小波去噪和小波包去噪的对比.doc
小波去噪

di =
������ =0
dt + σ zi (������ = 1, … , ������ − 1)
Hale Waihona Puke 然后将上式的关系进行转换一下: yi = di − di −1 ,y0=d0 这等价于下式非白噪声 yi = xi + σ (zi − zi −1 ) 重建中根据下式按小波分解级别来选择阈值 t j,n = 2 ln ������ ∗ 2σ ������ ∗ 2(������ −������ )/2 (������ = j0 , … , ������)
频域内分辨率高时,时间域内分辨率低;在频率域内分辨率低时,在 时间域内分辨率高,有自动变焦的功能) ,因此它能有效区分信号中 的突变部分和噪声,从而实现信号的去噪。 运用小波分析进行去噪处理一般有三种方法, 第一种为强制去噪 处理,即把小波分解结构中的高频系数全部变为 0,即把高频部分全 部滤除掉,然后再对信号进行重构处理。该法比较简单,重构后的信 号也比较平滑,但容易丢失信号的有用成分。另外还有默认阈值去噪 处理和给定阈值去噪处理。图 12.2 为利用以上三种方法对污染信号 进行去噪处理的波形图。从图中可以看出,应用强制去噪处理后的信 号比较光滑,但它很有可能丢失了信号中的一些有用成分;默认阈值 去噪和给定阈值去噪这两种方法在实际中应用得更为广泛一些。 小波去噪 1、 小波去噪原理 在去噪领域,利用小波变换进行去噪以及重构是一个热门课题。 小波去噪取得成功的主要原因如下: (1)低熵性。小波系数的稀疏分 布,使图像变换后的熵降低。 (2)多分辨性。由于采用多分辨率的方 法,所以它能非常好的刻画信号的非平稳特征,如断点、边缘等,可 在不同分辨率下根据信号和噪声分布的特点去噪。 (3)选择基底的灵 活性。小波变换可灵活悬着不同的小波基,如单小波,多小波,小波 包等。下面简要说明其去噪的基本原理,我们重点讨论一维信号的情 况,对于二维图像信号也同样适用。 小波变换是线性的,先分析小波如何去除加性噪声。
小波图像去噪研究方法概述

小波图像去噪研究方法概述如何消除图像中的噪声是图像处理中古老的课题. 长期以来, 人们根据图像的特点、噪声的统计特征和频谱分布的规律, 提出和发展了不同的去噪方法[1] . 图像去噪存在一个如何兼顾降低图像噪声和保留细节的难题.用滤波器对非平稳信号处理时不能有效地将信号高频和由噪声引起的高频干扰加以区分.具有“数字显微镜” 之称的小波变换在时频域具有多分辨率的特性,可同时进行时频域的局部分析和灵活地对信号局部奇异特征进行提取以及时变滤波.利用小波对含噪信号进行处理时,可有效地达到滤除噪声和保留信号高频信息, 得到对原信号的最佳恢复. 目前, 小波图像去噪方法已成为去噪的一个重要分支和主要研究方向, 在过去的十多年, 小波方法在信号和图像去噪方面的应用引起学者广泛的关注[2].本文阐述小波图像去噪方法的发展历程和小波去噪机理, 概括目前的小波图像去噪的主要方法以及应用, 最后对小波图像去噪方法的发展和应用进行展望.1.小波图像去噪发展小波图像去噪方法大体经过了5个阶段: 第一阶段早在1992年, Mallat提出奇异性检测的理论, 从而可以利用小波变换模极大值的方法结合边缘检测来去除噪声. 第二阶段是小波图像萎缩法: 将含噪信号做正交小波变换,然后对其系数进行阈值操作得到去噪信号. 1992和1995年, Donoho等[ 3 ]提出非线性小波变换阈值去噪法, James S. Walker[ 4 ]提出自适应树小波萎缩法, 去噪效果相当好. 1995年, Coifman &Donoho[5, 6 ]在阈值法的基础上提出了平移不变量小波去噪法, 它是对阈值法的一种改进. 第三阶段是多小波去噪法. 1994年Geronimo, Ha rdin& Masso pus构造了著名的GHM 多小波, 它既保持了单小波所具有的良好的时域与频域的局部化特性,又克服了单小波的缺陷. 第四阶段是基于小波系数模型的去噪法:将小波与隐式马尔可夫、多尺度随机过程、上下文、Bayes等模型结合起来, 可获得满意的去噪效果. 第五阶段是最近提出的脊波、曲波去噪法.2.小波去噪的机理噪声去噪问题一般采用模型:()()()e e , 0, 1,, 1,s i f i i i n =+=⋯-其中, f (i) 是期望图像; s( i) 是观测的含噪图像; e (i)是噪声; e 是噪声方差.去噪目的就是从含噪图像 s(i)中恢复原始图像的同时保持图像 s(i) 的特征,优化均方差,即在一组正交基{}() , 0 m B g m N =≤≤下通过分解()()() e s i f i e i =+得到()()() , , , .s i gm f i gm ee i gm =+ 〈〉〈〉〈〉由于小波函数在时频域都具有较好的局域性,其变尺度特性使小波变换对确定信号具有一种 “集中” 的能力, 且能较好地表示信号的局部结构特征. 所以小波变换去噪主要是利用信号和噪声的 Lipschilz 指数在局部结构特征下所表现的奇异性对小波系数进行处理.3. 小波去噪的方法3.1 基于模极大值的图像去噪法1992年, Mallat 提出用奇异点-模极大值法检测信号的奇异点 ,根据有用信号和噪声的小波变换在奇异点的模极大值的不同特性, 采用多分辩率理论, 由粗即精地跟踪各尺度 j 下的小波变换极大值来消除噪声. 其去噪算法是:步骤 1: 对含噪图像进行小波变换.步骤 2: 提取小波分解中第一层的低频图像, 跟踪该尺度下的小波变换极值点. 步骤 3: 令 j = 1, 对第一层低频图像进行小波变换, 提取第二层低频图像信号, 且以步骤 2中的小波变换极值点为参考, 清除幅值减小的极值点, 保留幅值增加的极值点.步骤 4: 令 j= 2, 3, …… , 重复步骤 3.步骤 5: 重构图像, 得到去噪后的图像.模极大值法主要适于图像中混有白噪声且图像中含有较多奇异点的情况,去噪后的图像没有多余振荡, 能获得较高的信噪比, 保持较高的时间分辨率.另外模极大值法要利用复杂的交替投影法来进行重构小波系数, 因而计算速度非常慢且有时不稳定[ 7] .3.2 小波萎缩法3. 2. 1 阈值萎缩法阈值萎缩法去噪的算法为:步骤 1: 选择合适的小波基并确定小波分解的层次 N 对含噪图像进行小波变换, 得到小波分解系数. 步骤 2: 在小波变换域设定阈值对小波系数进行处理, 获得新的小波系数. 硬阈值处理法:(), , h j k n X T w t == , , , j k j k n w w t ≥ ,0, .j k n w t < 软阈值处理法:,k X = T ( w , t ) =S j n ,, , ,j k n j k n w t w t -≥, 0, .j k n w t < 半软阈值处理法:sem i j tn X = T ( w , k ) = , , ,? 2 ,j k j k n w w t > ()()2 , 1 / 2 1 , 1 , 2 ,tn wj k tn tn tn tn wj k tn --<≤0,, 0,?j k n w t ≤ 步骤 3: 通过小波逆变换,重构图像,得到去噪图像.阈值法去噪的应用具体有以下几个方面:( 1) 通用阈值去噪法. 这是应用最广泛的一种小波去噪方法,[8]2 ) ,(T e log M N =⨯ 其中e 是噪声标准方差; M× N 为图像尺寸,实际应用时根据图像的特点选取硬、软、半软阈值处理法.( 2) 自适应阈值去噪法. 阈值过大或过小都不能达到在去噪的同时保留图像细节和边缘信息. 通过对阈值函数进行修改[2] , Maarten Jansen 等[9]提出能提高去噪效率的不同阈值选取法,诸如水平相关阈值去噪法, Mario 等[10]提出基于贝叶斯估计的小波收缩阈值的图像降噪方法, Mario 和胡海平等[10, 11 ]通过最小 Bayes 风险的方法对图像小波变换后的小波系数进行估计, 尚晓清等[12]提出基于子带的自适应阈值, Huang X等[13 ]利用统计学中的毕达哥斯定理选取小波阈值进行图像去噪, Grace Chang S 和Detlev Ma rpe等[14, 15]自适应小波阈值图像去噪法, 同时给出相应阈值优化的公式,通过选取最佳的阈值来达到理想的效果.( 3) 小波包阈值去噪法. 小波包分析能为信号提供一种更精细的分析方法,它将频带进行多层次划分, 对多分辨率没有细分的高频部分进一步分解, 并能根据被分析信号的特征, 自适应地选择相应频带,提高时频分辨率.基于小波包变换的阈值法去除图像斑点噪声效果很好且保持了边缘特征信息[16] . 在贝叶斯结构中自动估计阈值采用复小波包来去噪,其实验表明, 它比小波包变换具有计算速度快等特点[6 ] .( 4) 平移不变小波去噪法. 它在阈值法的基础上加以改进[5, 6] , 其方法是: 对含噪图像进行n次循环平移, 对平移后的图像进行阈值去噪处理, 再对去噪的结果进行平均. 它不仅能有效的抑制阈值去噪法产生的伪Gibbs现象, 而且能减小原始信号和估计信号之间的M SE和提高SNR. 缺点是是计算复杂度太高. Tien等人则进一步利用平移不变多小波变换进行去噪, Cohen等人将小波包和平移不变法结合起来[1] , 避免了一些特征模糊化的现象.( 5) 迭代小波阈值法. Coifman& Wickerhauser提出迭代去噪算法, R. Ranta等提出固定点的小波阈值迭代算法, 大大提高计算效率. Detlev Ma rpe[15 ]提出通过对基于上下文的自适应阈值进行迭代运算,可取得更准确的重构,图像视觉质量大增, M SE较低.3. 2. 2比例萎缩法它是将每一个带噪系数乘以一个比例系数来对原系数进行估计. 目前最具代表性的比例萎缩法是利用最大似然准则的LAWM L和利用最大后验概率准则的LAWM AP .相对来说,比例萎缩去噪后的重建误差比阈值萎缩法小,但重建的信号没有阈值萎缩那样光滑且不利于信号的压缩. 谢杰成等[8 ]提出一些改进措施.3. 2. 3自适应树小波萎缩法信号在各层相应位置上的小波系数往往具有很强的相关性, 而噪声具有弱相关或不相关的特点, 根据对小波系数树结构及在边缘处呈现的所谓“父子” 相关性[4, 12] ,将小波尺度的相关信息和阈值结合起来, 能较好的将边缘结构从噪声中区分开来, 这样可对图像进行去噪. Walker J S等[4 ]提出一种将小波变换四叉树的统计特性和小波收缩结合起来的图像去噪新方法.3.3多小波去噪法在信号去噪中多小波优于标量波[9]. Jean-LucStarck提出通过合并邻域系数的办法来进行多小波阈值化处理图像噪声, 去噪效果超过了单小波, 优于传统的方法. 多小波去噪算法[23, 24 ]为:步骤1: 运用一个预滤波器将含噪图像转变成多流数据.步骤2: 对预处理后多流数据执行多小波变换,得到多小波系数.步骤3: 对多小波系数阈值化.步骤4: 对阈值化后的多流数据IDMW T.步骤5: 对IDMW T后的数据进行后滤波处理,得到去噪图像.3.4基于小波系数模型的去噪法小波去噪中, 小波系数模型非常重要, 只有在成功的小波系数模型上, 才可能提出成功的去噪方案[8 ] . S. Grace Chang提出基于上下文模型的空间自适应小波去噪法, 结果表明图像质量好. Grouse等提出一种基于小波域隐式马尔可夫模型的统计信号处理结构, Hua Xie和Aleksandra Pizurica[15]运用有关小波系数空间族的先验知识,采用马尔可夫随机场模型进行图像去噪. 利用多尺度随机过程对小波图像系数进行建模,通过阈值判断和邻域判断相结合的方法区分对应边缘处的系数,然后对边缘区和非边缘区的小波系数进行不同的估计, 达到图像去噪的目的. 文献将层内和层外统计模型联合起来去噪, 效果相当好.3.5脊波、曲波去噪法Candes& Donoho应用现代调和分析的概念和方法, 并使用在小波分析和群展开理论中发展的技术,针对具有较多突变边缘的问题,构造特殊结构的小波基, 如ridgelets和curvelets, 以修正小波变换减少在不连续的边缘附近高频系数产生的数量. 为了将脊波变换应用到数字图像中, Do提出一种可逆变换的、正交的、重构性相当好的有限脊波变换, 其实现机制是Radon变换[30 ] . 脊波分析等效于目标函数的Radon变换域的小波分析, 即若令函数的脊波变换为()() ,.=〈〉R f V f hv单尺度脊波是在一个基准尺度s进行脊波变换,对应于单尺度脊波, Candes和Donoho 构造了曲线波或者称为多尺度脊波, 它是在所有可能的尺度s≥ 0进行脊波变换,曲波变换是可逆变换的二维各向同性的小波变换、分割、Radon变换、1D小波变换的结合. 在二维情况, 当图像具有奇异曲线, 并且曲线是二次可微的, 则曲线波可以自适应地“跟踪” 这条奇异曲线, 并且他们构造曲线波的紧的框架, 对于具有光滑奇异性曲线的目标函数, 曲线波提供稳定的、高效的和近于最优的表示.3.6综合法小波图像去噪效果比经典的方法要好,实际应用中将小波和经典的方法结合起来,去噪效果往往会更好, 本人对B超图像做过试验, 去噪效果优于单独的小波去噪或经典方法.小波图像去噪与经典方法的结合主要有以下几种:( 1) 小波变换与维纳滤波器或中值滤波等结合起来[13 ] .( 2) 将小波变换、小波收缩、小波压缩与广义验证法结合起来去噪.( 3) 利用聚类分析和小波变换结合起来进行去噪.( 4) 将小波与PDE结合起来去噪, 在去噪的同时较好的解决了突变边缘的问题. 4展望目前小波去噪方法已成为去噪一个重要分支和主要研究方向, 小波阈值萎缩法的研究仍非常活跃, 小波在高斯噪声的滤除方面收到了很好的效果.由于非高斯噪声还没有找到理想的小波系数模型,故对斑点噪声的去噪效果总是不太理想. 抑制斑点噪声仍然是SAR和医学超声图像的一个研究重点. 近两年来应用多小波去噪也日益成熟[7, 9 ] . 如何建立非高斯噪声的分布模型,根据获得的先验知识和已有先验知识进行准确的建模,对于对非高斯噪声的去除非常重要.寻找理想的小波系数模型已成为目前小波去噪研究的一个方向, 如何使用高斯噪声分布的去噪方法对非高斯噪声进行延拓都是值得进一步探讨的课题.随着脊波和曲波的出现,提高了模型的准确性, 改善了小波的去噪性能, 脊波、曲波、边缘波也会成为当前研究的一大趋势. 实践证明, 根据具体图像选择恰当的结合方法往往比任一单独去噪方法要好. 当前小波去噪方法几乎是针对灰度图像的,对彩色图像的研究不多.随着小波去噪方法的不断完善和发展,对彩色图像去噪的研究是一个很有研究潜力的领域, 它在图像去噪领域将会有更广阔的前景.参考文献[1]谢杰成,张大力,徐文立. 小波图象去噪综述. 中国图象图形学报, 2002, 7( 3A): 209~217.[2]Jea n-Luc Starck, Emma nuel J Candè s, David L Do noho. The curv elet t ransform for image denoising. IEEE Trans on Imag e Processing, 2002, 11( 6): 670~684.[3]Do noho D L. Denoising by so ft-thr esh olding . IEEE Trans Inform Theory , 1995, 5( 41): 613~627.[4]Walker J S. Chen Ying Jui. Image denoising using treebased wav elet subba nd cor relatio n and shrinkag e. Opt Eng , 2000, 11: 2900~2908.[5]Bruce A Thomas, Jeffr ey J Rodrig ue z. Wav elet-based colo r image denoising . IEEE Inter natio nal Conference on Imag e Processing Proceeding s, 2000, ( 2): 804~807.[6]Andre Jalobeanu, Laure Blanc-Feraud, Josiane Zerubia. Sa tellite image deconv o lution using complex wav elet packets. IEEE Internatio nal Conference on Imag e Processing Proceeding s, 2000, ( 3): 809~812.[7]Wang Ling. Orthog ona l multiwav elets transform fo r imag e denoising. IEEE Pr oceeding s o f ICSP, 2000. 987~991.[8]谢杰成,张大力,徐文立. 一种小波去噪方法的几点改进. 清华大学学报(自然科学版) , 2002, 42( 9): 1269~1272.[9] Maarten Jansen, Adhemar Bultheel. Multiple wav elet threshold estima tion by Generalized Cro ss Validatio n fo r images with co rr ela ted noise. IEEE Tra ns Imag e Pro cessing , 1999,8( 7): 947~953.[10]Mario A T Fig ueiredo , Robert D Now ak. Wav elet-basedimag e estimatio n: an empirica l Ba yes appr oach using Jeff reys ' no ninfo rmative prio r. IEEE Tra ns o n Imag e Pr ocessing , 2001, 10( 9): 1322~1331.[11]胡海平,莫玉龙.基于贝叶斯估计的小波阈值图像降噪方法.红外与毫米学报, 2002,21( 1): 74~76.[12]尚晓清,王军锋,宋国乡.一种基于自适应阈值的图像去噪新方法.计算机科学, 2003,30( 9): 70~71.[13]Hua ng X, Woolsey G A. Image denoising using Wiener filtering and wavelet thr esholding.IEEE Internatio nal Conference on, 2000, 3: 1759~1762.[14]Grace Cha ng S, Bin Yu, Ma rtin Vetterli. Ada ptiv e wav elet thresholding for image denoising and compressio n. IEEE Tra ns o n Image Processing , 2000, 9( 9): 1532~1546. [15]Detlev Marpe, Hans L Cy co n, Gunth er Zander. Co ntex tbased denoising o f imag es using itera tiv e wav elet th resholding. Visual Communica tions a nd Imag e Proc,2002, 4671: 907~914.[16]刘永昌,张平,严卫东,等.小波包阈值法去除合成孔径雷达图像斑点噪声.红外与激光工程, 2001, 30( 3): 160~167.。
小波去噪和小波包去噪的对比

小波去噪和小波包去噪的对比问题 1:试生成一个含噪声信号,利用 matlab 中的小波去噪和小波 包去噪函数去除噪声,比较两者的性能差异程序如下:clcclear all load noisdopp x=noisdopp; subplot(311) plot(x);title(' 原始信号的波形图 ') axis tight;[thr,sorh,keepapp]=ddencmp('den','wv',x); xwd=wden(x,'rigrsure','s','one',4,'sym4'); subplot(312) plot(xwd) title(' 小波降噪信号 ') axis tight [thr1,sorh1,keepapp1,crit]=ddencmp('den','wp',x); xwpd=wpdencmp(x,'h',4,'sym4','sure',thr1,1);subplot(313) plot(xwpd) title(' 小波包降噪信号 ') axis tight 运行结果如下:区别:小波变换在低信噪比情况下的去噪效果较好,小波包分解去噪后信号更 加的平滑;小波分解主要是针对细节成分全置 0 或者给定软(硬)阈值去噪, 容易丢失信号中的有用信息。
问题 2:研究小波包分解树中各节点的重构系数,给出其频谱分布, 讨论波包分解的频带划分程序如下:clcclear allload noisdopp; s=noisdopp;wpt=wpdec(s,3,'sym1');100 200300400 500 600 700小波降噪信号800900 1000100 200 300 400 500 600 700 800 900 10005 0 -5原始信号的波形图5 0 -5小波包降噪信号plot(wpt);r20=wprcoef(wpt,[2 0]);subplot(621)plot(r20)title('r20')subplot(623)hua_fft(r20,10000,1)title('r20 的FFT')r21=wprcoef(wpt,[2 1]);subplot(622)plot(r21)title('r21')subplot(624) hua_fft(r21,10000,1) title('r21 的FFT') r22=wprcoef(wpt,[2 2]); subplot(625)plot(r22)title('r22')subplot(627) hua_fft(r22,10000,1) title('r22 的FFT') r23=wprcoef(wpt,[2 3]); subplot(626)plot(r23)title('r23')subplot(628) hua_fft(r23,10000,1) title('r23 的FFT') r10=wprcoef(wpt,[1 0]); subplot(629)plot(r10)title('r10')subplot(6,2,11)hua_fft(r10,10000,1) title('r10 的FFT') r11=wprcoef(wpt,[1 1]); subplot(6,2,10) plot(r11) title('r11') subplot(6,2,12) hua_fft(r11,10000,1) title('r11 的FFT') 程序运行结果如下:10 8 6 4 2 0 -2 -4 -6 -8 -10Tree Decomposition data for node: (0) or (0,0).200 400 600 800 1000问题 3:生成最优树结构,给出其熵值程序如下:clc clear all load noisdopp; x=noisdopp; wpt=wpdec(x,3,'sym4'); wpt=wpsplt(wpt,[3 0]); plot(wpt) bt=besttree(wpt); plot(bt) ent=read(wpt,'ent',allnodes(wpt)) T=entrupd(bt,'shannon'); ent=read(wpt,'ent',allnodes(bt))10 8 6 4 2 0 -2 -4 -6-8 -10图 1 小波包树10 8 6 4 2 0-2 -4 -6 -8-10图2 最优小波包树Tree Decompositiondata for node: 0 or (0,0).200 400 600 800 1000Tree Decompositiondata for node: (0) or (0,0).200 400 600 800 1000表1 小波包树中各节点的熵值表最优小波包树中各节点的熵值。
如何使用小波变换进行信号去噪处理

如何使用小波变换进行信号去噪处理信号去噪是信号处理领域中的一个重要问题,而小波变换是一种常用的信号去噪方法。
本文将介绍小波变换的原理和应用,以及如何使用小波变换进行信号去噪处理。
一、小波变换的原理小波变换是一种时频分析方法,它可以将信号分解成不同频率和时间尺度的成分。
与傅里叶变换相比,小波变换具有更好的时域分辨率和频域分辨率。
小波变换的基本思想是通过选择不同的小波函数,将信号分解成不同尺度的波形,并通过对这些波形的加权叠加来重构信号。
二、小波变换的应用小波变换在信号处理中有着广泛的应用,其中之一就是信号去噪处理。
信号中的噪声会影响信号的质量和准确性,因此去除噪声是信号处理的重要任务之一。
小波变换可以通过将信号分解为不同尺度的波形,利用小波系数的特性来区分信号和噪声,并通过滤波的方式去除噪声。
三、小波变换的步骤使用小波变换进行信号去噪处理的一般步骤如下:1. 选择合适的小波函数:不同的小波函数适用于不同类型的信号。
选择合适的小波函数可以提高去噪效果。
2. 对信号进行小波分解:将信号分解成不同尺度的小波系数。
3. 去除噪声:通过对小波系数进行阈值处理,将小于一定阈值的小波系数置零,从而去除噪声成分。
4. 重构信号:将去噪后的小波系数进行逆变换,得到去噪后的信号。
四、小波阈值去噪方法小波阈值去噪是小波变换中常用的去噪方法之一。
它的基本思想是通过设置一个阈值,将小于该阈值的小波系数置零,从而去除噪声。
常用的阈值去噪方法有软阈值和硬阈值。
软阈值将小于阈值的小波系数按照一定比例进行缩小,而硬阈值将小于阈值的小波系数直接置零。
软阈值可以更好地保留信号的平滑性,而硬阈值可以更好地保留信号的尖锐性。
五、小波变换的优缺点小波变换作为一种信号处理方法,具有以下优点:1. 可以提供更好的时域分辨率和频域分辨率,能够更准确地描述信号的时频特性。
2. 可以通过选择不同的小波函数适用于不同类型的信号,提高去噪效果。
3. 可以通过调整阈值的大小来控制去噪的程度,灵活性较高。
小波理论及小波滤波去噪方法

要点二
详细描述
小波硬阈值去噪法是小波阈值去噪法的一种,通过对小波 系数应用硬阈值函数进行处理,能够有效地去除噪声。硬 阈值函数的特点是在阈值处将小波系数分为两部分,保留 大于阈值的系数,置小于阈值的系数为零,具有简单易行 的优点。然而,硬阈值函数在处理过程中存在不连续性, 可能会引入新的噪声或信号失真。
通过软阈值函数处理小波系数,实现去噪的小波去噪方法。
详细描述
小波软阈值去噪法是在小波阈值去噪法的基础上发展而来的,通过对小波系数应用软阈值函数进行处理,能够更 好地保留信号的细节信息,提高去噪效果。软阈值函数的特点是在阈值处平滑过渡,避免了硬阈值函数的不连续 性。
小波硬阈值去噪法
要点一
总结词
通过硬阈值函数处理小波系数,实现去噪的小波去噪方法 。
03
小波滤波去噪的优缺点
优点
多尺度分析
小波变换能够同时提供信号在 时间和频率域的信息,允许在
多个尺度上分析信号。
去噪效果好
小波变换具有很好的局部化特 性,能够有效地将信号和噪声 在不同尺度上分离,从而实现 去噪。
自适应性
小波变换能够根据信号的特性 自适应地选择合适的小波基和 分解尺度,以更好地适应信号 的特性。
小波理论及小波滤波去噪 方法
• 小波理论概述 • 小波滤波去噪方法 • 小波滤波去噪的优缺点 • 小波滤波去噪的改进方法 • 小波滤波去噪的实例分析
01
小波理论概述
小波的定义与特性
小波是一种特殊的函数,具有局部性和波动性, 能够在时间和频率两个维度上进行分析。
小波具有可伸缩性,能够适应不同的频率分析需 求。
实例一:图像去噪
总结词
图像去噪是小波滤波去噪方法的重要应用之一,通过小波变换对图像进行多尺度分析, 有效去除噪声,提高图像质量。
小波包分析在振动测试信号去噪中的应用

第2 6卷第 6期 20 0 6年 1 月 1
孝感学院学报
J OURNAl 0F XI AOGAN UNr ER I V S TY
VOL 6 NQ 2 6 NOv. 0 6 20
小波包 分析在振 动测试信号去 噪中的应用
2 小波包分析 的基本原理
对 于给定 的正交尺度函数 () £ 及其对应 的 小 波 函 数 () £ ,存 在 双 尺 度 方 程 :( 一 t )
3 利用小波包给振 动测试信 号去 噪 的一般原理
假设在一个振动测试试验 中, 通过试验得到 过程中, 不可避免地伴 随有噪声的产生。 因此 , 通 过振动试验得到的测试信号实际上是含有噪声的
过程 中都会滤掉信号 细节 中的有用部分 , 这样 会 给处理实际问题带来偏差 。小波分析作为一种新 称为是一个“ 基小波” 将 ( 伸缩平移后就可得 。 f ) 的数学工具 , 对很 多领域产 生了重大 的影 响。在 到一个 小波序 列。 于连续 情 况, 对 小波序 列为 : 现代测试技术中, 利用小波给振动测试信号去噪
1 小波分 析的基本原理
设 () L ( ( 2R 表示平方可积函数 £ ∈ 。R)L ( )
有很多方法可用于给信号去 噪, 如中值滤波 、 低通 空间) 其 F ui 变换是 ( )如果 ( 满足“ , or r e ∞, £ ) 容
滤波 、o r r F ui 分析等 , e 这些方法在 给信 号去噪的
就是小波在工程领域中的应用之一。小波变换在 时间域和频域中都具有局部化 , 能有效地从原信 度因子 , 为平移因子 。 b 号中提取有用 的信息 , 而可 以达到给信号去 噪 从 对于任意的函数 , £ L ( ) 它的连续小 ()∈ R , 的 目的。由于在给原信号进行小波变换后 , 有用 波变换定义如下 : 信号主要分布在低频 区域 , 噪声 主要分 布在高频 区域, 但往往在处理实际问题 中, 高频区域 中也含
小波变换去噪基础知识整理

1.小波变换的概念小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么?有几种定义小波(或者小波族)的方法:缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。
在双正交小波的情况,分解和重建的滤波器分别定义。
高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。
例如Daubechies和Symlet 小波。
缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。
小波函数实际上是带通滤波器,每一级缩放将带宽减半。
这产生了一个问题,如果要覆盖整个谱需要无穷多的级。
缩放函数滤掉变换的最低级并保证整个谱被覆盖到。
对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。
例如Meyer小波。
小波函数:小波只有时域表示,作为小波函数。
例如墨西哥帽小波。
3.小波变换分类小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
DWT用于信号编码而CWT用于信号分析。
所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。
4.小波变换的优点从图像处理的角度看,小波变换存在以下几个优点:(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)(4)小波变换实现上有快速算法(Mallat小波分解算法)另:1) 低熵性变化后的熵很低;2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性3) 去相关性域更利于去噪;4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。
基于小波变换的脉搏信号去噪方法研究

基于小波变换的脉搏信号去噪方法研究下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于小波变换的脉搏信号去噪方法研究1. 引言脉搏信号作为医学诊断中重要的生理信号之一,其精确的提取和分析对于诊断疾病具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波去噪和小波包去噪的对比
问题 1:试生成一个含噪声信号,利用matlab 中的小波去噪和小波包去噪函数去除噪声,比较两者的性能差异。
程序如下:
clc
clear all
load noisdopp
x=noisdopp;
subplot(311)
plot(x);
title(' 原始信号的波形图 ')
axis tight;
[thr,sorh,keepapp]=ddencmp('den','wv',x);
xwd=wden(x,'rigrsure','s','one',4,'sym4');
subplot(312)
plot(xwd)
title(' 小波降噪信号 ')
axis tight
[thr1,sorh1,keepapp1,crit]=ddencmp('den','wp',x);
xwpd=wpdencmp(x,'h',4,'sym4','sure',thr1,1);
subplot(313)
plot(xwpd)
title(' 小波包降噪信号 ')
axis tight
运行结果如下:
原始信号的波形图
5
-5
1002003004005006007008009001000
小波降噪信号
5
-5
1002003004005006007008009001000
小波包降噪信号
5
-5
1002003004005006007008009001000
区别:小波变换在低信噪比情况下的去噪效果较好,小波包分解去噪后信号更
加的平滑;小波分解主要是针对细节成分全置 0 或者给定软(硬)阈值去噪,容易丢失信号中的有用信息。
问题 2:研究小波包分解树中各节点的重构系数,给出其频谱分布,讨论波包分解的频带划分
程序如下:
clc
clear all
load noisdopp;
s=noisdopp;
wpt=wpdec(s,3,'sym1');
plot(wpt);
r20=wprcoef(wpt,[2 0]);
subplot(621)
plot(r20)
title('r20')
subplot(623)
hua_fft(r20,10000,1)
title('r20 的 FFT')
r21=wprcoef(wpt,[2 1]);
subplot(622)
plot(r21)
title('r21')
subplot(624)
hua_fft(r21,10000,1)
title('r21 的 FFT')
r22=wprcoef(wpt,[2 2]);
subplot(625)
plot(r22)
title('r22')
subplot(627)
hua_fft(r22,10000,1)
title('r22 的 FFT')
r23=wprcoef(wpt,[2 3]);
subplot(626)
plot(r23)
title('r23')
subplot(628)
hua_fft(r23,10000,1)
title('r23 的 FFT')
r10=wprcoef(wpt,[1 0]);
subplot(629)
plot(r10)
title('r10')
subplot(6,2,11)
hua_fft(r10,10000,1)
title('r10 的 FFT')
r11=wprcoef(wpt,[1 1]);
subplot(6,2,10)
plot(r11)
title('r11')
subplot(6,2,12)
hua_fft(r11,10000,1)
title('r11 的 FFT')
程序运行结果如下:
Tree Decomposition data for node: (0) or (0,0).
10
(0,0) 8
6
4
(1,0) (1,1)
2
-2
(2,0) (2,1) (2,2) (2,3)
-4
-6
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) -8
-10
200
400 600 800 1000
问题 3:生成最优树结构,给出其熵值
程序如下:
clc
clear all
load noisdopp;
x=noisdopp;
wpt=wpdec(x,3,'sym4');
wpt=wpsplt(wpt,[3 0]);
plot(wpt)
bt=besttree(wpt);
plot(bt)
ent=read(wpt,'ent',allnodes(wpt))
T=entrupd(bt,'shannon');
ent=read(wpt,'ent',allnodes(bt))
Tree Decomposition data for node: 0 or (0,0).
10
(0,0) 8
6
(1,0) (1,1) 4
2
(2,0) (2,1) (2,2) (2,3) 0
-2
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) -4
-6
(4,0) (4,1) -8
-10
200
400 600 800 1000
图 1 小波包树
Tree Decomposition data for node: (0) or (0,0).
10
(0,0) 8
6
(1,0) (1,1) 4
2
(2,0) (2,1) (2,2) (2,3) 0
-2
(3,0) (3,1) (3,2) (3,3) -4
-6
(4,0) (4,1) -8
-10
200
400 600 800 1000
图 2 最优小波包树
小波分析作业学生姓名:柴凯
表 1 小波包树中各节点的熵值
00 10 11 20 21 22 23 30 31
-3.319 -3.868 -0.012 -4.452 -0.019 -0.006 -0.007 -5.034 -0.040
8 8 4 8 1 5 6 5 7
32 33 34 35 36 37 40 41
-0.0041 -0.0374 -0.003 -0.002 -0.004 -0.001 -5.396 -0.227
3 6 9
4 1 0
表 2 最优小波包树中各节点的熵值
00 10 11 20 21 22 23 30 31
-3.319 -3.868 -0.012 -4.452 -0.019 -0.006 -0.007 -5.034 -0.040
8 8 4 8 1 5 6 5 7
32 33 40 41
-0.0041 -0.0374 -5.396 -0.227
1 0。