数值分析第2章插值法PPT课件

合集下载

2.5 Hermite插值多项式——数值分析课件PPT

2.5 Hermite插值多项式——数值分析课件PPT

m1x3 (m1 1)x2 2x 1.
令 m1 = 0,得到二次Hermite插值函数 P2(x) = −x2 + 2x + 1.
解 (2) 扩展牛顿法--用牛顿差商表构造Hermite插值
写成差商表的形式,将带导数的节点X0及其上的函数值重复 一遍,无导数的节点X1不重复,即
x f(x) 一阶
x1 x1
)2
]
y1[(
x
x1
)(
x x1
x0 x0
)2
]
注:我们知道,过 x0, x1 两点的Lagrange插值基函数为
l0 ( x)
x x1 x0 x1
, l1(x)
x x0 x1 x0
.
显然,
l0 (x0 )
x0
1
x1
, l1(x1)
x1
1
x0
.
于是,三次Hermite插值的基函数可表为
(a)设f ( x) C 2n1[a, b], f (2n2) ( x)于(a, b)存在,
( xi [a, b], i 0,1,, n, xi互异) (b)H2n1( x) 为Hermite插值多项式,

R2n1( x) f ( x) H 2n1( x)
f ( (2n2) )
(2n 2)!
插值条件:
H H
2n1
2 n1
( (
x x
i i
) )
yi yi
(i 0,1,, n)
(3)
定理1 如果 f ( x) C1[a, b]且已知 f ( x) 函数表及导数表, 则存在唯一次数不超过2n 1 次多项式 H2n1( x) 满足插值条件(3).

计算方法—插值法 (课堂PPT)

计算方法—插值法 (课堂PPT)

7
1 1
2 5
4 25
8 125
aa32
4
35
则,
解方程组得a0=10,a1=5,a2=-10,a3=2 即P3(x)=10+5x-10x2+2x3
当n=20,在109次/秒的计算机上计算需几万年!
.
2020/4/2
12
2.2 拉格朗日插值
2-2 线性插值与抛物插值
Chapter2 插值法
第二章 插 值 法
( Interpolation) 2.1 引言
2.2 拉格朗日插值
2.3 均差与牛顿插值公式
Chapter2 插值法
2.4 埃尔米特插值
2.5 分段低次插值
2.6 三次样条插值
.
2020/4/2
1
2.1 引言
Chapter2 插值法
表示两个变量x,y内在关系一般由函数式 y=f(x)表达。但在实际问题中的函数是多种多 样的,有下面两种情况:
几何意义:L2(x)为过三点(x0,y0), (x1,y1), (x2,y2)的抛物线。
方法:基函数法,构造基函数l0(x), l1(x), l2(x) (三个二次式)
使L2(x)= y0l0(x)+y1l1(x)+y2l2(x)满足插值条件。 6 4 4 4 4 4 4 7 4 4 4 4 4 48
.
2020/4/2
15
2.2 拉格朗日插值
Chapter2 插值法
问题的提法: 已知y=f(x)的函数表,x0, x1, x2为互异节
x x0 x1 x2 y y0 y1 y2
点,求一个次数不超过2的多项式 L2(x)=a0+a1x+a2x2 :L2(x0)=y0, L2(x1)=y1, L2(x2)=y2

数值分析 第2章 插值PPT课件

数值分析 第2章 插值PPT课件
1
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
2
§1 引 言
一、引例
已经测得在某处海洋不同深度处的水温如下:
深度(M) 466 741 950 1422 1634 水温(oC)7.04 4.28 3.40 2.54 2.13
定理
对于给定的互异节点 x0 … xn, 满足 插值条件 P n(xi)yi,i0 ,...,n的 n 阶插值 多项式Pn(x)存在且唯一。
插值多项式的构造:
插值多项式的存在唯一性说明,满足插值条件的 多项式存在,并且插值多项式与构造方法无关。
如何构造插值函数才能达到预期的效果呢?
15
一般插值多项式的构造方法
根据这些数据,希望合理地估计出其它深度(如 500米,600米,1000米…)处的水温.
这就是本章要讨论的“插值问题”
3
问题驱动:汽车的刹车距离
司机驾驶汽车时需要根据车速估计汽车的刹 车距离以确保行车安全。
图2.1.1 某车型干燥路况刹车距离示意图
4
美国的某司机培训课程的有如下驾驶规则:正常的驾 驶条件下对车与车之间的距离的要求是每小时10英里的速 率可以允许一辆车的跟随距离。实现这一规则的简便方法 就是 “2秒法则”:这种方法不管车速为多少,后车司机 从前车经过某一标志开始默数“一千零一,一千零二”, 这样用英文读完就是两秒。如果你在默数完这句话前就到 了同一标志处,那么你的车和前面的车靠得太近了。
x0nan x1nan
y0 y1
(2.2.2)
1 a0 xna1 xnnan yn
13

计算方法第二章ppt

计算方法第二章ppt

当方程组的系数矩阵为非奇异 矩阵(即满秩矩阵)时,高斯 消元法可求得唯一解。
列主元高斯消元法
列主元高斯消元法的 基本思想
在高斯消元法的基础上,每次选取列 中绝对值最大的元素作为主元进行消 元,以避免出现小主元导致的误差放 大问题。
列主元高斯消元法的 步骤
首先选取第一列中绝对值最大的元素 作为主元,通过行交换将其移到第一 行第一列位置,然后进行高斯消元。 在后续的消元过程中,每次均选取当 前列中绝对值最大的元素作为主元进 行消元。
100%
数值解法
通过计算机求解常微分方程的近 似解的方法,主要包括欧拉方法 和龙格-库塔方法等。
80%
离散化与步长
将连续的时间或空间域离散化, 取离散点上的函数值作为近似解 ,步长是相邻离散点间的距离。
欧拉方法
显式欧拉法
一种简单的数值解法,通过前 一步的函数值及其导数来推算 下一步的函数值。
隐式欧拉法
通过求解一个非线性方程来得 到下一步的函数值,具有较高 的精度和稳定性。
改进欧拉法
结合显式欧拉法和隐式欧拉法 的优点,提高算法的精度和效 率。
龙格-库塔方法
龙格-库塔法基本思想
自适应步长龙格-库塔法
通过多步计算并利用泰勒级数展开式, 得到更高精度的近似解。
根据误差估计自动调整步长,实现精 度和计算效率的动态平衡。
标准四阶龙格-库塔法
一种常用的高精度数值解法,具有局 部截断误差为$O(h^5)$的优点。
常微分方程数值解法误差分析
局部截断误差
数值解法在单步计算中所产生的误差,可以通过泰勒级数展开式进行估计。
全局误差
数值解法在整个计算过程中所产生的累积误差,与算法稳定性、步长选择等因素有关。

《数值分析》第二讲插值法PPT课件

《数值分析》第二讲插值法PPT课件

1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1

P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)

数值分析(第5版)第2章-插值法 ppt课件

数值分析(第5版)第2章-插值法  ppt课件


x4 94

1(x 5
4)
插值多项式为
1
1
L1( x)
y0l0 ( x) y1l1( x) 2
5
( x 9) 3 ( x 4) 5
2 ( x 9) 3 ( x 4) 1 ( x 6)
5
5
5
所以
7

L1 (7)

13 5

2.6
ppt课件
项式(2-2) 存在且唯一。证毕。
ppt课件
5
第二节 拉格朗日插值
一、基函数
考虑下面最简单`最基本的插值问题。求n 次多项 式 l i(x) (i=0,1, …, n),使其满足条件
0 , j i li ( xj ) 1, j i ( j 0,1, , n)
故可设
li ( x) A( x x0 )( x xi1 )( x xi1 )( x xn )
15
例2 求过点(1,2), (1,0), (3,6), (4,3)的三次插值多项式。
解 以 x0 1, x1 1, x2 3, x3 4 为节点的基函数
分别为:
l0
(
x)

( x 1)( x 3)( x 4) (1 1)(1 3)(1 4)

Pn(x)=a0+a1x+a2x2+...+anxn (2-2)
则由插值条件式Pn(xi)=yi (i=0,1, ..., n) 可得关于系数 a0 ,a1 , …,an的线性代数方程组
ppt课件
3

a0 a0

a1 x0 a1 x1

第2讲:插值法

第2讲:插值法
i 0
n
为满足条件 Ln ( xk ) yk , (k 0, 1, , n) 的 n 次Lagrange插值多项式,则对任意 x [a , b]
第二章:插值
数值分析

f ( n1) ( ) Rn ( x ) f ( x ) Ln ( x ) n1 ( x ) (n 1)!
p( x )
sin x
3 2
y
x
2
o

2

第二章:插值
数值分析
1、插值的基本概念
设函数 y f ( x) 在区间 a, b 有定义,且在已知点:
y0 , y1 , , yn a x0 x1 xn b 上的函数值为:
如果存在一个简单函数 y p( x) 使 yi p( xi )
0.330365
解:
第二章:插值
数值分析
f ( n1) ( ) 由 Rn ( x ) f ( x ) Ln ( x ) n1 ( x ) (n 1)! sin 得 R1 ( x ) ( x 0.32)( x 0.34) 2
| sin | | 0.3367 0.32 || 0.3367 0.34 | 于是 | R1 (0.3367) | 2 sin0.34 0.0167 0.0033 0.0000091892 34 2
0.330387
f ( n1) ( ) 由 Rn ( x ) f ( x ) Ln ( x ) n1 ( x ) (n 1)! sin ~ 得 R1 ( x ) ( x 0.34)( x 0.36) 2
第二章:插值
数值分析
于是
| sin | ~ | R1 (0.3367) | | 0.3367 0.34 || 0.3367 0.36 | 2 sin0.36 0.0033 0.0233 0.0000135431 7 2

《数值分析》课件-第2章

《数值分析》课件-第2章

(1)
则称ϕ (x)

f
(x)

Φ
中关于节点
{xi
}n i=0
的一个插值函数。
f (x) ——被插值函数; [a, b] ——插值区间;
{xi
}n i=0
——插值节点;
式(1)——插值条件.
2004-9-9
3
2 . 几何意义、内插法、外插法
M~
=
max{x
i
}n i =0
m~
=
min{x
i
}n i =0
2004-9-9
内插
x ∈[m~, M~ ]
外插 x ∈[a, b] but x ∉[m~, M~ ]
4
3. 多项式插值问题
对于不同的函数族Φ的选择,得到不同的插值 问题
当Φ为一些三角函数的多项式集合时:三角插值; 当Φ为一些有理分式集合时:有理插值; 当Φ为一些多项式集合时:多项式插值
{ } 特别的取 Φ = Pn =∆ span 1, x, x2 ,L, xn , 即
g
(t )
在区间
[a,
b]
上的
n
+
2
个互异零点:
x

{xi
}n i=0
当 g(t) 充分光滑时, g (n+1) (t) 在开区间 (a, b) 内至少存在一个零点ξ
g g
(n (n
+1) +1)
(t) =
(ξ ) =
f( 0
n+1)
(t
)

(n
+
1)!k
(
x)

k
(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(x) f(x) = y
上页 下2 页
2.1 引言
2.1.1 插值问题
设 y= f(x) 是区间[a , b] 上的一个实函数, xi ( i=0,
1, ... ,n)是[a,b]上n+1个互异实数,已知 y=f(x) 在 xi 的
值 yi=f(xi) (i=0,1,...,n), 求一个次数不超过n的多项式
上页 1下1 页
或用直线的两点式表示为:
L1(x)y0x x0 x x11y1x x1 x x00.

l0(x)x x0 x x 1 1, l1(x)x x1 x x0 0.
l l 则 称 : 0 ( x )叫 做 点 x 0的 一 次 插 值 基 函 数 1 ( x )为
点 x 1的 一 次 插 值 基 函 数
上页 下7 页
2.2 拉格朗日插值
2.2.1 基函数
考虑最简单、最基本的插值问题. 求n次插值多项式 l i(x) (i=0,1, …,n), 使其满足插值条件
Lagrange 法1736-1813
0, ji li(xj) 1, ji (j0,1, ,n ) 可知, 除 xi点外, 其余都是 li(x)的零点, 故可设 l i ( x ) A ( x x 0 ) (xx i 1)(xx i 1) ( x x n )
证 设所求的插值多项式为
Pn(x)=a0+a1x+a2x2+...+anxn
(5-2)
则由插值条件式Pn(xi)=yi (i=0,1, ..., n) 可得关于系数 a0 ,a1 , …,an的线性代数方程组
上页 下6 页
a0 a1x0 anx0n y0
a0
a1x1
anx1n
y1
(5-3)
(x x i 1 )(x x i 1 ) (xxn) (x i x i 1 )(x i x i 1 )(xixn)
(i0,1, ,n)
n
x xj
j0 xi x j
ji
称之为拉格朗日基函数, 都是n次多项式 。
上页 下9 页
n=1时的一次基函数为:
l0(x)x x0 x x 1 1, l1(x)x x1 x x0 0.
上页 下8 页
l i ( x ) A ( x x 0 ) (xx i 1)(xx i 1) ( x x n )
其中A为常数, 由li(xi)=1可得 A (x i x 0 ) (x i x i 1 ) 1 x i( x i 1 ) (x i x n )
li(x)((x x i x x0 0))
第2章 插 值 法
在工程技术与科学研究中,常会遇到函数表达 式过于复杂而不便于计算,且又需要计算众多点处 的函数值;或已知由实验(测量)得到的某一函数 y=f(x)在区间[a,b]中互异的n+1个xi ( i=0, 1, ... ,n)处 的值yi=f(xi) (i=0,1,...,n), 需要构造一个简单易算的 函数P(x)作为y=f(x)的近似表达式
y
1
l (x) 0
y
1
l (x) 1
O
x 0
x 1
x
Ox 0
xx 1
上页 1下0 页
此为两点线性插值问题
即已知函数 f(x)在点x0和x1点的函数值 y0=f(x0),y1=f(x1). 求线性函数
L(x)=a0+ a1x
使满足条件:
L(x0)=y0 , L(x1)=y1.
L(x)y0x y1 1 x y0 0(xx0)
插值基函数的特点:
x0
x1
l0
1
0
l0 1
l1
l1
0
1
x0
x1
上页 1下2 页
n=2时的二次基函数为 : l0(x)((xx 0 x x1 1))((x x0 xx 22 )), l1(x)((xx1 x x0 0))((x x1xx22)), l2(x)((xx2 x x0 0))((x x2xx11)).
Pn(x)使其满足
Pn(xi)=yi式插值问题.
上页 下3 页
其中Pn(x) 称为 f(x) 的n次插值多项式, f(x) 称为被插函 数, xi(i=0,1, ...,n)称为插值节点, (xi, yi) (i=0,1, … ,n) 称为 插值点, [a,b] 称为插值区间, 式(5-1)称为插值条件。
上页 1下3 页
2.2.2 拉格朗日插值多项式
利用拉格朗日基函数l i(x), 构造次数不超过n的多项式 n
L n (x ) y 0 l0 (x ) y 1 l1 (x ) y n ln (x )y ili(x )
i 0
可知其满足 L n (x j) y j j 0 ,1 , ,n
从几何意义来看,上 述问题就是要求一条多 项式曲线 y=Pn(x), 使它 通过已知的n+1个点 (xi,yi) (i=0,1, … ,n),并用 Pn(x)近似表示f(x).
上页 下4 页

P(x)=a0+a1x+a2x2+...+anxn
其中ai为实数,就称P(x) 为 插值多项式,相应的插 值法称为多项式插值,若P(x)为分段的多项式,就 称为分段插值,若P(x)为三角多项式,就称为三角插 值,本章只讨论插值多项式与分段插值。
y=f(x)≈P(x) ,
使得
P(xi)= f(xi) = yi (i=0,1, ..., n)
这类问题就称为插值问题, P(x)称为插值函数, P(x)一般取最简单又便于计算得函数。
上页 下1 页
P(x) f(x) f(x)
x0
x1
x2
x
x3
x4
使得 其它点
y=f(x)≈P(x) , P(xi)= f(xi) = yi (i=0,1, ..., n)
本章主要研究如何求出插值多项式,分段插值 函数,样条插值函数;讨论插值多项式P(x)的存在 唯一性、收敛些及误差估计等。
上页 下5 页
2.1.2 插值多项式的存在性和唯一性 定理1 设节点 xi (i=0,1, … ,n)互异, 则满足插值条件
Pn(xi)=yi (i=0,1, ..., n)的次数不超过n的多项 式存在且唯一.
a0 a1xn anxnn yn
此方程组有n+1个方程, n+1个未知数, 其系数行列式是
范德蒙(Vandermonde)行列式:
1 x0 x02 x0n
1 x1 x12 x1n (xj xi ) 0
ji
1 xn xn2 xnn 由克莱姆法则知方程组 (5-3) 的解存在唯一. 证毕。
相关文档
最新文档