集合、函数和导数、三角函数综合检测题

集合、函数和导数、三角函数综合检测题
集合、函数和导数、三角函数综合检测题

集合、函数与导数、三角函数

一、选择题

1、若集合,,则等于()

A. B. C. D

【答案】D

2、已知是第二象限角,()

A.B.C.D.

【答案】A

3、设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件

【解析】选A.“

4、下列函数中为偶函数的是()

A. B. C. D.

【答案】B

5、函数的定义域为()

A.B.C. D.

【答案】C

6、已知函数为奇函数,且当时,,则()

A.2 B.1 C.0 D.-2

【答案】D

7、若函数()

A.B.C.D.

【答案】B

8、函数f(x)=sin xcos x+cos 2x的最小正周期和振幅分别是()

A.π,1 B.π,2 C.2π,1 D.2π,2

【答案】A

9、函数的图象大致为()

【答案】D

10、将函数y=f(x)·sinx的图象向右平移个单位长度后,再作关于x 轴对称变换,得到函数y=1-2sin2x的图象,则f(x)可以是( D ) A.sinx B.cosx

C.2sinx

D.2cosx

11、若函数f(x)=sin(ω>0)在区间上单调递增,则ω的取值围是( A )

A. B.

C.[1,2]

D.[0,2]

12、已知f(x)是定义域为R的偶函数,当x≤0时,f(x)=(x+1)3e x+1,那么函数f(x)的极值点的个数是( C )

A.5

B.4

C.3

D.2

二、填空题

13、经过曲线y=x3-2x上的点(1,-1)的切线方程为.

【答案】x-y-2=0,或5x+4y-1=0.

14、,,三个数的大小关系是.

【答案】

15、设f(x)= sin3x+cos3x,若对任意实数x都有|f(x)|≤a,则实数a的取值围是_____._____

【答案】

16.若cos(α+β)=,cos(α-β)=,则tanα·tanβ= . 答案:

三、解答题

17、(12分)已知函数y=cos.

(1)求函数的最小正周期.

(2)求函数的对称轴及对称中心.

(3)求函数的单调增区间.

【解析】(1)由题可知ω=,T==8π,

所以函数的最小正周期为8π.

(2)由x+=kπ(k∈Z),

得x=4kπ-(k∈Z),

所以函数的对称轴为x=4kπ-(k∈Z);

又由x+=kπ+(k∈Z),

得x=4kπ+(k∈Z);

所以函数的对称中心为(k∈Z).

(3)由2kπ+π≤x+≤2kπ+2π(k∈Z),

得8kπ+≤x≤+8kπ(k∈Z);

所以函数的单调递增区间为,k∈Z.

18、(10分)(2016·模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sinAcosA-sinBcosB.

(1)求角C的大小.

(2)若sinA=,求△ABC的面积.

【解题提示】(1)先利用三角恒等变换公式化简已知的表达式,再利用三

角函数的性质得到方程,解方程求解.(2)先利用正弦定理求a,再利用三角恒等变换公式,求sinB,最后求面积.

【解析】(1)由题意得

-=sin2A-sin2B,

即sin2A-cos2A=sin2B-cos2B,

sin=sin.

由a≠b,得A≠B,又A+B∈(0,π),

得2A-+2B-=π,

即A+B=,所以C=.

(2)由c=,sinA=,

=,得a=.

由a

故sinB=sin(A+C)

=sinAcosC+cosAsinC=,

所以,△ABC的面积为

S=acsinB=.

19、设函数.

(Ⅰ)求的最小值,并求使取得最小值的的集合;

(Ⅱ)不画图,说明函数的图像可由的图象经过怎样的变化得到.

【答案】解:(1)

当时,,此时

所以,的最小值为,此时x 的集合.

(2)横坐标不变,纵坐标变为原来的倍,得;

然后向左平移个单位,得

20、(12分)设a>0,且a≠1,已知函数f(x)=log a是奇函数.

(1)数b的值.

(2)求函数f(x)的单调区间.

(3)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),数a的值.

【解析】(1)因为f(x)是奇函数,所以f(-x)=-f(x).

从而f(-x)+f(x)=0,

即log a+log a=0,

于是,(b2-1)x2=0,由x的任意性知b2-1=0,

解得b=-1或b=1(舍),所以b=-1.

(2)由(1)得f(x)=log a,

(x<-1或x>1),

f′(x)=.

当00,即f(x)的增区间为(-∞,-1),(1,+∞);

当a>1时,f′(x)<0,

即f(x)的减区间为(-∞,-1),(1,+∞).

(3)由a-2>1得a>3,所以f(x)在(1,a-2)上单调递减,从而f(a-2)=1,即

log a=1,

又a>3,得a=2+.

21、

已知函数,曲线在点处切线方程为

.

(Ⅰ)求的值;

(Ⅱ)讨论的单调性,并求的极大值.

【答案】

(II) 由(I)知,

从而当<0.

故.

当.

22、(本小题满分10分)选修4-4:坐标系与参数方程

已知直线l 的参数方程为(t为参数),曲线C的极坐标方程为ρ2cos 2θ=1.

(1)求曲线C的直角坐标方程.

(2)求直线l被曲线C截得的弦长.

【解析】(1)由ρ2cos 2θ=1得ρ2cos2θ-ρ2sin2θ=1,即有x2-y2=1,

所以曲线C的直角坐标方程为x2-y2=1.

(2)把

x2t

y3t

=+

??

?

=

??

代入x2-y2=1中,得(2+t)23t)2=1,即2t2

-4t-3=0,

所以t1+t2=2,t1·t2=-3

2

设直线l与曲线C的交点为A(x1,y1),B(x2,y2).

所以直线l被曲线C截得的弦长为

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

反三角函数求导公式证明

§2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(ππ-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= '

导数与三角函数交汇试题

导数与三角函数交汇试题 1.(2019?石家庄一模)已知函数, (1)求函数f(x)的极小值 (2)求证:当﹣1≤a≤1时,f(x)>g(x) 2.(2019春?常熟市期中)已知函数f(x)=e2x(sin x﹣3cos x). (1)求函数f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间上的最大值和最小值. 3.(2019?大连模拟)已知函数f(x)=ae x﹣sin x+1其中a∈R,e为自然对数的底数.(1)当a=1时,证明:对?x∈[0,+∞),f(x)≥2; (2)若函数f(x)在[0,π]上存在两个不同的零点,求实数a的取值范围.4.(2019?天津)设函数f(x)=e x cos x,g(x)为f(x)的导函数. (Ⅰ)求f(x)的单调区间; (Ⅱ)当x∈[,]时,证明f(x)+g(x)(﹣x)≥0; (Ⅲ)设x n为函数u(x)=f(x)﹣1在区间(2nπ+,2nπ+)内的零点,其中n∈N, 证明2nπ+﹣x n<. 5.(2019?新课标Ⅰ)已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点; (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围. 6.(2019?新课标Ⅰ)已知函数f(x)=sin x﹣ln(1+x),f′(x)为f(x)的导数.证明: (1)f′(x)在区间(﹣1,)存在唯一极大值点; (2)f(x)有且仅有2个零点. 7.(2019?富阳区模拟)设函数f(x)=2x2+alnx,(a∈R) (Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+m,求实数a,m的值(Ⅱ)若f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,求实数a的取值范围; (Ⅲ)关于x的方程f(x)+2cos x=5能否有三个不同的实根?证明你的结论 8.(2019?北辰区模拟)已知函数f(x)=e x﹣ax,(a∈R),g(x)=.

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

高中数学常用反三角函数公式

反三角函数公式 arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x = 2 arc tanx = cos (n arc cos x) = .

反三角函数图像与特征 反正弦曲线图像与特征反余弦曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心): ,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率 为1 拐点: ,该点切线斜率为-1 渐近线: 渐近线: .

名称 反正割曲线反余割曲线 方程 图像 顶点 渐近线 反三角函数的定义域与主值范围 函数主值记号定义域主值范围 反正弦若,则 反余弦若,则 反正切若,则 反余切若,则 反正割若,则 反余割若,则 式中n为任意整数. .

反三角函数的相互关系 arc sin x = arc cos x = arc tan x = arc cot x = sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x)) If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function .

三角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) = cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa

tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2 (tan 1)2(tan 1a a +- tana=2)2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a) =a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

反角函数求导公式的证明

反三角函数求导公式的证明 §2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可 导,而且0)(≠'y ?,则反函数)(x f y =在间},)(|{y x I y y x x I ∈==?内也是单调、可 导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'=

证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(π π-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= ' 类似地,我们可以证明下列导数公式:

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

三角函数反三角函数积分公式求导公式

三角函数反三角函数积分公式求导公式 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinACosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina

sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) =a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

反三角函数求导公式证明

§ 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(log )ln 11 1211312 2 x x arctgx x a x a x '=-'=+'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(ππ-∈y 时,0cos >y ,221sin 1cos x y y -=-= 因此, 211)arcsin (x x -= ' 证2 设x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 2221111cos )(1)(x y tg y tgy arctgx +=+=='= ' 证3 a x a a a a y y x ln 1ln 1)(1)log (=='= '

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

函数导数三角函数

函数导数三角函数 函数、导数、三角函数回归基础与基本题型复习一、基础知识与基本方法 函数部分 221、二次函数?三种形式:一般式f(x)=ax+bx+c;顶点式f(x)=a(x- h)+k;零点式f(x)=a(x-x)(x-x);b=0偶函数;?区间最值:配方后一看开口方向,二讨论对称12 轴与区间的相对位置关系;?实根分布:先画图再研究?>0、轴与区间关系、区间 端点函数值符号; 2、值域(范围)常用分子常数法;分离;,分母整体换元;导数 3、周期:进退几 个单位,列举;画图;用周期定义逐个检验; 4、求定义域:使函数解析式有意义(如:分母?;偶次根式被开方数?;对数真数?,底数?;零指数幂的底数?);实际问题有意义; (定义域优先意识) 5、单调性:?定义法;?导数法?图像;奇偶性:?定义法?图像。函 数 2yxx,,,log(2)的单调递增区间是.(答:) (1,2)12 注意:(1)函数单调性与奇偶性的逆用(?比较大小;?解不等式;?求参数范围(注 意等号)); 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:(或fugxuhx()()()0,,, fa()0,,fa()0,,(或); ,,,,0)()aub,,fb()0,fb()0,,,2若存在?[1,3],使得 不等式,(-2)-2>0成立,则实数取值aaxaxx范围是 ( 22解:不等式即,设.研究“任意a?()220xxax,,,,faxxax()()22,,,, f(1)0,,2,,[1,3],恒有”.则,解得。则实数x的取值范围是 fa()0,x,,1,,,,f(3)0,3,,, 2,, ,,,,,,,1,,,,,3,, (2)复合函数由单调性判定:同增异减。

最最完整版--三角函数公式大全

三角函数与反三角函数 第一部分三角函数公式 ·两角和与差的三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα) sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) ·辅助角公式: Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A) Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B) ·万能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) ·降幂公式 sin^2α=(1-cos(2α))/2=versin(2α)/2 cos^2α=(1+cos(2α))/2=covers(2α)/2 tan^2α=(1-cos(2α))/(1+cos(2α)) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sin β·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ -tanγ·tanα) ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB

反三角函数常见公式

反三角函数常见公式 李浩翔 .,)1()1()1()()()1()1(#.,0,,1),1(*)0(,2 3)1(),0(,2)1()0(,2 )1(#),0(,2)1(*arcsin )1csc(,arccos )1sec(sec )1arccos(csc )1arcsin(arccos )arccos(),()(,2 arccos )()2)((sec )sec()(arccos )arccos() (csc )csc()(arcsin )arcsin(2csc sec ,2,2arccos arcsin 是显然的第二个等号由余角关系第一个等号得证证明:是显然的第二个等号由余角关系第一个等号得证于是可直接取反函数>又则证明:令<><>,,余切的特殊性): 倒数关系(注意正切和则可得利用例:设”即可证明□构造“证明利用奇函数的性质即可负数关系: (易证)余角关系: πππππππππππ πππππππ-=?-=-=-?--=--=--=====-=+=-==--=-=-======-=-=-- =-=?? ???-=--=--=-?? ???-=--=--=-=+=+= +arcctgx x arctg x arctg arcctgx x arctg arcctgx x arcctg x arctg x arctg arcctgx y x ctgy x tgy x x arctg y x arcctgx arctgx x arcctg x arcctgx arctgx x arcctg x arctgx arcctgx x arctg x arctgx arcctgx x arctg x x arc x x arc x arc x x arc x x x x f x f x x f x f x arc x arc arcctgx x arcctg x x x arc x arc arctgx x arctg x x x arc x arc arcctgx arctgx x x

相关文档
最新文档