(完整版)中考试题分类汇编(二次根式)

合集下载

因式分解分式二次根式含解析-中考各地试题分类汇编

因式分解分式二次根式含解析-中考各地试题分类汇编

专题1.4 因式分解分式二次根式一、单选题1.【湖南省邵阳市2018年中考数学试卷】将多项式x﹣x3因式分解正确的是()A. x(x2﹣1) B. x(1﹣x2) C. x(x+1)(x﹣1) D. x(1+x)(1﹣x)【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选D.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省2018年中考数学试卷】已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小锦购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市2018年中考数学试卷】下列运算正确的是()A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.(a+2)(a﹣2)=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.【河北省2018年中考数学试卷】若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).5.【湖北省孝感市2018年中考数学试题】已知,,则式子的值是()A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:(x-y+)(x+y-)===(x+y)(x-y),当x+y=4,x-y=时,原式=4×=12,故选:D.点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.6.【湖南省邵阳市2018年中考数学试卷】据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市2018年中考数学试卷】已知:﹣=,则的值是()A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:已知等式左边两项通分并利用同分母分式的减法法则计算,变形后即可得到结果.详解:∵﹣=,∴=,则=3,故选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择合适的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市2018年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为()A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省2018年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 10.【四川省达州市2018年中考数学试】题二次根式中的x的取值范围是()A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省2018年中考数学试卷】算式×(﹣1)之值为何?()A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答本题.详解:×(﹣1)=×﹣1=,故选:A.点睛:本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市2018年中考数学试卷】下列计算正确的是()A. B.C. D.【答案】B点睛:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则. 13.【湖南省张家界市2018年初中毕业学业考试数学试题】下列运算正确的是()A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、(a+1)2=a2+2a+1,故原选项错误;D、(a3)2=a6,故原选项正确.故选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法则和计算公式.二、填空题14.【山东省东营市2018年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为:x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【湖南省郴州市2018年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【湖南省怀化市2018年中考数学试题】因式分解:ab+ac=_____.【答案】a(b+c)【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a(b+c).故答案为:a(b+c).点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省2018年中考数学试卷】若a,b互为相反数,则a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为:0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市2018年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣(a﹣2)2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.19.【湖南省湘西州2018年中考数学试卷】要使分式有意义,则x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市2018年中考数学试卷】计算的结果是_____.【答案】【点睛】本题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法则是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市2018年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式===,故答案为:.【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.22.【山东省滨州市2018年中考数学试题】若分式的值为0,则x的值为______.【答案】-3点睛:本题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区2018年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市2018年中考数学试卷】与最简二次根式5是同类二次根式,则a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市2018年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市2018年中考数学试卷】先化简,再求值:(﹣)÷,其中a=.【答案】原式=【点睛】本题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市2018年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】本题考查分式的化简求值,熟练掌握分式化简求值的方法是解答本题的关键.29.【云南省昆明市2018年中考数学试题】先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法则即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式运算法则.30.【黑龙江省哈尔滨市2018年中考数学试题】先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【答案】点睛:本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.31.【广西钦州市2018年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣()﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣()﹣1=4+3﹣2﹣2=+2.【点睛】本题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法则以及实数混合运算的运算法则是解题的关键.32.【江苏省徐州巿2018年中考数学试卷】计算:(﹣1)2008+π0﹣()﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】(﹣1)2008+π0﹣()﹣1+=1+1﹣3+2=1.【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法则、负指数幂的运算法则以及实数混合运算的运算法则是解题的关键.33.【湖北省荆门市2018年中考数学试卷】先化简,再求值:(x+2+)÷,其中x=2.【答案】,4-2.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.34.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.35.【湖南省邵阳市2018年中考数学试卷】计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】(﹣1)2+(π﹣3.14)0﹣|﹣2|=1+1-(2-)=1+1-2+=.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.36.【湖北省随州市2018年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答本题的关键.37.【山东省烟台市2018年中考数学试卷】先化简,再求值:(1+)÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.【江苏省淮安市2018年中考数学试题】先化简,再求值:(1﹣)÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.39.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】(1)计算:|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.【答案】(1)6;(2)-2(2)(1﹣)•,===,当x=2时,原式=.点睛:本题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.40.【湖北省黄石市2018年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.41.【江苏省盐城市2018年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州2018年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法则计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区2018年中考数学试题】先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【答案】-2点睛:本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市2018年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市2018年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.46.【湖南省常德市2018年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题关键.47.【湖南省常德市2018年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】本题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【2018年湖南省湘潭市中考数学试卷】先化简,再求值:(1+)÷.其中x=3.【答案】x+2,5点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市2018年中考数学试题】(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【答案】(1)2﹣5;(2)【解析】分析:(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.详解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+-4=2﹣5;(2)原式=,=,=.点睛:本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.50.【山东省菏泽市2018年中考数学试题】先化简,再求值:,其中,.【答案】7点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.。

2018-2020年江苏中考数学试题汇编- 平方根、立方根、二次根式(解析版)

2018-2020年江苏中考数学试题汇编- 平方根、立方根、二次根式(解析版)

2018-2020年江苏中考数学试题汇编平方根、立方根、二次根式一.选择题(共22小题)1.(2020•南京)3的平方根是()A.9B C.D.【解答】2±=,(3)3∴的平方根.3故选:D.2.(2019•南京)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【解答】面积为44的算术平方根;故选:B.3.(2019•南京)下列整数中,与10() A.4B.5C.6D.7【解答】91316<<,∴<,342=,3.713.693.612.96=,2∴<<,3.6 3.7∴-<<-,3.7 3.6∴-<-,10 3.71010 3.6∴<,6.310 6.4∴与106.故选:C.4.(2018的值等于()A .32B .32-C .32±D .811632, 故选:A .5.(2018•南京)下列无理数中,与4最接近的是( )A B C D【解答】4=,∴与4故选:C .6.(2020•南通)下列运算,结果正确的是( )A =B .3C 3=D =【解答】AB .3C ==D故选:D .7.(2019( )A .B .C .D .== 故选:B .8.(2018x 的取值范围是( ) A .1x <B .1xC .1x >D .1x【解答】式子10x ∴-,解得1x .故选:D .9.(2018x的取值范围在数轴上表示正确的是( )A.B.C.D.x+,【解答】由题意得20x-.解得2故选:D.10.(2020•常州)8的立方根为()A.B.±C.2D.2±【解答】82,故选:C.11.(2019•常州)下列各数中与2+的积是有理数的是()A.2+B.2C D.2【解答】(23)(2431+=-=;故选:D.12.(2018•常州)已知a a<a等于()A.1B.2C.3D.4【解答】a a<∴=.a2故选:B.13.(2019•扬州)下列各数中,小于2-的数是()A.B.C.D.1-【解答】比2-小的数是应该是负数,且绝对值大于2的数,分析选项可得,21-<<-,只有A符合.故选:A .14.(2018有意义的x 的取值范围是( ) A .3x > B .3x <C .3xD .3x ≠【解答】由题意,得30x -,解得3x , 故选:C .15.(2020•泰州)下列等式成立的是( )A .3+=B =C=D 3【解答】A .3与BC==D 3=,此选项计算正确;故选:D .16.(2018•泰州)下列运算正确的是( )A =B =C 235= D 2=【解答】A 所以A 选项错误;B 、原式=,所以B 选项错误;C 、原式==,所以C 选项错误;D 、原式2==,所以D 选项正确 . 故选:D .17.(2020•无锡)函数2y =+x 的取值范围是( ) A .2xB .13xC .13xD .13x ≠【解答】由题意得,310x -,解得13x. 故选:B .18.(2020•无锡)下列选项错误的是( ) A .1cos602︒= B .235a a a =C=D .2(2)22x y x y -=-【解答】A .1cos602︒=,故本选项不合题意; B .235a a a =,故本选项不合题意;2222C ==,故本选项不合题意; .2(2)24D x y x y -=-,故本选项符合题意.故选:D .19.(2019•无锡)函数y =x 的取值范围是( ) A .12x ≠B .1xC .12x >D .12x【解答】函数y =210x -, 解得:12x. 故选:D .20.(2018•无锡)下列等式成立的是( )A .23=B 3=-C 3D .2(3=-【解答】23=,A 正确;3=,B 错误;=,C 错误;2(3=,D 错误;故选:A .21.(2019x 的取值范围是( ) A .2xB .2x -C .2x >D .2x >-【解答】依题意,得20x -,解得,2x . 故选:A .22.(2019x 的取值范围是( ) A .1xB .0xC .1x -D .0x【解答】依题意得10x -,1x ∴.故选:A .二.填空题(共26小题)23.(2020的结果是13.【解答】原式13==. 故答案为:13.24.(2019的结果是 0 .【解答】原式0==. 故答案为0.25.(2018【解答】原式===.26.(2018•南京)若式子在实数范围内有意义, 则x 的取值范围是2x .【解答】 由题意, 得20x-,x,解得2x.故答案为:227.(2020•南通)若1<+,且m为整数,则m=5.m m【解答】=∴<<,56又271<+,m m5∴=,m故答案为:5.x.28.(2020在实数范围内有意义,则x的取值范围是3x-,【解答】根据题意得30x.解得3x.故答案为:329.(2020•徐州)7的平方根是【解答】7的平方根是故答案为:30.(2019•徐州)8的立方根是2.【解答】8的立方根为2,故答案为:2.x-.31.(2019x的取值范围是1【解答】∴+,10xx-.∴的取值范围是:1xx-.故答案为:132.(2018•徐州)化简:2|=2【解答】20<=-.2|2故答案为:2x.33.(2019x的取值范围为2x-,【解答】由题意得:20x,解得:2x.故答案为:2x.34.(2020在实数范围内有意义的x的取值范围是1x-,【解答】由题意得,10x,解得,1x.故答案为:1x.35.(2019x的取值范围为6【解答】x-,则60x.解得:6x.故答案为:636.(2019•常州)4是16的算术平方根.【解答】2416=,∴是16的算术平方根.4故答案为:16.x-.37.(2020在实数范围内有意义,则实数x的取值范围是2【解答】在实数范围内有意义,x+,则20x-.解得:2x-.故答案为:238.(2019•扬州)计算:201820192)2)2 .【解答】原式20182)](52)=+ 2018(54)(52)=-+2=+,2.39.(2020•泰州)9的平方根等于 3± . 【解答】2(3)9±=,9∴的平方根是3±.故答案为:3±.40.(2018•泰州)8的立方根等于 2 .【解答】82=, 故答案为:2. 41.(2019•无锡)49的平方根为 23± .【解答】49的平方根为23=±.故答案为:23±.42.(2019•宿迁)实数4的算术平方根为 2 . 【解答】224=,4∴的算术平方根是2.故答案为:2.43.(2020x 的取值范围是 2x . 【解答】根据二次根式的意义,得20x -,解得2x .44.(2019•镇江)27的立方根为 3 . 【解答】3327=,27∴的立方根是3,故答案为:3.x.45.(2019x的取值范围是4x-,【解答】由题意得40x.解得4x.故答案为:446.(2020-47.(20182.【解答】原式==.2故答案为:248.(2019•连云港)64的立方根为4.【解答】64的立方根是4.故答案为:4.。

初中数学二次根式中考试题(含答案)

初中数学二次根式中考试题(含答案)

初中数学二次根式中考试题(含答案)1、8 2 的结果是()(09 常德 )A .6B.2 2C.2 D .22、下列运算正确的是() (黑龙江齐齐哈尔09)1A .3 273B.(π3.14)01C.12D.9323、下列各式中,运算正确的是() (09长沙 )A .a6a3a2B .(a3)2a5C.2233 55 D .6324、若使二次根式x 2 在实数范围内有意义,则 x 的取值范围是 (湖南株洲 09)...A .x 2B.x 2C.x 2 D .x 25、估算272的值() (09 四川眉山 )A.在 1到 2之间B.在 2到 3之间C.在 3到 4之间D.在 4到5之间x 20096、若x,y为实数,且x2y 2 0 ,则的值为()(09 天津 )y7m n, y m n ,则xy的值是((新疆09)、若 x)A .2m B.2nC.m n D.m n8、下列运算正确的是()(09绥化 )A .a3·a2=a6B. ( π -3.14)0=l C .() -1 =-2 D .=± 39、 36 的算术平方根是(). (09哈尔滨 )(A )6(B)± 6(C)6(D)±610、下面计算正确的是()(09 衡阳 )A .3333B.2733C.235D.4211、 |-9|的平方根是 ()(09 湖北荆门 )(A)81 .(B)± 3.(C)3.(D) - 3.12、若x 1 1 x =( x+y)2,则x-y的值为() (09 湖北荆门 )(A) - 1.(B)1 .(C)2 .(D)3 .113、计算12 的结果是 (09 淄博 )3(A)73(B)332(C)3(D)5333314、下列计算正确的是 ()(09湖南娄底 )222235A. (a-b)=a -bB.a · a =aC. 2a+3b=5abD.33-2 2=115、下列运算中,正确的是()(09 济宁 )A . 93B. (a 2 ) 3a6C. 3a·2a 6a D.32616、已知 a 为实数,那么 a 2等于()(09 济宁 )A 、 aB 、 -aC 、-1D 、 017、下列各数中,最大的数是()(09 湖州 )A .1B .0C.1 D .218、4的算术平方根是()(09湖州 )A .2B .2C.2D.1619、下列计算正确的是:(09 安顺 )A .822B.3 2 1C.325D.23620、 9 的平方根是 ( )(09宜宾 )A.3 B .一3 C .±3D.321、使二次根式x 2 有意义的x的取值范围是()(09 宁波).A .x 2B.x 2C.x 2 D .x 222、计算:12 3 =. (09 广西柳州 )、已知 | a1|8b0 ,则a b .安徽芜湖095分)23(24、计算:327418 =_________.(湖北荆州09)225、 9的算术平方根是.( 湖北恩施州 09)26、若a2b3c20,则 a b c.(09 怀化 ) 427、对于任意不相等的两个数a, b,定义一种运算※如下:a※ b=a b ,a b如 3※2=325 .那么12※4=. (湖南湘西 09) 3228、计算( 3 1)(31) =___________.(大连09)29、计算:12 3 =.(09 山西 )30、分母有理化:1.(上海 ) 531、化简:188 =.(09 天津 )32、计算18-8= ___________. (09 仙桃 )33、化简:38532 的结果为。

【三年中考】2010-2012全国各地中考数学试题分类汇编第9章_二次根式(含答案)

【三年中考】2010-2012全国各地中考数学试题分类汇编第9章_二次根式(含答案)

考点: 二次根式有意义的条件。
分析: 根据二次根式中的被开方数必须是非负数,即可求解.
解答: 解:根据题意得:x﹣2≥0,解得:x≥2.
故选D.
点评: 本题考查的知识点为:二次根式的被开方数是非负数.
14.(2012?广州)已知|a﹣1|+ =0,则a+b=( )
A.﹣8 B.﹣6 C.6 D.8
12.(2012?德阳)使代数式 有意义的x的取值范围是( )
A. x≥0 B. C. x≥0且 D. 一切实数
考点: 二次根式有意义的条件;分式有意义的条件。
分析: 根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.
解答: 解:由题意得:2x﹣1≠0,x≥0,
15.(2012贵州安顺)计算 的结果是( )
A. ±3 B. 3 C. ±3 D. 3
考点:立方根。
解答:解:∵33=27,
∴ =3.
故选D.
16.(2012?黔东南州)下列等式一定成立的是( )
A. B. C. D. =9
解析:A、 ﹣ =3﹣2=1,故选项错误;
∴ >0,a﹣ <0,
解得a>0且a< ,
∴0<a< ,
∴﹣ <﹣a<0,
∴2﹣ <2﹣a<2,
即2﹣ <b<2.
故答案为:2﹣ <b<2.
点评: 本题考查了二次根式有意义的条件,不等式的基本性质,先确定出a的取值范围是解题的关键.
4.(2012?丽水)写出一个比-3大的无理数是 .
B、化简成最简二次根式即可;
C、计算的是算术平方根,不是平方根;
D、利用分式的性质计算.

全国中考真题分类汇编10课考点1二次根式的概念和字母取值范围

全国中考真题分类汇编10课考点1二次根式的概念和字母取值范围

(2010湖北黄石)已知x <1,则12x -x 2+化简的结果是( )A .x -1B . x +1C . -x -1D .1-x【答案】D(2011山东烟台,5,412a -,则( )A .a <12 B . a ≤12 C . a >12 D . a ≥12【答案】B 10.(2011浙江杭州,1,3)下列各式中,正确的是( )A .3- B.3=- C3=± D3±10.(2012•德州)下列运算正确的是( )A .B . (﹣3)2=﹣9C . 2﹣3=8D . 20=03. (2011山东菏泽,4,3分)实数a 在数轴上的位置如图所示,化简后为A . 7B . -7C . 2a -15D . 无法确定【答案】A考点: 零指数幂;有理数的乘方;算术平方根;负整数指数幂。

专题: 计算题。

分析: 分别根据算术平方根、有理数的平方、负整数指数幂及0指数幂的运算法则进行计第2题图算即可.解答:解:A、∵22=4,∴=2,故本选项正确;B、(﹣3)2=9,故本选项错误;C、2﹣3==,故本选项错误;D、20=1,故本选项错误.故选A.点评:本题考查的是算术平方根、有理数的平方、负整数指数幂及0指数幂的运算,熟知以上运算法则是解答此题的关键.14.(2012•广州)已知|a﹣1|+=0,则a+b=()A.﹣8 B.﹣6 C.6 D.8考点:非负数的性质:算术平方根;非负数的性质:绝对值。

专题:常规题型。

分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,7+b=0,解得a=1,b=﹣7,所以,a+b=1+(﹣7)=﹣6.故选B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17. (2012湖北荆门)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27解析:∵与|x﹣y﹣3|互为相反数,∴+|x ﹣y ﹣3|=0, ∴,②﹣①得,y =12,把y =12代入②得,x ﹣12﹣3=0,解得x =15,∴x +y =12+15=27.故选D .5. (2011山东日照,15,4分)已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么x 2011-y 2011= .【答案】-2;18.(2012攀枝花)已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D . 以上答案均不对 考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系。

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编一、选择题1. (2021•甘肃省定西市)下列运算正确的是( ) A .+=3B .4﹣=4C .×=D .÷=42. (2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭( ) A. 0B. 1C. D.512- 3. (2021•湖南省衡阳市)下列计算正确的是( ) A .=±4B .(﹣2)0=1C .+=D .=34. (2021•株洲市) 计算:142-⨯=( ) A. 22-B. -2C. 2-D. 225. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .96. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣17. (2021•广东省)若22391240a a ab b -+-+=,则ab =() A .3B .92C .43D .98. (2021•广东省)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是()A .6B .210C .12D .9109(2021•湖北省恩施州)从,﹣,﹣这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .310. (2021•青海省)已知a ,b 是等腰三角形的两边长,且a ,b 满足+(2a +3b﹣13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或811. (2021•浙江省杭州)下列计算正确的是( ) A .=2B .=﹣2C .=±2D .=±212. (2021•浙江省湖州市)化简8的正确结果是.A .4B .±4C .22D .22±13. (2021•浙江省嘉兴市)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( ) A .x =﹣1B .x =+1C .x =3D .x =﹣14. (2021•湖北省荆门市)下列运算正确的是( ) A .(﹣x 3)2=x 5 B .=xC .(﹣x )2+x =x 3D .(﹣1+x )2=x 2﹣2x +115. (2021•重庆市B )下列计算中,正确的是( ) A .5﹣2=21 B .2+=2C .×=3D .÷=316. (2021•重庆市A )1472 ) A. 7B. 62C. 72D. 2717. (2021•襄阳市)3x +x 的取值范围是( ) A. 3x ≥-B. 3x ≥C. 3x ≤-D. 3x >-18. (2021•绥化市)01x +x 的取值范围是( )A. –1x >B. 1x ≥-且0x ≠C. 1x >-且0x ≠D. 0x ≠19. (2021•湖南省娄底市)2,5,m 22(3)(7)m m --( ) A. 210m - B. 102m -C. 10D. 4二.填空题1.(2021·安徽省)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等51,它介于整数n 和1n +之间,则n 的值是______. 2. (2021•湖北省黄冈市)式子在实数范围内有意义,则a 的取值范围是 a ≥﹣2 .3. (2021•江苏省连云港) 计算()25-=__________.4. (2021•江苏省南京市) 计算982-的结果是________. 5. (2021•宿迁市)若代数式22x +有意义,则x 的取值范围是____________. 6. (2021•山东省聊城市)计算:121882⎛⎫-⎪⎝⎭=_______. 7. (2021•上海市)已知43x +=,则x =___________.8. (2021•湖北省随州市)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (即有b dx a c<<,其中a ,b ,c ,d 为正整数),则b d a c ++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<,则使用两次“调日法”可得到2的近似分数为______.9. (2021•四川省达州市)已知a ,b 满足等式a 2+6a +9+=0,则a 2021b 2020= .10. (2021•四川省眉山市)观察下列等式:x 1===1+;x 2===1+;x 3===1+;…根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= . 11. (2021•遂宁市)若20a a b -++=,则b a =_____. 12. (2021•天津市)计算(101)(101)+-的结果等于_____. 13. (2021•青海省)观察下列各等式: ①; ②; ③;…根据以上规律,请写出第5个等式: . 14. (2021•山东省威海市)计算624455-⨯的结果是____________________. 15. (2021•贵州省铜仁市)计算()()271832+-=______________;三、解答题1. (2021•湖北省江汉油田)计算:03(32)4(236)812-⨯--+-+2. (2021•海南省)计算:23+|﹣3|÷3﹣×5﹣1;3. (2021•内蒙古通辽市)计算:()﹣1+(π﹣3)0﹣2cos30°+|3﹣|.答案一、选择题1.(2021•甘肃省定西市)下列运算正确的是()A.+=3B.4﹣=4C.×=D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项的计算错误;B、原式=3,所以B选项的计算错误;C、原式==,所以C选项的计算正确;D、原式===2,所以D选项的计算错误.故选:C.2.(2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭()A. 0B. 1C.D. 51 2 -【答案】C【解析】【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5151122⎛⎫++-⋅⎪⎪⎝⎭=5151 22 -+⋅=51 2 -=2.故选:C.3.(2021•湖南省衡阳市)下列计算正确的是()A.=±4B.(﹣2)0=1C.+=D.=3【分析】根据相关概念和公式求解,选出正确答案即可.【解答】解:16的算术平方根为4,即,故A不符合题意;根据公式a0=1(a≠0)可得(﹣2)0=1,故B符合题意;、无法运用加法运算化简,故,故C 不符合题意;,故D 不符合题意;故选:B .4. (2021•株洲市) 计算:142-⨯=( ) A. 22- B. -2C. 2-D. 22【答案】A5. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .9【分析】按照二次根式的乘法法则求解. 【解答】解:()2=4.故选:B . 6. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣1【分析】化简===2,再逐个选项判断即可. 【解答】解:===2,∵3﹣2+1=2,故A 符合题意; ∵3+2﹣1=4,故B 不符合题意; ∵3+2+1=6,故C 不符合题意; ∵3﹣2﹣1=0,故D 不符合题意. 故选:A .7. (2021•广东省)若22391240a a ab b -+,则ab =() A 3B .92C .43D .9【答案】B【解析】因为22391240a a ab b -+,且30a 2291240a ab b -+ 所以3=0a ()222912432320a ab b a b a b -+--=所以3a 3332a b ==33932ab ==,考查绝对值、二次根式的非负性。

专题03 二次根式-2022年中考数学真题分项汇编(第2期)试题及答案

专题03 二次根式-2022年中考数学真题分项汇编(第2期)试题及答案

专题03 二次根式一.选择题1.(2022·湖北武汉)下列各式计算正确的是( )A B .1=C =D 2=2.(2022·山东聊城)射击时,子弹射出枪口时的速度可用公式=v a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =⨯,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s ⨯B .20.810m /s ⨯C .2410⨯m /sD .28s 10m /⨯3.(2022·|2|cos45-⨯︒的结果,正确的是( )AB .C .D .24.(2022·山东青岛)计算 )A B .1 C D .35.(2022·黑龙江绥化)2x -在实数范围内有意义,则x 的取值范围是( ) A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠6.(2022·山东潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距,下列估算正确的是( )A .205<< B .2152<< C .12<<1 D 1>7.(2022·湖北恩施)函数y x 的取值范围是( )A .3x ≠B .3x ≥C .1x ≥-且3x ≠D .1x ≥-8.(2022· )A .B .3C .D .29.(2022·x 的取值范围是( ) A .1≥xB .1x >C .0x ≥D .0x >10.(2022·山东临沂)满足1m >的整数m 的值可能是( ) A .3B .2C .1D .011.(2021·) A .±3B .3C .±9D .912.(2022·四川广安)下列运算中,正确的是( )A .3a 2 +2a 2 =5a 4B .a 9÷a 3=a 3C D .(﹣3x 2)3=﹣27x 613.(2022·x 的取值范围是 A .x≥3B .x≤3C .x >3D .x <314.(2022·内蒙古呼和浩特)下列运算正确的是( )A 2=±B .222()m n m n +=+C .1211-=--x x x D .2229332-÷=-y x xy x y 15.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+ D 516.(2022·四川雅安)下列计算正确的是( ) A .32=6B .(﹣25)3=﹣85C.(﹣2a 2)2=2a 4D 17.(2022·湖南永州)下列各式正确的是( )A =B .020=C .321a a -=D .()224--=18.(2022·黑龙江绥化)下列计算中,结果正确的是( )A .22423x x x +=B .()325x x =C 2=-D 2±19.(2022·广西梧州)下列计算错误..的是( )A .358a a a ⋅=B .2363()a b a b =C .D .222()a b a b +=+20.(2022·江苏无锡)函数y x 的取值范围是( ) A .x >4 B .x <4 C .x≥4 D .x≤4二.填空题21.(2022·黑龙江牡丹江)若两个连续的整数a 、b 满足a b <<,则1ab的值为__________ .22.(2022·x 的取值范围是___________.23.(2022·___________.24.(2022·x 的取值范围是__________.25.(2022·.26.(2022·1x在实数范围内有意义,则x 的取值范围是___________.27.(2022·湖南长沙)则实数的取值范围是___________. 三.解答题28.(2022·黑龙江大庆)计算:02|(3)π⨯-+29.(2022·湖南郴州)计算:()12022112cos3013-⎛⎫--︒++ ⎪⎝⎭.30.(2022·江苏泰州)计算:(1) (2)按要求填空: 小王计算22142x x x --+的过程如下: 解:22142x x x --+()()()()()()21222222222x x x x x x x x x x =--------+-+-=---+-+-第一步第二步()()()()222222222x x x x x x x x x -------------+-------------+------------------+=第三步=第四步=第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .31.(2022·黑龙江齐齐哈尔)(1)计算: 211)2|tan 603-⎛⎫+++ ⎪⎝⎭(2)因式分解:3269x y x y xy -+32.(2022·12022-.33.(2022·湖南长沙)计算:1201|4|20353-⎛⎫-+-+ ⎪⎝⎭.34.(2022·1141602-⎛⎫- ⎪⎝⎭︒.35.(2022·广西贵港)(1)计算:()2112022tan 602π-⎛⎫-+--︒ ⎪⎝⎭;(2)解不等式组:250245132x x x -<⎧⎪⎨---≤⎪⎩①②36.(2022·四川广安)计算:)11122cos303-⎛⎫+︒- ⎪⎝⎭37.(2022·四川内江)(111|()|2cos 452-︒--;(2)先化简,再求值:(221a b a b a +-+)÷b b a-,其中ab.38.(2022·贵州遵义)(1)计算:112tan 4512-⎛⎫-︒+ ⎪⎝⎭(2)先化简221244244a a a a a a +⎛⎫+÷ ⎪--++⎝⎭,再求值,其中2a =.39.(2022·广东深圳)()1112cos 45.5π-⎛⎫-︒+ ⎪⎝⎭40.(2022·上海)计算:11221|()123--专题03 二次根式一.选择题1.(2022·湖北武汉)下列各式计算正确的是( )A B .1= C =D 2=【答案】C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、原计算错误,该选项不符合题意;CD 22==C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·山东聊城)射击时,子弹射出枪口时的速度可用公式=v a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =⨯,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s ⨯B .20.810m /s ⨯C .2410⨯m /sD .28s 10m /⨯ 【答案】D【分析】把a =5×105m/s 2,s =0.64m 代入公式v 再根据二次根式的性质化简即可.【详解】解:()2810m /s v =⨯,故选:D .【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(2022·|2|cos45-⨯︒的结果,正确的是( )A B .C .D .2【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.|2|cos45-⨯︒=2==B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.4.(2022·山东青岛)计算 )A B .1 C D .3【答案】B再合并即可.【详解】解:94321故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.5.(2022·黑龙江绥化)2x -在实数范围内有意义,则x 的取值范围是( ) A .1x >- B .1x - C .1x -且0x ≠ D .1x -且0x ≠【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可; 【详解】解:由题意得:x +1≥0且x ≠0, ∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键. 6.(2022·山东潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距,下列估算正确的是( )A .205<< B .2152<< C .12<<1 D 1>【答案】C【分析】用夹逼法估算无理数即可得出答案. 【详解】解:4<5<9,∴23,∴11<2,∴12<1,故选:C . 【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.7.(2022·湖北恩施)函数y x 的取值范围是( ) A .3x ≠ B .3x ≥ C .1x ≥-且3x ≠ D .1x ≥- 【答案】C【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解: ∴10,30x x +≥-≠,解得1x ≥-且3x ≠,故选C .【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键.8.(2022· )A.B .3C .D .2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为== 故选:A .【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.9.(2022·x 的取值范围是( ) A .1≥x B .1x >C .0x ≥D .0x >【答案】A0)进行计算即可.【详解】解:由题意得:x-,10∴,1x故选:A.0)是解题的关键.m>的整数m的值可能是()10.(2022·山东临沂)满足1A.3B.2C.1D.0【答案】A11的范围,再确定m的范围即可确定答案.【详解】3104<<,∴<,213m>,1011-,1m∴≥,故选:A.3【点睛】本题考查了绝对值的化简,无理数的估算和不等式的求解,熟练掌握知识点是解题的关键.11.(2021·)A.±3B.3C.±9D.9【答案】A【详解】解:,9的平方根是±3,±3,故选:A.【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.12.(2022·四川广安)下列运算中,正确的是()A.3a2 +2a2 =5a4B.a9÷a3=a3C D.(﹣3x2)3=﹣27x6【答案】D【分析】根据合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,逐项分析判断即可求解.【详解】解:A. 3a2 +2a2 =5 a 2,故该选项不正确,不符合题意;B. a9÷a3=a6,故该选项不正确,不符合题意;C. ≠D. (﹣3x2)3=﹣27x6,故该选项正确,符合题意;故选D【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,正确的计算是解题的关键.13.(2022·x 的取值范围是 A .x≥3 B .x≤3C .x >3D .x <3【答案】A【详解】解:由题意得30x -≥.解得x≥3,故选:A . 14.(2022·内蒙古呼和浩特)下列运算正确的是( )A 2=±B .222()m n m n +=+C .1211-=--x x x D .2229332-÷=-y x xy x y 【答案】D【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A.2=,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C.1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意,故选:D . 【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键. 15.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+ D 5【答案】D【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a +不能合并,故A 错误; B.633a a a ÷=,故B 错误;C.()2222a b a ab b +=++,故C 错误;5=,故D 正确; 故答案为:D .【点睛】本题考查合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键.16.(2022·四川雅安)下列计算正确的是( ) A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4 D【答案】D【分析】由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案. 【详解】解:239=,故A 不符合题意;328,5125故B 不符合题意; 22424,a a 故C 不符合题意;2333, 故D 符合题意;故选D【点睛】本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.17.(2022·湖南永州)下列各式正确的是( )A =B .020=C .321a a -=D .()224--=【答案】D【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.【详解】4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .2.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A【分析】由二次根式的性质,分别进行判断,即可得到答案. 【详解】2==,故A 正确,C 错误;2,故B 、D 错误;故选:A .3.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A2B3C 12为有理数D5故选:C4.(2021·江苏苏州市·中考真题)计算2的结果是()A B.3C.D.9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B.【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a=≥是解答此题的关键.5.(2021·甘肃武威市·中考真题)下列运算正确的是()A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.【详解】=A 错;=B 错;=C 正确;2=,故D 错.故选:C .6.(2021· )A .7B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;【详解】===故选:B .7.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.8.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2+=C =D 3= 【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C.=D. =故选:C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.9.(2021· )A .4B .4±C .D .±【分析】()0,0,a b a b=≥≥直接化简即可得到答案.【详解】==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.10.(2021·江苏苏州市·中考真题)已知点)A m,3,2B n⎛⎫⎪⎝⎭在一次函数21y x=+的图像上,则m与n 的大小关系是()A.m n>B.m n=C.m n<D.无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∵y随x的增大而增大.∵2<94,32<.∵m<n.故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.11.(2021·浙江台州市·之间的整数有()A.0个B.1个C.2个D.3个【分析】【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.13.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( ) A .2,1--B .1-,0C .0,1D .1,2 【答案】C【分析】1的范围即可得到答案.【详解】<<解:12,∴011,<-<∴==0,1,a b故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.二、填空题14.(2021·天津中考真题)计算1)的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】2=-=.1)19故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15.(2021·浙江丽水市·有意义,则x可取的一个数是__________.x≥)【答案】如4等(答案不唯一,3【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵有意义,∵x﹣3≥0,∵x≥3,∵x可取x≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.16.(2021·江苏连云港市·=__________. 【答案】5【分析】直接运用二次根式的性质解答即可.【详解】5.故填5.【点睛】()()00a a a a ⎧-⎪=⎨≥⎪⎩<成为解答本题的关键. 17.(2021·湖南衡阳市·有意义,则x 的取值范围是________.【答案】x ≥3【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,30x -≥,解得,x ≥3,故答案为:x ≥3.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18.(2021·浙江金华市·x 的取值范围是___.【答案】x 3≥.【详解】x 30x 3-≥⇒≥.19.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___. 【答案】1x 2≥【详解】 试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非在实数范围内有意义,必须12x 10x 2-≥⇒≥.20.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.三、解答题22.(2021·陕西中考真题)计算:0112⎛⎫-+ ⎪⎝⎭【答案】【分析】根据零次幂、算术平方根及二次根式的加减运算可直接进行求解.【详解】解:原式11=-=【点睛】本题主要考查零次幂、算术平方根及二次根式的加减运算,熟练掌握零次幂、算术平方根及二次根式的加减运算是解题的关键.23.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.【答案】﹣【分析】 根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.【详解】解:()020212tan 60π--︒=(12--=12-+=﹣.【点睛】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.24.(2021·四川眉山市·中考真题)计算:(10143tan 602-⎛⎫--︒--+ ⎪⎝⎭【答案】3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.【详解】解:原式=()132123--+=-+=【点睛】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.25.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+--,(112-⨯=31,=2.26.(2021·浙江台州市·中考真题)计算:|-2|【答案】【分析】先算绝对值,化简二次根式,再算加减法,即可求解.【详解】解:原式=2+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.27.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦=【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.28.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】 解:011(2021)()2cos 452π--+-︒,122=+-3=【点睛】 本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.29.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-. 【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.30.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221-- =3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.31.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x-⎛⎫+⋅ ⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解.【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.32.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=1142-+⨯=11-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.33.(2021·江苏苏州市·223--.【答案】-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.【详解】223-- 229=+-5=-.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.34.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭. 【答案】(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+⎪⎝⎭ =()a b a b ab++÷ =()ab a b a b+⨯+ =ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.35.(2021·四川自贡市·0|7|(2-+-.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.36.(2021·浙江丽水市·中考真题)计算:0|2021|(3)-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年中考试题分类汇编(二次根式)
一、选择题
1、(2007四川眉山)下列二次根式中与2是同类二次根式的是( ).D
A .12
B .23
C .3
2 D .18 2、(2007江苏无锡)
下面与是同类二次根式的是( )C
A
B
C
D
1
3、(2007
)C
A
B
C
D
4、(2007湖北宜宾)25的算术平方根是( )A
A .5
B . 5
C .–5
D .±5
5、(2007山东济宁)9的平方根是( ).C
A 、3
B 、-3
C 、±3
D 、81
6、(2007山东济宁)已知01b 2a =-++,那么2007)
b a (+的值为( ).A A 、-1 B 、1 C 、20073 D 、20073-
7.(2007湖南怀化)下列计算正确的是( )C
A .0(2)0-=
B .239-=- C
3= D
=8、(2007
x 的取值范围是( )B
A B . C . 3.2- D .10、(2007浙江绍兴)下列计算正确的是( )A
A .632=⨯
B .532=+
C .248=
D .224=-
11、(2007n 为( )D
A .2
B .3
C .4
D .5
12、(2007湖南邵阳)下列计算正确的是( )B
A =
B =
C 4=
D 3=-
第9题
二、填空题
1、(2007福建福州)当x ___________
在实数范围内有意义 ≥3
2、(2007
上海市)计算:2=__________.3
3、(2007
x 应满足的条件是
_____________.x ≥3
4、(2007辽宁旅顺口)如图,在数轴上,A B ,两点之间表示整数的点有
个.4 5、(2007
1-=_______.1
6、(2007江西)
的点的距离最近的整数点所表示的数是___________.2
7、(2007山东烟台)观察下列各式:
===请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________
(n + 8、(2007
湖南长沙)计算:=___________
三、解答题
1、(2007
浙江台州)计算:0(π1)+.
解:0(π1)11+=-=
2、(2007浙江嘉兴)计算:8+(-1)3-2×
22. 解:原式=22-1-2=2-
1
第4题。

相关文档
最新文档