A【解析】【详解】根据主视图,左视图,画出俯视图可能情况.所以选A.7.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,下列正确的是()A.m=5,n=13B.m=8,n=10C.m=10,n=13D.m=5,n=10【答案】A【解析】【详解】由主视图和左视图可以确定:正方体堆成的几何体由两层组成,其底面最多有9个相同的正方体组成,恰好构成了边长为3个小正方体棱长的正方形,上面一层最多在这个正方形的4个顶点处各放1个相同的正方体.因此最多有正方体n=9+4=13个;底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有m=2+3=5个小正方体组成.故选:A.点睛:当一个几何体已知两个视图时,它的形状不能确定.应分为最多和最少各有多少,来判断,解题关键是利用“主视图”疯狂盖,利用“左视图”拆违章,找到正方体的个数,比较复杂,求最少时容易出错,应该吧中间的向后移一行,最右边向后移2行即可.8.如图,甲、乙、丙三个图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中左视图相同的是___.【答案】甲和乙【解析】【分析】根据三个俯视图分别判断出几何体的左视图,即可得答案.【详解】解:由已知条件可知,甲的左视图有2列,每列小正方数形数目分别为2,2;乙的左视图有2列,每列小正方数形数目分别为2,2;丙的主视图有2列,每列小正方数形数目分别为2,1.∴左视图相同的是:甲和乙.故答案为:甲和乙.【点睛】本题考查几何体的三视图画法.解题的关键是掌握由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.9.如图,三棱柱的上下底面均为周长为12cm 的等边三角形,现要从中截取一个上下底面均为等边三角形且底面周长为3cm 的小三棱柱.(1)请写出截面的形状______;(2)若小三棱柱的高为6cm ,则截去小三棱柱后,剩下的几何体的棱长总和是多少?【答案】(1)长方形;(2)46【解析】【分析】(1)依据大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱,即可得到截面的形状;(2)依据△ADE 是周长为3的等边三角形,△ABC 是周长为10的等边三角形,即可得到四边形DECB 的周长,再计算棱长总和.【详解】解:(1)由题意可知,截面是长方形,故填:长方形;(2)1cm DE =,3cm BD CE ==,4cm BC =()1334246222446+++⨯+⨯=+=(cm ). 【点睛】本题主要考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.10.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)【答案】(1)主,俯;(2)207.36cm2【解析】【分析】(1)根据三视图的定义解答即可;(2)所求组合几何体的表面积=长方体的表面积+圆柱的侧面积,据此代入数据计算即可.【详解】解:(1)如图所示:;故答案为:主,俯;(2)组合几何体的表面积=2×(8×5+8×2+5×2)+4×π×6=2×66+24×3.14=207.36(cm2).【点睛】本题考查了几何体的三视图和几何体表面积的计算,正确理解题意、熟练掌握基本知识是关键.11.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图.(1)当组成这个几何体的小正方体的个数为8个时,几何体有多种形状.请画出其中两种几何体的左视图;(2)若组成这个几何体的小正方体的个数为n,请写出n的最小值和最大值;(3)主视图和俯视图为下面两图的几何体有若干个,请你画出其中一个几何体.【答案】(1)画图见解析;(2) n最小为8,最大为11;(3)画图见解析.【解析】【分析】(1)由俯视图可得该几何体有2行,则左视图应有2列,由主视图可得共有3层,那么其中一列必为3个正方形,另一列最少是1个,最多是3个;(2)由俯视图可得该组合几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得从左边数第二列第二层最少有1个正方体,最多有2个正方体,第3列第2层,最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成组合几何体的最少个数及最多个数即可得到n的可能的值.(3)根据三视图画出符合条件的一个几何体即可.【详解】(1)如图所示;下图中的任意两个即可.(2)∵俯视图有5个正方形,∴最底层有5个正方体,由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;∴该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,∴n的最小值为8,最大值为11.(3)如图所示.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.下图是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.【答案】图形见解析.【解析】【详解】试题分析:根据三视图的定义补全视图即可.试题解析:如图所示.13.用若干大小相同的小立方块搭一个几何体,使得从上面和左面看到的这个几何体的形状图如图所示.请你画出从正面看到的几何体的形状图.(画出两种即可)【答案】作图见解析【解析】【分析】结合左视图和俯视图即可画出主视图.【详解】解:作图如下:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.14.用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1) x ,z 各表示多少?(2) y 可能是多少?这个几何体最少由几个小立方块搭成?最多呢?【答案】(1)1x =AB 2AC =,3z =AB 2AC =;(2)y 可能是1 或 2.【解析】【详解】 试题分析:(1)利用从正面看得到的形状图,可以得到小正方体的层数,也就可以得到相应值.(2)因为y 在中间,所以小于2层,值是1,或者2,然后分类讨论.试题解析:(1)1x =,3z =.(2) y 可能是 1 或 2,321121111++++++=,321221112++++++= .这个几何体最少由 11 个立方体搭成,最多由12 个立方体搭成.点睛:一般先由各视图想象从各方向看到的几何体形状,然后综合起来确定几何体(或实物原型)的形状,再根据三个视图“长对正”,“高平齐”,“宽相等”确定轮廓线的位置,以及各个方向的尺寸.15.用小立方块搭一个几何体,主视图与左视图如下图,它最少要多少个立方块?最多要多少个立方块?画出这个几何体最多、最少两种情况下的俯视图,并用数字表示在该位置的小立方体的个数.【答案】3,5【解析】【详解】试题分析:根据几何体的主视图和左视图,判断出高度,然后确定俯视图中显示的正方体的个数,计算最多和最少的个数即可.试题解析:根据题意可知:俯视图,最少的情况:3块;俯视图,最多的情况:5块16.用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示.(1)它最多需要多少个小立方体?它最少需要多少个小立方体?(2)请你画出这两种情况下的从左面看到的形状图.【答案】(1)10;8(2)图形见解析【解析】【详解】试题分析:(1)利用左视图以及主视图可以得出这几个几何体最多的块数,以及最少块数;(2)画出这两种情况下从左面看到的形状.试题解析:(1)它最多需要2×5=10个小立方体,它最少需要2×3+2=8个小立方体.(2)小立方体最多时的左视图有2列,从左往右依次为2,2个正方形;小立方体最少时的左视图有2种情况:①有2列,从左往右依次为1,2个正方形;②有2列,从左往右依次为2,2个正方形;如图所示:17.如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由______个小正方体组成.(2)在下面网格中画出左视图和俯视图.(3)如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.【答案】(1)10;(2)作图见解析;(3)3200cm2.【解析】【详解】试题分析:(1)从左往右三列小正方体的个数依次为:6,2,2,相加即可;(2)由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(3)根据露出的小正方体的面数,可得几何体的表面积.试题解析:解:(1)这个几何体由6+2+2=10个小正方体组成,故答案为10;(2)如图所示:(3)露出表面的面一共有32个,则这个几何体喷漆的面积为3200cm2.。
三视图高考题解题技巧
三视图高考题解题技巧
三视图高考题解题技巧
1、主视图和左视图如果都是三角形的必然是椎体,要么是棱锥要么是圆锥。
还有两种特殊的情况:
1、是棱锥和半圆锥的组合体。
2、就是半圆锥。
到底如何如确定就是通过俯视图观察。
(1) 若俯视图是三角形时,就是三棱锥。
(2) 若俯视图是多边形时,就是多棱锥。
(3) 若俯视图是半圆和三角形时,就是是棱锥和半圆锥的组合体。
(4) 若俯视图是半圆时,就是半圆锥。
(5) 注意虚线和实线的意义,虚线代表的是看不到的线,实线代表的是能看的见得都是一种平行投影所创造出来的。
2、三视图求体积时候,先观察主视图和侧视图,注意主视图和侧视图的高一定都是一样的,并且肯定是立体图形的高,先通过观察判定图形到底是什么立体图形,看看到底是棱锥,棱柱,还是组合体,通常的组合体都是较为简单的.组合体,无需过多考虑。
(1) 如果是棱锥的话,就看俯视图是什么图形,判定后算出俯视图的面积即可,应用体积公式。
(2) 如果是棱柱的话,同样看俯视图的图形,求出面积,应用公式即可。
(3) 如果是组合体,要分辨出是哪两种规则图形的组合,分别算出体积相加即可。
高考数学总复习知识点训练:三视图与直观图(含答案)
高考数学总复习知识点训练:三视图与直观图(含答案)第49练 三视图与直观图训练目标(1)会识别三视图、由三视图可还原几何体,能应用三视图求几何体面积、体积;(2)掌握直观图画法规则、能利用画法规则解决有关问题.训练题型(1)判断、识别三视图;(2)由三视图求几何体面积、体积;(3)求直观图中线段长度、图形面积.解题策略 由几何体轮廓线定型,由三视图长度特征定量,确定几何体顶点在投影面上的投影位置是关键.可见棱画为实线、被遮棱画为虚线.反之利用实虚线可判断几何体中棱的位置.一、选择题1.一个多面体的三视图如图所示,则该多面体的体积为( )A.233 B.476C .6D .72.(2017·兰州诊断考试)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2 B.92 C.32 D .33.(2017·太原调研)一个几何体的三视图如图所示(单位:cm),则该几何体的体积为( )A.⎝⎛⎭⎪⎫32+π4cm 3B.⎝⎛⎭⎪⎫32+π2cm 3C.⎝⎛⎭⎪⎫41+π4cm 3 D.⎝⎛⎭⎪⎫41+π2cm 3 4.(2016·北京)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12D .15.如图,某直观图中,A ′C ′∥y ′轴,B ′C ′∥x ′轴,则该直观图所表示的平面图形是( )A .正三角形B .锐角三角形C .钝角三角形D .直角三角形6.(2016·郑州模拟)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A.32 B.327C.64 D.6477.某几何体的直观图如图所示,则该几何体的正视图和侧视图可能正确的是( )8.(2017·郑州月考)如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的表面积为( )A.15+3 3 B.9 3C.30+6 3 D.18 3二、填空题9.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.10.(2016·河北衡水中学四调)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为12,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)①锐角三角形;②直角三角形;③钝角三角形;④四边形;⑤扇形;⑥圆.11.如图,△O ′A ′B ′是△OAB 的水平放置的直观图,其中O ′A ′=O ′B ′=2,则△OAB 的面积是________.12.下列说法正确的是________. ①相等的线段在直观图中仍然相等;②若两条线段平行,则在直观图中对应的两条线段仍然平行; ③两个全等三角形的直观图一定也全等;④两个图形的直观图是全等的三角形,则这两个图形一定是全等三角形.答案精析1.A [该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.]2.D [由三视图知,该几何体是四棱锥,底面是一个直角梯形,底面积S =12×(1+2)×2=3,高h =x ,所以其体积V =13Sh =13×3x =3,解得x =3,故选D.]3.C [根据给定的三视图可知,该几何体对应的直观图是两个长方体和一个圆柱的组合体,∴所求几何体的体积V =4×4×2+π×⎝ ⎛⎭⎪⎫122×1+3×3×1=⎝ ⎛⎭⎪⎫41+π4cm 3.]4.A [由三视图知,三棱锥如图所示:由侧视图得高h =1,又底面积S =12×1×1=12.所以体积V =13Sh =16.]5.D [由直观图中,A ′C ′∥y ′轴,B ′C ′∥x ′轴,还原后原图AC ∥y 轴,BC ∥x 轴.直观图还原为平面图是直角三角形.故选D.]6.C [依题意,题中的几何体是三棱锥P -ABC (如图所示), 其中△ABC 是直角三角形,AB ⊥BC ,PA ⊥平面ABC ,BC =27,PA 2+y 2=102,(27)2+PA 2=x 2,因此xy =x 102-[x 2-(27)2]=x 128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.]7.A [由几何体的直观图,可知该几何体可以看作由正方体ABCD -A 1B 1C 1D 1割掉四个角后所得的几何体ABCD -MNPQ ,如图所示,该几何体的正视图就是其在正方体的平面CDD 1C 1上的投影,显然为正方形CDD 1C 1与△CDQ 的组合;该几何体的侧视图就是其在平面BCC 1B 1上的投影,显然为正方形BCC 1B 1和△BCP 的组合.综上,只有A 选项正确.]8.C [题图中所示的三视图对应的直观图是四棱柱,其底面边长为2+22-(3)2=3,侧视图的高为3,其表面积为2×3×3+2×3×2+2×3×3=30+6 3.] 9.24 2解析 因为矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,所以根据画直观图的基本原理知原图形是底边长为6的平行四边形,其高是2×O ′C ′cosπ4=42,因此面积是6×42=242,故答案为24 2. 10.②解析 若俯视图是四边形,则此四边形也是边长为1的正方形,即几何体是棱长为1的正方体,其体积为1,不合题意;若俯视图是扇形或圆,则体积值中含π,所以俯视图不会是扇形或圆;若俯视图是锐角三角形或钝角三角形,则在正视图或侧视图正方形中还有一条竖直的实线或虚线,所以俯视图不会是锐角三角形或钝角三角形;若俯视图是腰长为1的等腰直角三角形,则此几何体体积为12×1×1×1=12,且满足正视图和侧视图都是边长为1的正方形.故这个几何体的俯视图可能是②. 11.4解析 在Rt △OAB 中,OA =2,OB =4,△OAB 的面积是S =12×2×4=4.12.②解析 用斜二测画法画水平放置的平面图形的直观图时,原图中的平行线在直观图中仍是平行线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北高频考点强化训练:三视图的有关判断及计算
时间:30分钟分数:50分得分:________
一、选择题(每小题4分,共24分)
1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是()
2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】()
3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()
4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()
5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为() A.36cm2B.40cm2
C.90cm2D.36cm2或40cm2
第5题图第6题图
6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有()
A.8个B.6个C.4个D.12个
二、填空题(每小题4分,共16分)
7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).
8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.
9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.
第8题图第9题图第10题图
10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x的值为________,y的值为________.
三、解答题(10分)
11.如图所示的是某个几何体的三视图.
(1)说出这个几何体的名称;
(2)根据图中的有关数据,求这个几何体的表面积.
参考答案与解析
1.A 2.C 3.A 4.D 5.B
6.B 解析:从俯视图可得最底层有4个小正方体,由左视图可得第二层最少有1个小正方体,最多有3个小正方体,所以组成这个几何体的小正方体个数可能有5~7个.故选B.
7.2 ①④ 8.60 9.7 10.1或2 3
11.解:(1)这个几何体是直三棱柱;(5分)
(2)表面积为12
×3×4×2+15×3+15×4+15×5=192.(10分)。