冀教版七年级数学上册3.2代数式公开课优质教案(3)

合集下载

冀教版七年级数学上册3

冀教版七年级数学上册3
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生的合作意识和团队精神。
2.通过实际问题的引入,使学生感受数学与现实生活的联系,提高学生运用数学知识解决实际问题的能力。
3.引导学生运用观察、类比、归纳等方法,探索代数式的性质和运算法则,提高学生的逻辑思维能力。
4.培养学生运用数学语言表达和交流的能力,提高学生的数学表达水平。
2.强调本节课的重点和难点,提醒学生注意理解代数式的抽象意义,并能灵活运用。
3.鼓励学生在课后进行复习和巩固,为后续学习打下坚实基础。
4.布置课后作业,要求学生完成一定数量的练习题,巩固所学知识。同时,鼓励学有余力的学生进行拓展学习,提高数学素养。
五、作业布置
为了巩固学生对代数式的理解和应用,确保学生对本节课的知识点能够熟练掌握,特布置以下作业:
冀教版七年级数学上册3.2代数式教学设计
一、教学目标
(一)知识与技能
1.理解代数式的概念,能够识别并书写基本的代数式,如:常数项、单项式、多项式等。
2.学会使用代数式表示实际问题中的数量关系,并能进行简单的代数运算。
3.掌握代数式的性质和运算法则,如:结合律、交换律、分配律等。
4.能够运用代数式解决一些实际问题,提高解决问题的能力。
(6)课后作业:布置分层作业,满足不同层次学生的学习需求,提高学生的学习效果。
3.教学策略:
(1)关注学情,因材施教。针对学生的认知水平,采用差异化教学策略,使每个学生都能在原有基础上得到提高。
(2)注重启发式教学,引导学生主动思考、探索,培养学生的自主学习能力。
(3)注重课堂互动,鼓励学生提问、发表观点,提高学生的课堂参与度。
三、教学重难点和教学设想
(一)教学重难点

冀教版七年级数学上册教学设计 3.2 代数式

冀教版七年级数学上册教学设计 3.2 代数式

冀教版七年级数学上册教学设计 3.2代数式一. 教材分析冀教版七年级数学上册第三单元代数式是学生继小学数学学习之后,第一次系统接触代数知识。

这一部分内容是后续学习方程、不等式等知识的基础,对于学生掌握数学的基本概念和逻辑思维能力具有重要意义。

本节课的教学内容主要包括代数式的概念、代数式的运算以及代数式的应用。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于简单的一元一次方程和几何图形的认识有一定的了解。

但是,对于代数式的概念和运算规则,大部分学生可能较为陌生。

因此,在教学过程中,需要注重对学生基础知识的巩固,并通过生动的例子和实际应用,激发学生的学习兴趣,提高学生的理解能力。

三. 教学目标1.理解代数式的概念,掌握代数式的基本运算规则。

2.能够运用代数式解决实际问题,提高学生的应用能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.代数式的概念及其应用。

2.代数式的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置富有启发性的问题,引导学生主动探究代数式的概念和运算规则;通过具体的案例,让学生了解代数式在实际问题中的应用;通过小组合作学习,激发学生的学习兴趣,提高学生的团队协作能力。

六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生运用代数式解决实际问题。

2.准备PPT课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过设置一个问题:“小明今年12岁,小红比小明大3岁,请问小红今年几岁?”引导学生思考如何用数学语言来表示这个问题。

从而引出代数式的概念。

2.呈现(10分钟)通过PPT课件,介绍代数式的概念,并举例说明。

同时,讲解代数式的运算规则,包括加减乘除以及指数运算。

3.操练(10分钟)让学生分组进行练习,运用代数式解决实际问题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)针对学生在操练过程中遇到的问题,进行讲解和巩固。

冀教版-数学-七年级上册-3.2 代数式第3课时 教案

冀教版-数学-七年级上册-3.2 代数式第3课时 教案

3.2 代数式第3课时一、教学目标知识目标:掌握如何利用代数式来表示实际问题中较复杂的数量关系.能力目标:培养学生基本的分析、比较能力和抽象思维能力.情感目标:鼓励学生积极主动参与教学过程,激发求知欲,体验成功,增强学习的兴趣和信心.二、教学重点与难点教学重点:根据实际问题中的数量关系列代数式教学难点:列代数式三、教学过程1.创设情景,引起思考某企业今年3月份的产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值为多少呢?2.类比结果,展示新知首先学生根据4月份、5月份与3月份的产值的百分比的关系类比前面所学知识列式计算即可得解.解:5月份的产值为:(1﹣10%)(1+15%)a万元.故答案为:(1﹣10%)(1+15%)a万元.3.范例练习,师生互动例:从A地乘火车到北京,普通票价格为40元/人,学生票价格为20元/人.星期日,A 地育才学校组织部分师生到天安门广场观看升旗仪式.(1)如果有教师14人,学生180人,那么买单程火车票共需多少元?(2)如果有教师x人,学生y人,那么买单程火车票共需多少元?(3)如果教师人数恰好是学生人数的112,将教师的人数或学生的人数用字母表示,那么买单程火车票共需多少元?解:(1)40×14+20×180=4160(元).(2)(40x+20y)(元).(3)如果设教师有x人,那么学生有12x人,买单程车票共需(40x+20×12x)元;如果设学生有y 人,那么教师有12y 人,买单程车票共需(40×12y +20y )元,即(103y+20y )元.练习:1. 某工厂原计划a 天完成b 件产品,由于情况发生变化,要求提前x 天完成任务,则现在每天要比原计划每天多生产__________件产品.【解析】解:由题意得,现在每天生产:件,原计划每天生产:件,∴现在每天要比原计划每天多生产件产品.【答案】2. 某厂的产值平均增长率为x ,若第一年的产值为50万元,则第二年的产值为__________万元.【解析】解:第二年的产值为:50(1+x )万元.故答案为:50(1+x ).【答案】50(1+x )3. 购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款__________元.【答案】3a+5b四、归纳小结,整理知识让学生从知识点、注意点及思想方法等方面,对本节课所学的进行归纳整理,老师再适当补充的方法,并在小结过程中指出以下几点:(1)要理清运算的顺序,注意代数式的书写;(2)要咬文嚼字,仔细斟酌某些关键词;(3)要善于分析实际情景中的数量关系.五、自我检测,布置作业:教材练习题。

2024秋七年级数学上册第三章代数式3.2代数式1认识代数式教学设计(新版)冀教版

2024秋七年级数学上册第三章代数式3.2代数式1认识代数式教学设计(新版)冀教版
4x + 6y = 16 和 9x - 6y = 3
然后将两个方程相加,得到:
13x = 19
接着将方程两边都除以13,得到:
x = 19/13
最后将 x 的值代入任一方程中求解 y:
2(19/13) + 3y = 8
3y = 8 - 38/13
3y = (104/13) - (38/13)
3y = 66/13
- 目的明确:板书内容要紧扣代数式的概念、表示方法和基本运算规则
- 结构清晰:板书内容要条理分明,便于学生跟随教学进度
- 简洁明了:板书设计要简洁明了,突出重点,准确精炼
- 艺术性和趣味性:板书设计要具有艺术性和趣味性,激发学生的学习兴趣
典型例题讲解
例1:化简代数式
题目:化简代数式 3x - 2y + 5(x + y)
- 拓展学习:利用老师提供的拓展资源,进行进一步的学习和思考。
- 反思总结:对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:巩固学生在课堂上学到的代数式的知识点和技能。通过拓展学习,拓宽学生的知识视野和思维方式。通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
3. 课后拓展应用
教师活动:
- 布置作业:根据代数式的知识点,布置适量的课后作业,巩固学习效果。
- 提供拓展资源:提供与代数式相关的拓展资源(如书籍、网站、视频等),供学生进一步学习。
- 反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:

冀教版七年级数学上册教学设计3.2 代数式

冀教版七年级数学上册教学设计3.2 代数式

冀教版七年级数学上册教学设计 3.2代数式一. 教材分析冀教版七年级数学上册3.2代数式是学生在掌握了数的概念、运算律和方程等基础知识后,进一步抽象和总结数的运算规律的重要内容。

这部分内容主要包括代数式的定义、代数式的运算和代数式的应用。

通过这部分的学习,使学生能够理解和掌握代数式的基本概念和运算方法,培养学生的抽象思维能力和解决问题的能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的概念、运算律和方程等知识有一定的了解和掌握。

但是,学生对于代数式的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要结合学生的实际情况,从学生的认知水平出发,设计适当的教学活动和环节,激发学生的学习兴趣,提高学生的学习效果。

三. 教学目标1.理解代数式的定义和基本概念。

2.掌握代数式的运算方法和规则。

3.能够运用代数式解决实际问题。

四. 教学重难点1.代数式的定义和概念。

2.代数式的运算方法和规则。

3.代数式在实际问题中的应用。

五. 教学方法1.情境教学法:通过设计丰富的教学情境,让学生在实际情境中感受和理解代数式的概念和运算方法。

2.案例教学法:通过分析具体的案例,让学生理解和掌握代数式的运算规则和应用。

3.小组合作学习:通过小组合作讨论,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教学课件:设计精美的教学课件,配合多媒体教学,提高学生的学习兴趣和效果。

2.教学案例:准备相关的案例,用于分析和讲解代数式的运算和应用。

3.练习题:设计一定数量的练习题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学语言来表示这些问题。

例如,小明买了3本书和2支笔,一共花了多少钱?让学生尝试用数学语言来表达这个问题,从而引出代数式的概念。

2.呈现(10分钟)介绍代数式的定义和基本概念,如代数式的组成、字母表示数的方法等。

通过示例,让学生理解和掌握代数式的基本概念和表示方法。

初中数学冀教版七年级上册3.2第3课时用代数式表示规律公开课优质课课件.ppt

初中数学冀教版七年级上册3.2第3课时用代数式表示规律公开课优质课课件.ppt

方法归纳
用代数式表示数的变化的规律: (1)数字为整数,考虑相邻两数的和、差、积、商、符 号等方面是否存在规律,也可以是奇、偶、平方等方面 的规律; (2)数字为分数,可分别观察分子、分母的变化规律及 它们之间的联系; (3)若表示数字变化规律的是等式(或表格),可将每 个等式对应写好,然后比较每一行每一列数字之间的关 系,从而找出规律.
用代数式表示为:
(1)水平相邻的三个数 a-1,a,a+1
(a-1)+a+(a+1)=2a.
(2)竖直相邻的三个数 b-7,a,b+7
(b-7)+b+(b+7)=2b.
(3)斜下相邻的三个数 c-8,c,c+8
(c-8)+c+(c+8)=2c.
(4)斜上相邻的三个数 d-6,d,d+6
(d-6)+d+(d+6)=2d.
(2)竖列三个 相邻数的关系.
星期 星期 星期 星期 星期 星期 星期 日一二三 四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
(1)横行三个相邻数的关系:后者比前者多1. 用代数式表示为: a-1,a,a+1 (2)竖列三个相邻数的关系:下者比上者多7. 用代数式表示为:b-7,b,b+7







4n-4


4(n-1)=4n-4



2n+2(n-2)=4n-4
当堂练习

32024年冀教版七年级上册教学设计第三章.2 代数式

32024年冀教版七年级上册教学设计第三章.2  代数式

第1课时代数式课时目标1.掌握代数式的概念,在具体情境中,能列出代数式.体会代数式是表示数量和数量关系的数学模型.2.掌握代数式的书写规范,建立符号意识,发现数学符号的美.3.理解代数式的意义,会把代数式表示的数量关系用文字语言表述,会把用文字语言表述的数量关系用代数式表示.学习重点理解代数式的概念,列代数式并理解代数式的意义.学习难点理解描述数量关系的语句,正确列出代数式,培养学生的数学抽象意识.课时活动设计复习引入通过上节课的学习,请同学们回忆一下,字母可以表示什么?设计意图:以提问的形式回顾上节课的内容,为本节课的学习作铺垫.探究新知探究1代数式的概念及意义1.如果甲数为x,乙数为y,那么甲、乙两数的差是x-y.2.如果长方形的长和宽分别为a和b,那么它的周长是2(a+b).3.某种瓜子的单价为16元/千克,则n千克需16n元.4.钢笔每支a元,铅笔每支b元,买2支钢笔和3支铅笔共需(2a+3b)元.问题:你能分析这些式子的共同特征,试着说一说代数式的概念吗?小组合作交流.解:这些式子中,都含有数字或表示数字的字母;它们都是用运算符号连接起来的.归纳:用运算符号连接数和字母的式子,叫作代数式.(注意:单独一个数或一个表示数的字母也是代数式.)说明:(1)这里的运算是指加、减、乘、除、乘方、开方运算,其中开方将在以后学到.(2)强调代数式仅指用运算符号连接数或字母而得到的算式,代数式中不含有等号或不等号,如S=ab是等式,但不是代数式.练习:举出三个代数式(每个代数式至少含有两种运算).学生回答,教师点评.解:4a-1,a2+1,3(a-5).追问:请同学们小组讨论,指出这三个代数式的意义.解:4a-1表示的是a的4倍与1的差;a2+1表示的是a的平方与1的和;3(a-5)表示的是a与5的差的3倍.探究2列代数式观察下面代数式(a+8)(b-c)的生成过程,请用恰当的语言说出代数式(a+8)(b-c)的意义.学生组内讨论交流,派学生代表进行回答.解:代数式(a+8)(b-c)可表示a,8两数之和与b,c两数之差的和.师生活动:师生共同总结代数式的书写规范要求.代数式书写规范:(1)在同一个问题中,不同的量要用不同的字母表示.如用a表示长方形的长,那么就不能再用a表示长方形的宽了.(2)代数式中涉及乘法运算,若是数字与数字相乘,要写成“×”;若是数字与字母相乘或字母与字母相乘,可用小圆点代替“×”,如“a·b”,此时,小圆点应写在中间,避免与小数点混淆,也可以省略不写.(3)如果数字因数、字母因数都有时,要把数字因数写在字母因数前边,如a 的2倍应写成2a ,而不能写成a 2;而数字与数字相乘,则不能省略乘号,如2×5不能写成25.(4)代数式中出现除法运算时,一般按照分数的写法来写,如m ÷n 一般写成m n .(5)代数式有单位时,要将代数式加括号后再写单位,如甲的身高a cm,乙比甲矮b cm,那么乙的身高应写成(a -b )cm,而不能写成a -b cm .(6)带分数与字母相乘时,一般把带分数化成假分数,如a 的312倍应写成72a ,而不能写成312a.(7)遇有小数因数,一般应将其化成分数形式.如a 与0.1的积常写成110a. 设计意图:代数式的概念是本章学习的基础,从多个生活情境引入,让学生感受到代数式的必要性和广泛性,再组织学生观察、讨论代数式的意义与特征,发现共同本质,归纳概念,培养学生善于思考,勇于表达的学习品质.典例精讲例1 指出下列代数式的意义:(1)2a +5; (2)2(a +5); (3)a 2+b 2;(4)(a +b )2; (5)1x ; (6)x +1x .解:(1)2a +5表示的是a 的2倍与5的和.(2)2(a +5)表示的是a 与5的和的2倍.(3)a 2+b 2表示的是a 的平方与b 的平方的和.(4)(a +b )2表示的是a 与b 的和的平方.(5)1x 表示的是x 的倒数. (6)x +1x 表示的是x 与它的倒数的和.例2 用代数式表示:(1)a 与b 的差与c 的平方的和;(2)百位数字是a ,十位数字是b ,个位数字是c 的三位数;(3)用含同一个字母的代数式表示三个连续的整数,并写出它们的和.解:(1)(a-b)+c2.(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).(3)设m是整数,三个连续整数可表示为m-1,m,m+1,它们的和为(m-1)+m+(m+1),即3m.设计意图:例题围绕两种语言之间的互相转化展开,让学生充分体会用代数式表示数量关系的简明性和一般性.巩固训练1.请指出下列各代数式的意义:(1)a2+2; (2)a(b+1)-1.解:(1)a的平方与2的和.(2)b与1的和的a倍与1的差.2.请用代数式表示:(1)a,b两数之积与2的和;3(2)a与比a大2的数的积;(3)a,b两数和的平方与它们的积的差..(2)a(a+2).(3)(a+b)2-ab.解:(1)ab+23设计意图:通过练习巩固本节课所学知识,查漏补缺.课堂小结1.本节课我们学习的内容是什么?2.通过本节课的探究活动,你有什么收获和感受?设计意图:通过小结,及时梳理所学知识,培养学生养成及时复习的好习惯.课堂8分钟.1.教材第107,108页习题A组第1,2题,B组第3题,C组第4,5题.2.七彩作业.教学反思第2课时列代数式解决简单的实际问题课时目标1.能分析简单问题中的数量关系,并用代数式表示出来,进一步发展符号意识,提高数学应用意识.2.通过列代数式,进一步发展符号感;初步学会从数学的角度提出问题和分析问题,体验解决问题的多样性.学习重点根据题意正确列出代数式,解决实际问题.学习难点分析较简单情境中的数量关系,并用代数式正确表示.课时活动设计复习引入上节课我们学习了代数式的哪些知识?学生回答:代数式的概念,代数式的意义,列代数式.代数式可以刻画实际问题中的数量关系,在实际情境中,如何列代数式呢?设计意图:开门见山,引出本节课的内容,为本节的学习奠定基础.探究新知探究1用代数式表示含有和、差关系的实际应用问题:已知参加甲、乙两地植树的同学分别为52人和23人,现从甲、乙两地共抽调12人到丙地植树.如果从甲地抽调x人,请用含x的代数式分别表示甲、乙两地剩下的人数.师生活动:教师先展示问题,让学生独立思考,学生展示不同的解法,教师给予鼓励.教师引导使用表格,通过对比让学生体会列表格法的优越性,最后教师进行总结归纳.分析:将表示甲、乙两地剩下人数的代数式填入下表:解:由题意,从乙地抽调(12-x)人.所以,甲地剩下的人数为(52-x)人,乙地剩下的人数为[23-(12-x)]人.归纳:用代数式表示实际问题中的数量关系的步骤:(1)要认真审题,弄清问题中的数量关系和运算顺序;(2)按代数式书写格式的规范书写.探究2kx形式的代数式(1)如果汽车以85 km/h的速度在高速公路上行驶,那么x h行驶的路程为85x km.(2)如果某工程队平均每天修路0.8 km,那么x天可以修路0.8x km.(3)如果一套学生桌椅的价格是380元,那么买x套这种学生桌椅需要380x 元.(4)如果某期5年期国债的年利率是5.6%,小颖的爷爷买了这期国债x元,那么到期后可得利息5.6%x元,本息共为(1+5.6%)x元.x.(5)如果一项工程要求30天完成,那么工作x天后完成了工程量的130上面列出的这些代数式都具有kx的形式.请你再举出两个类似的例子.设计意图:让学生体会实际问题中的数量可以用代数式来表示;同一个式子可以表示不同的含义,这与具体情境相关.典例精讲例如图所示,已知装满油时,桶和油的质量一共是a kg;当油用去一半时,桶和油的质量一共是b kg.(1)当桶里装满油时,写出表示油的质量的代数式.(2)写出表示桶的质量的代数式.学生先根据题意,独立列代数式,并举手回答问题,教师针对学生的回答给予评价.解:(1)由题意,一半油的质量为(a-b)kg.所以,当桶里装满油时,油的质量为2(a-b)kg.(2)桶的质量为[a-2(a-b)]kg.设计意图:通过例题,加强学生对知识的掌握和理解.巩固训练1.填空:(1)已知一批小麦的出粉率是85%.a kg小麦可磨出面粉85%a kg.要磨出kg.面粉b kg,需要小麦b85%(2)一个两位数,十位上的数与个位上的数的和为9.①如果设这个两位数的十位数字为a,那么这个数用a可以表示为10a+(9-a).②如果设这个两位数的个位数字为b,那么这个数用b可以表示为10(9-b)+b.2.甲、乙两个口袋中分别装有a kg和b kg(a>b)的大豆.要想使两个口袋中装的大豆一样多,应从甲袋向乙袋倒入多少千克大豆?)千克的大豆.解:应从甲袋向乙袋倒入(a-a+b2设计意图:通过练习进一步巩固所学知识,查漏补缺.课堂小结1.本节课我们学习的内容是什么?2.通过本节课的探究活动,你有什么收获和感受?设计意图:通过小结,学生梳理本节所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第109,110页习题A组第1,2,3题,B组第4题,C组第5题.2.七彩作业.教学反思第3课时列代数式解决较复杂的实际问题课时目标1.能分析较复杂问题中的数量关系,并用代数式表示出来,体会数学与现实的联系,提高数学应用意识.2.通过列代数式,进一步发展符号感;初步学会从数学的角度提出问题和分析问题,体验解决问题的多样性.学习重点分析较复杂情境中的数量关系,列出代数式.学习难点用代数式解决复杂的实际问题.课时活动设计复习引入通过上节课的学习,请同学们回忆一下,如何根据题意正确列出代数式,以解决简单的实际问题?设计意图:以提问的形式回顾上节课的内容,为本节课的学习作铺垫.探究新知问题:经过练习,小亮和大华的打字速度都有了提高,小亮的打字速度达到80个/分,大华比小亮每分钟多打10个字.(1)小亮和大华a min分别能打多少个字?(2)b min大华比小亮多打多少个字?(3)将同为c个字的两篇文章分别交给小亮和大华打,如果要求他们同时完成任务,那么小亮比大华要提前多少分钟开始打字?(4)根据以上问题情境,请你自己提出一个问题并予以解决.问题中涉及三个基本的量:打字速度、时间、打字的个数,这些量之间具有怎样的关系?对于上面的问题,可以这样思考和解答:(1)小亮a min 打的字数就等于80与a 的积,即80a 个字;大华a min 打的字数就等于(80+10)与a 的积,即90a 个字.(2)b min 大华比小亮多打的字数就等于b 与10的积,即10b 个字(3)求小亮要比大华提前多少分钟开始打字,就是求小亮打c 个字比大华打c 个字多用的时间,也就是求“c 除以80的商与c 除以(80+10)的商的差”,即(c 80-c 80+10)min .师生互动:让学生先自主理解题目中的数量和数量关系,思考之后,老师对每个问题,要表示的是哪个量,用哪些量来表示,怎样表示,进行追问.引导学生思考面对较复杂的情景时,如何分析问题,分析数量和数量关系,如何用代数式进行表达.设计意图:发展学生的符号意识和分析问题的能力.典例精讲例 从A 地乘火车到北京,普通票价格为40元/人,学生票价格为20元/人.星期日,A 地育才学校组织部分师生到天安门广场观看升旗仪式.(1)如果有教师14人,学生180人,那么买单程车票共需多少元?(2)如果有教师x 人,学生y 人,那么买单程车票共需多少元?(3)如果教师的人数是学生的人数的112,那么买单程车票共需要多少元?(将教师的人数或学生的人数用字母表示)解:(1)40×14+20×180=4 160(元).(2)(40x +20y )元.(3)如果设教师有x 人,那么学生有12x 人,买单程车票共需(40x +20×12x )元;如果设学生有y 人,那么教师有y 12人,买单程车票共需(40×y 12+20y )元. 师生活动:需要学生先自主理解题意,思考之后,小组合作,一起分析里面的数量和数量关系,并将自己的思考过程表达出来,学生之间互评,理解用不同的代数式表示同一个量的含义.设计意图:例题的情境相对复杂,尤其最后一小问,需要学生真正理解里面的数量关系,才能正确地用代数式表达.培养学生学会从数学的角度提出问题和分析问题,体验解决问题的多样性.巩固训练1.已知甲、乙、丙三个数的比为1∶2∶3.如果设甲数为x ,请表示出甲、乙两数的和减去丙数后的差;如果设丙数为z ,请表示出甲、丙两数的和减去乙数后的差.解:设甲数为x ,则乙数为2x ,丙数为3x ,甲、乙两数的和减去丙数后的差为x +2x -3x.设丙数为z ,则甲数为z 3,乙数为2z 3,甲、丙两数的和减去乙数后的差为z 3+z -2z 3.2.为了预防流感,某校积极为校园环境进行消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.如果设购买了甲种消毒液x 瓶,那么购买这两种消毒液共花了多少元?解:已知购买了甲种消毒液x 瓶,则购买了乙种消毒液(100-x )瓶,那么购买这两种消毒液共花了6x +9(100-x )=(900-3x )元.3. 如图,从边长为m +3的正方形纸片上剪下一个边长为m 的正方形后,剩余部分又剪拼成一个长方形(不重叠无缝隙).如果拼成的长方形一边长为3,那么另一边长是多少?解:由题意,得另一边长为m +3+m.归纳:列代数式的关键是分析数量关系,能准确地把文字语言翻译成数学语言.认真分析问题中的有关术语的含义,如和、差、积、商、多、少、几倍、几分之一、增加了、增加到、减少、减少到、扩大、缩小等.设计意图:同学们独立思考,再一起研讨,通过多情境的练习,不断培养学生有意识地分析数量和数量关系,提高学生分析问题的能力;进一步理解代数式的意义,掌握列代数式的方法.课堂小结1.本节课我们学习的内容是什么?2.通过本节课的探究活动,你有什么收获和感受?设计意图:通过小结,学生梳理本节所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第112页习题A组第1,2题,B组第3,4题,C组第5题.2.七彩作业.教学反思。

七年级上数学冀教版课件:3.2 代数式(3)

七年级上数学冀教版课件:3.2 代数式(3)


所得折痕数与对折次数的变化关系.
谁能算出:1+2+22+23+24+……2n=?
对折次数 1 2 3 4 … n
所得层数 21 422 823 1264 … 2n
折痕条数 1 3 7 15
+2 +4 +8
观察上表可得:
… 2n-1
1=21- 1
3=1+ 21 =22- 1
7=1+21 +22 =23- 1
2 3…N 8 10 …
摆法二:
N张桌子可坐:2N+4 或 6+2(N-1) 个人
在桌数相同时,哪一种摆法容纳的人数更多?
4n+2 或 6+4(n-1) 2N+4 或 6+2(N-1)
相信你一定行
用火柴棒按下图的方式搭三角形
(1)填写下表:
三角形个数 1 火柴棒根数 3
2
3
5
7
4
5
9
11
(2)照这样的规律搭下去,搭n个这样的三角形 需要多少根火柴棒?
第3课时
探索规律
探索规律的方法(初步)

1、模 型 “迁移其它的类似的实际问题替代,使这
个问题的条件与结论都对应相同 。
2、对于与自然数n有关的探索规律的题,
可从具体的、简单的对应情境入手,
寻找所得“结果数”与n(个、次)的同一变化关系
式。
常用 列表的方法分析探索.(由特殊到一般)
搭n个这样的三角形需要 2n+1 根火柴棒
细胞分裂问题
我们曾经接触过“细胞分裂”问题: 细胞每次都是由一个分裂成两个。
想一想 1 个细胞
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 代数式
教学目标:
知识与技能:1.会把代数式反映的数量关系用文字语言表述出来;
2.会把文字语言表述的数量关系用代数式表示出来;
3.掌握代数式的书写规范。

过程与方法:经历列代数式的过程,体会代数式可以表示数量关系.
情感态度与价值观:进一步体会字母表示数的意义。

教学重点:1.说出代数式所表达的数量关系(代数式的意义);
2.根据语言文字表述的数量关系写出规范的代数式。

教学难点:用代数式表示整数。

教材分析:本节课是在“用字母表示数”的基础上,引入了“代数式”,在本章中本节课是重点占有非常重要的地位。

这节课的重点为列代数式与用文字语言表述数学式子的互相转化,教学中例1与例2让学生独立思考、讨论交流,最后得出正确的结论,教师还要指出写代数式的要求。

所选例题及练习题由易到难,循序渐进。

教学方法:师生互动法
教具:多媒体课件
课时安排:1课时
教学过程:
板书设计:
教学反思:
本节课是在用字母表示数的基础上让学生来认识代数式的,采用了师生互动法,让学生由观察到感受,由浅入深,由感性到理性,最后自己亲身实践得出代数式的定义以及自
己应如何列代数式。

整堂课大部分都是老师举例学生答,如果让学生举一些例子就更好了。

相关文档
最新文档