数值分析 插值法
数值分析插值法

数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。
插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。
插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。
插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。
常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。
假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。
拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。
b.构造插值多项式L(x)。
c.计算L(x)在需要估计的插值点上的函数值f(x)。
2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。
差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。
最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。
牛顿插值法的步骤为:a.计算差商表的第一列。
b.计算差商表的其他列,直至最后一列。
c.根据差商表构造插值多项式N(x)。
数值分析2-3(牛顿插值法)差商和与牛顿插值

确定插值多项式的次数
根据已知数据点的数量确定插值多项式的最高次 数。
计算插值多项式
利用差商表,通过拉格朗日插值公式计算插值多 项式。
3
进行插值
将需要插值的x值代入插值多项式中,得到对应 的y值。
05
牛顿插值法的优缺点分析
优点
计算简单
局部性质好
相比于其他多项式插值方法,牛顿插 值法的计算过程相对简单,不需要求 解高阶方程,降低了计算的复杂度。
数值分析2-3:牛顿 插值法、差商和
目录
• 引言 • 牛顿插值法的基本概念 • 差商的计算方法 • 牛顿插值法的实现步骤 • 牛顿插值法的优缺点分析 • 实际应用案例 • 总结与展望
01
引言
主题简介
数值分析是数学的一个重要分支,主 要研究如何用数值方法解决各种数学 问题。
本章节将介绍牛顿插值法、差商和的 概念及其应用。
03
差商的计算方法
差商的递推公式
差商的递推公式
$f[x_0, x_1, ldots, x_n] = frac{f[x_1, ldots, x_n] - f[x_0, x_1, ldots, x_{n-1}]}{x_n - x_0}$
应用
通过递推公式,我们可以计算任意点之间的差商,从而得到插值多项式的导数。
在数据点附近,牛顿插值具有较好的 局部性质,能够提供较为准确的插值 结果。
适用性强
牛顿插值法适用于各种数据分布情况, 无论是线性还是非线性数据,都能得 到较好的插值结果。
缺点
全局误差较大
由于牛顿插值多项式的构造方式, 其全局误差通常较大,尤其是在 数据点较少的情况下。
对数据点敏感
如果数据点发生微小的变动,牛 顿插值多项式可能会发生较大的 变化,导致插值结果不稳定。
数值分析第五章插值法

数值分析第五章插值法插值法是数值分析中常用的一种数值逼近方法,它的目的是通过已知数据点之间的插值多项式来逼近未知数据点的函数值。
插值法可以在信号处理、图像处理、计算机图形学等领域中广泛应用。
在插值法中,最常用的方法有拉格朗日插值法和牛顿插值法。
拉格朗日插值法是一种利用拉格朗日插值多项式来逼近函数的方法。
对于n个已知数据点(xi, yi),拉格朗日插值多项式L(x)可以表示为:L(x) = ∑(yi * li(x))其中,li(x)表示拉格朗日基函数,定义为:li(x) = ∏[(x - xj)/(xi - xj)] (j≠i)可以证明,在给定的n个数据点上,拉格朗日插值多项式L(x)满足:L(xi) = yi牛顿插值法是另一种常用的插值方法,它利用差商的概念来逼近函数。
对于n个已知数据点(xi, yi),差商可以定义为:f[xi] = yif[xi, xi+1] = (f[xi+1] - f[xi]) / (xi+1 - xi)f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ...,xi+k-1]) / (xi+k - xi)通过差商的递归定义,可以得到牛顿插值多项式N(x)的表达式,其中:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...与拉格朗日插值法类似,牛顿插值多项式N(x)也满足:N(xi) = yi这两种插值方法都有自己的优点和缺点。
拉格朗日插值法简单易懂,计算量小,但当数据点较多时,多项式的次数会很高,容易出现龙格现象。
而牛顿插值法可以通过求差商一次次递推得到插值多项式,计算效率较高,且具备局部逼近性,不易出现龙格现象。
除了拉格朗日插值法和牛顿插值法,还有其他插值方法,如分段线性插值、样条插值等。
分段线性插值是利用线性多项式逼近函数,将数据点之间的区间分为若干段,每段内使用一条线性多项式进行插值。
数值分析 插值法

图形见图2-3. 称 lk ( x) 及 lk 1 ( x) 为线性插值基函数,
11
图2-3
12
பைடு நூலகம் 2.
n次插值多项式
根据插值的定义 Ln ( x) 应满足
Ln ( x j ) y j ( j 0,1, , n).
为构造 Ln ( x), 先定义 n 次插值基函数.
13
定义1 若 n 次多项式 L j ( x ) ( j 0,1, , n) 在 n 1 个节点
L1 ( xk 1 ) yk 1.
8
其几何意义就是通过两点( xk , yk ), ( xk 1 , yk 1 ) 的直线. 如图2-2.
图2-2
9
由 L1 ( x) 的几何意义可得到表达式
L1 ( x ) y k y k 1 y k ( x xk ) xk 1 xk
5
因为线性方程组的系数行列式
1 1 . . 1 xn ...
n xn
x0 x1
... ...
n x0 n x1
0
所以线性方程组 的解存在且唯一。
6
定理1
在次数不超过 n 的多项式集合 H n 中,满足条
件的
插值多项式 L ( x) H是存在唯一的. n n
7
2.3
1. 线性插值
拉格朗日插值
y
k 0
n
k
l k ( x ).
Ln ( x j ) yk lk ( x j ) y j
( j 0,1, , n).
称为拉格郎日(Lagrange)插值多项式 而线性插值与抛物线插值是 n=1 和 n=2 的特殊情形
若引入记号
数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析第2章插值法

0.32 0.34
0.34 0.32
0.330365.
截 断 误 差 为 :R1x
f
1
2!
2
x
M2 2
x
x0 x
x1 , 其 中 :
M2
max
x0 x x1
f x,f x sin x,f x
sin x,M2
sin x1
0.3335
R1 0.3367
sin0.3367
L1 0.3367
x a, b,插 值余 项Rn x
f x Ln x
f n1 n 1!
n1
x
,
其
中
a,
b,
与x有 关,n1x
n
x
k0
xk
.
n
性质: lk x 1. k0
5
例1、证明: ( xi x)2 li ( x) 0, 其中li ( x)是关于点x0 , x1 ,, x5的插值 i0
基 函 数.
2.2 拉格朗日插值
2.2.1、线性插值与抛物插值
1、 线 性 插 值 :
设 yk f xk , yk1 f xk1 , xk xk1 求 一 次 多 项 式 L1 x, 满 足 :L1 xk yk,L1 xk1 yk1
L1 x
yk
yk1 xk1
yk xk
x xk
求n次 插 值 多 项 式Ln x, 满 足 :Ln xi yi i 0,1,2,,n
Ln
x
n
lk
x
yk
k0
lk
xj
1,k j
kj 0,k j
j 0,1,2,,n
lk x
x
数值分析中的插值算法及其应用

数值分析中的插值算法及其应用数值分析是研究解决数学问题的数值方法的一门学科。
其中,插值算法是数值分析中重要的方法之一。
插值是指在给定一些数据点的情况下,用一些方法建立一个函数,该函数可以在给定区间内的任何一点上计算出函数值。
插值方法有很多种,其中比较常用的有拉格朗日插值法、牛顿插值法和埃尔米特插值法。
1. 拉格朗日插值法拉格朗日插值法是一种将一个多项式函数p(x)与一系列已知数据点相联系的方法。
假设给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),其中x1 < x2 < ... < xn,那么可以构造一个次数小于等于n-1的多项式函数p(x)满足p(xi) = yi,i=1,2,...,n。
设p(x)的表达式为:p(x) = Σyi li(x)其中,li(x)为拉格朗日基函数。
每个基函数都满足:li(xi) = 1, li(xj) = 0, j≠i基函数的表达式为:li(x) = Π[j≠i] (x - xj) / (xi - xj)利用拉格朗日插值法,可以在给定数据点的情况下,快速计算函数在其他点上的值。
2. 牛顿插值法牛顿插值法是一种利用差商的方法建立插值多项式的方法。
相比于拉格朗日插值法,牛顿插值法更注重于递推计算。
给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),牛顿插值法可以建立一个关于x的n次多项式。
首先,定义一个差商:f[xi] = yif[xi, xi+1, ..., xj] = (f[xi+1, ..., xj] - f[xi, ..., xj-1]) / (xj - xi)差商f[xi, xi+1, ..., xj]是由区间(xi, xj)内的函数值f(xi), f(xi+1), ..., f(xj)所计算得到的。
定义一个新的多项式qk(x),其中:qk(x) = f[x0, x1, ..., xk] + (x - xk) qk-1(x)其中q0(x) = f[x0]。
数值分析 插值法

1 1 1
x0 x1 xn
2 x0 2 x1
n x0 n x1
0 i j n
2 xn n xn
( x j xi ) 0
, an .
由克莱默法则知,方程组有唯一解 a0 , a1 ,
§2 Lagrange Polynomial
唯一性的另一证明 满足 P( xi ) yi , i 0, ... , n 的 n 阶插 值多项式是唯一存在的。
f (x)
(x0 ,y0)
(x1 ,y1)
P1(x)
x0
x1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
§2 Lagrange Polynomial
y1 y0 直线方程为: y y0 x x ( x x0 ) 1 0
记 P 1 ( x) L 1 ( x) ,上式等价变形为:
化简得到
L2 ( x ) l0 ( x ) y0 l1 ( x ) y1 l2 ( x ) y2 l i ( x ) yi .
i 3
成立:
l 0 ( x0 ) 1 l ( x ) 0 0 1 l 0 ( x 2 ) 0
l1 ( x 0 ) 0 l ( x ) 1 1 1 l1 ( x 2 ) 0
l 2 ( x0 ) 0 l ( x ) 0 2 1 l 2 ( x 2 ) 1
将以上思路推广到n+1个节点情形,即可得到类似的 插值基函数和插值多项式表示形式。
§2 Lagrange Polynomial
2-3 Lagrange插值多项式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章插值法2.在区间[-1,1]上分别取n=10,20用两组等距节点对龙哥函数f(x)=1/(1+25*x^2)做多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。
(1)多项式插值①先建立一个多项式插值的M-file;输入如下的命令(如牛顿插值公式):function [C,D]=newpoly(X,Y)n=length(X);D=zeros(n,n)D(:,1)=Y'for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)))m=length(C);C(m)= C(m)+D(k,k);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.2:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.2:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:③当n=20时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.1:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.1:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:(2)三次样条插值①先建立一个多项式插值的M-file;输入如下的命令:function S=csfit(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6;S(k+1,4)=Y(k+1);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.2:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:②当n=20时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.1:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:第三章函数逼近与快速傅里叶变换2.试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线,用图示数据曲线及相应的三种拟合曲线。
(1)、三次拟合曲线:命令如下:x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];y=[1.0 0.41 0.50 0.61 0.91 2.02 2.46];cc=polyfit(x,y,3);xx=x(1):0.1:x(length(x));yy=polyval(cc,xx);plot(xx,yy,'--');hold on;plot(x,y,'x');xlabel('x');ylabel('y');结果如图:(2)、4次拟合曲线输入命令:x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];y=[1.0 0.41 0.50 0.61 0.91 2.02 2.46];cc=polyfit(x,y,4);xx=x(1):0.1:x(length(x));yy=polyval(cc,xx);plot(xx,yy,'r');hold on;plot(x,y,'x');xlabel('x');ylabel('y');结果如图:(3)、另一个拟合曲线:新建一个M-file:输入如下命令:function [C,L]=lagran(x,y)w=length(x);n=w-1;L=zeros(w,w);for k=1:n+1V=1;for j=1:n+1if k~=jV=conv(V,poly(x(j)))/(x(k)-x(j));endendL(k,:)=V;endC=y*L在命令窗口中输入以下的命令:x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];y=[1.0 0.41 0.50 0.61 0.91 2.02 2.46];cc=polyfit(x,y,4);xx=x(1):0.1:x(length(x));yy=polyval(cc,xx);plot(xx,yy,'r');hold on;plot(x,y,'x');xlabel('x');ylabel('y');x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];y=[0.94 0.58 0.47 0.52 1.00 2.00 2.46]; %y中的值是根据上面两种拟合曲线而得到的估计数据,不是真实数据[C,L]=lagran(x,y);xx=0:0.01:1.0;yy=polyval(C,xx);hold onplot(xx,yy,'b',x,y,'.');第五章 解线性方程组的直接方法1.用LU 分解及列主元消去法解线性方程组12341070183 2.09999962 5.9000015151521031x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦输出Ax=b 中系数A=LU 分解的矩阵L 及U ,解向量x 及detA ;列主元法的行交换次序,解向量x 及detA ;比较两种方法所得的结果。
解:程序如下:clear;A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2]; B=[8;5.900001;5;1]; [L,U]=lu(A); X=U\(L\B) 输出的结果如下:求det (A ):输入:det(A);输出:列主元素消去法:程序如下:function X =Gauss(A, b)[n, m] = size(A);X = zeros(n, 1);temp = zeros(1, m);temp_b = 0;i = 1;for j = 1: (m - 1)if (A(i, j) ~= 0)for k = (i + 1):nif (A(k, j) ~= 0)temp = A(k, :) + A(i, :) * (-A(k, j) / A(i, j));temp_b = b(k) + b(i) * (-A(k, j) / A(i, j));A(k, :) = temp;b(k) = temp_b;endendendi = i + 1;end;Abdisp('det(A) is ...');x = det(A);disp(x);disp('cond(A) is ...');x = cond(A);disp(x);X(n) = b(n) / A(n, n);for i = (n - 1):-1:1temp_b = 0;for j = (i + 1):ntemp_b = temp_b + A(i, j) * X(j);endX(i) = (b(i) - temp_b) / A(i, i);endend输出结果为:A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2]第八章矩阵特征值的计算1.已知矩阵A=1078775658610975910⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,B=2345644567036780028900010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,=11/21/31/41/51/61/21/31/41/51/61/71/31/41/51/61/71/81/41/51/61/71/81/91/51/61/71/81/91/101/61/71/81/91/101/11⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)用MATLAB函数“eig”求矩阵全部特征值。