最新初中数学图形的平移,对称与旋转的知识点总复习有答案
最新《轴对称、平移与旋转》全章复习与巩固--知识讲解(提高)

《轴对称、平移与旋转》全章复习与巩固--知识讲解(提高)【学习目标】1.了解轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用;4.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【知识网络】【要点梳理】要点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.要点诠释:(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.要点诠释:(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.要点二、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.要点诠释:图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.要点三、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.4.平移、轴对称、旋转三种变换的关系:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的.要点四、图形的全等1. 全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等图形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.2. 全等多边形(1)定义:能够完全重合的两个多边形叫做全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(2)性质:全等多边形的对应边相等,对应角相等.(3)判定:边、角分别对应相等的两个多边形全等.3. 全等三角形能够完全重合的两个三角形叫全等三角形.(1)全等三角形的性质全等三角形的对应边、对应角分别相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.(2)全等三角形的判定如果两个全等三角形的边、角分别对应相等,那么这两个全等三角形全等.【典型例题】类型一、平移变换1. 阅读理解题.(1)两条直线a,b相交于一点O,如图①,有两对不同的对顶角;(2)三条直线a,b,c相交于点O,如图②,则把直线平移成如图③所示的图形,可数出6对不同的对顶角;(3)四条直线a,b,c,d相交于一点O,如图④,用(2)的方法把直线c平移,可数出对不同的对顶角;(4)n条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角;(5)2013条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角.【思路点拨】(3)画出图形,根据图形得出即可;(4)根据以上能得出规律,有n(n-1)对不同的对顶角;(5)把n=2013代入求出即可.【答案与解析】解:(3)如图有12对不同的对顶角,故答案为:12.(4)有n(n-1)对不同的对顶角,故答案为:n(n-1);(5)把n=2013代入得:2013×(2013-1)=4050156,故答案为:4050156.【总结升华】本题考查了平移与对顶角的应用,关键是能根据题意得出规律.2.操作与探究:对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是-3,则点A′表示的数是________;若点B′表示的数是2,则点B表示的数是_____;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是__________.【思路点拨】(根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解;【答案】0;3;3 2 .【解析】解:点A′:-3×13+1=-1+1=0,设点B表示的数为a,则13a+1=2,解得a=3,设点E表示的数为b,则13b+1=b,解得b=32;故答案为:0;3;32.【总结升华】耐心细致的读懂题目信息是解答本题的关键.举一反三:【变式】如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移距离是边BC长的两倍,则图中四边形ACED的面积为()A.24cm2 B.36cm2 C.48cm2 D.无法确定【答案】B.四边形ABED是平行四边形且S四边形ABED=S四边形ACFD,而S四边形ACED=S四边形ABED-S△ABC.类型二、旋转变换3.正方形ABCD中对角线AC、BD相交于点O,E是AC上一点,F是OB上一点,且OE=OF,回答下列问题:(1)在图中1,可以通过平移、旋转、翻折中的哪一种方法,使△OAF变到△OBE的位置.请说出其变化过程.(2)指出图(1)中AF和BE之间的关系,并证明你的结论.(3)若点E、F分别运动到OB、OC的延长线上,且OE=OF(如图2),则(2)中的结论仍然成立吗?若成立,请证明你的结论;若不成立,请说明你的理由.【思路点拨】(1)根据图形特点即可得到答案;(2)延长AF交BE于M,根据正方形性质求出AB=BC,∠AOB=∠BOC,证△AOF≌△BOE,推出AF=BE,∠FAO=∠EBO,根据三角形内角和定理证出即可;(3)延长EB交AF于N,根据正方形性质推出∠ABD=∠ACB=45°,AB=BC,得到∠ABF=∠BCE,同法可证△ABF≌△BCE,推出AF=BE,∠F=∠E,∠FAB=∠EBC,得到∠E+∠FAB+∠BAO=90°即可.【答案与解析】解:(1)旋转,以点O为旋转中心,逆时针旋转90度.(2)图(1)中AF和BE之间的关系:AF=BE;AF⊥BE.证明:延长AF交BE于M,∵正方形ABCD,∴AC⊥BD,OA=OB,∴∠AOB=∠BOC=90°,在△AOF和△BOE中∴△AOF≌△BOE(SAS),∴AF=BE,∠FAO=∠EBO,∵∠EBO+∠OEB=90°,∴∠FAO+∠OEB=90°,∴∠AME=90°,∴AF⊥BE,即AF=BE,AF⊥BE.(3)成立;证明:延长EB交AF于N,∵正方形ABCD,∴∠ABD=∠ACB=45°,AB=BC,∵∠ABF+∠ABD=180°,∠BCE+∠ACB=180°,∴∠ABF=∠BCE,∵AB=BC,BF=CE,∴△ABF≌△BCE,∴AF=BE,∠F=∠E,∠FAB=∠EBC,∵∠F+∠FAB=∠ABD=45°,∴∠E+∠FAB=45°,∴∠E+∠FAB+∠BAO=45°+45°=90°,∴∠ANE=180°-90°=90°,∴AF⊥BE,即AF=BE,AF⊥BE.【总结升华】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,旋转的性质等知识点的连接和掌握,综合运用这些性质进行推理是解此题的关键.4. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.【思路点拨】(1)把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)根据正方形的性质得到AB=AD,∠BAF=∠EAD,又F是AD的中点,AE=12AB,则AE=AF,根据旋转的定义得到△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,于是有BF=DE.【答案与解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.【总结升华】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.举一反三:【变式】如下图,等边△ABC经过平移后成为△BDE,则其平移的方向是;平移的距离是;△ABC经过旋转后成为△BDE,则其旋转中心是;旋转角度是度.【答案】解:等边△ABC经过平移后成为△BDE,则其平移的方向是水平向右;平移的距离是AB或BD;△ABC经过旋转后成为△BDE,则其旋转中心是B;旋转角度是120度.类型三、轴对称变换5.现有如图①的瓷砖若干块.(l)用两块这样的瓷砖拼成一个长方形,使拼成的图案呈轴对称图形,请在图②的两个长方形中各画出一种拼法(要求两种拼法不同,所画图案中的阴影部分用斜线表示);(2)用四块如图①的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图③的三个正方形中各画出一种拼法,要求同(1);(3)在第(1)题中,请你计算用如图①的瓷砖拼成的所有长方形中,是轴对称图形的成功率是多少?【思路点拨】(1)根据用两块这样的瓷砖拼成一个长方形,使拼成的图案呈轴对称图形,利用轴对称图形的性质拼凑即可;(2)利用轴对称图形的性质拼凑即可;(3)根据所有是轴对称图形的个数,以及拼凑总数即可求出是轴对称图形的成功率.【答案与解析】解:(1)如图所示:(2)如图所示:(3)∵所有拼凑图形是16种,是轴对称图形的个数是4种,∴是轴对称图形的成功率为:41 164.【总结升华】此题考查了利用轴对称设计图案的知识,同时考查了学生的动手实践能力和逻辑思维能力.趣味性强,便于操作,是一道好题.举一反三:【变式】(2015秋•睢宁县期中)如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有()A.1个B.2个C.3个D.4个【答案】C.解:如图所示:蓝色正方形位置都能使此图形是轴对称图形,类型四、图形的全等6. (2016春•蓝田县期中)如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.【思路点拨】根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.【答案】C.【解析】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选C.【总结升华】本题考查的是全等图形的识别,主要根据全等图形的定义做题.。
图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。
●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。
●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。
●关键点:一般是图形的各顶点或线段的交点。
●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。
●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。
2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。
这个定点称为旋转中心,旋转的角度称为旋转角度。
●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。
●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。
为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。
●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。
3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。
●轴对称图形至少有一条对称轴。
●轴对称图形中每一组对称点到对称轴的距离相等。
●轴对称图形中对称点的连线与对称轴互相垂直。
●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。
专题28 轴对称、平移、旋转的核心知识点精讲(讲义)(全国通用)

专题28 轴对称、平移、旋转的核心知识点精讲1.理解轴对称图形与中心对称图形概念;2.掌握图形的平移的性质及有关计算;3.掌握图形的旋转性质并运用其性质进行有关的计算;4.掌握位似的性质。
考点1:轴对称图形与轴对称轴对称图形轴对称图 形定 义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性 质对应线段相等 AB =ACAB =A ′B ′,BC =B ′C ′,AC =A ′C ′对应角相等∠B =∠C∠A =∠A ′,∠B =∠B ′,∠C =∠C ′对应点所连的线段被对称轴垂直平分区 别 (1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言; (2)对称轴不一定只有一条 (1)轴对称是指两个图形的位置关系,必须涉及两个图形; (2)只有一条对称轴关 系(1)沿对称轴对折,两部分重合; (2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.考点2:图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.3.性质:1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.考点3:图形的旋转1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.考点4:中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形常见的中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.考点5:坐标变换的规律(1)P(a,b)关于x轴对称的点的坐标为(a,-b);(2)P(a,b)关于y轴对称的点的坐标为(-a,b);(3)P(a,b)关于原点对称的点的坐标为(-a,-b).【题型1:平移、旋转与轴对称的识别】【典例1】(2023•苏州)古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.【变式1-1】(2023•泰州)书法是我国特有的优秀传统文化,其中篆书具有象形特征,充满美感.下列“福”字的四种篆书图案中,可以看作轴对称图形的是()A.B.C.D.【变式1-2】(2023•广西)下列数学经典图形中,是中心对称图形的是()A.B.C.D.【变式1-3】(2023•宜昌)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是()A.B.C.D.【题型2:平移、旋转与轴对称性质的应用】【典例2】(2023•无锡)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α<55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于()A.80°B.85°C.90°D.95°【变式2-1】(2023•南充)如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是()A.2B.2.5C.3D.5【变式2-2】(2023•牡丹江)在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图①的方法折出一个正方形ABEF,然后把纸片展平;第二步:将图①中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图②.根据以上的操作,若AB=8,AD=12,则线段BM的长是()A.3B.C.2D.1【变式2-3】(2023•宁夏)如图,在△ABC中,∠BAC=90°,AB=AC,BC=2.点D在BC上,且BD:CD=1:3.连接AD,线段AD绕点A顺时针旋转90°得到线段AE,连接BE,DE.则△BDE的面积是()A.B.C.D.【题型3:图形变化与点坐标变化】【典例3】(2023•海南)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为(6,0),将△ABO绕着点B顺时针旋转60°,得到△DBC,则点C的坐标是()A.(3,3)B.(3,3)C.(6,3)D.(3,6)【变式3-1】(2023•金华)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是()A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称【变式3-2】(2023•青岛)如图,将线段AB先向左平移,使点B与原点O重合,再将所得线段绕原点旋转180°得到线段A′B′,则点A的对应点A′的坐标是()A.(2,﹣3)B.(﹣2,3)C.(3,﹣2)D.(﹣3,2)【变式3-3】(2023•聊城)如图,在直角坐标系中,△ABC各点坐标分别为A(﹣2,1),B(﹣1,3),C (﹣4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A2B2C2.若B2(2,1),则点A2坐标为()A.(1,5)B.(1,3)C.(5,3)D.(5,5)【变式3-4】(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1)B.(4,4)或(8,2)C.(4,4)D.(4,4)或(﹣4,﹣4)【题型4:与平移、旋转与轴对称相关的网格作图】【典例4】(2023•达州)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.【变式4-1】(2023•宜昌)如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为.【变式4-2】(2023•宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).【变式4-3】(2023•黑龙江)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).(1)将△ABC向上平移4个单位,再向右平移1个单位,得到△A1B1C1,请画出△A1B1C1;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)将△A2B2C2绕着原点O顺时针旋转90°,得到△A3B3C3,求线段A2C2在旋转过程中扫过的面积(结果保留π).一.选择题(共8小题)1.在学习图案与设计这一节课时,老师要求同学们利用图形变化设计图案,下列设计的图案中既是中心对称图形又是轴对称图形的是()A.B.C.D.2.在《生活中的平移现象》的数学讨论课上,小明和小红先将一块三角板描边得到△ABC,后沿着直尺BC 方向平移3cm,再描边得到到△DEF,连接AD.如图,经测量发现△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.22cm C.20cm D.24cm3.如图,△ABC与△A'B'C'关于直线l对称,连接AA',BB',CC',其中BB′分别交AC,A′C于点D,D',下列结论:①AA'∥BB';②∠ADB=∠A′D′B′;③直线l垂直平分AA';④直线AB与A'B'的交点不一定在直线l上.其中正确的是()A.①②③B.②③④C.①②④D.①③④4.如图,在长方形ABCD中,AB=5,BC=3,将长方形沿BE折叠,使得点A落在CD边上F处,则AE 的长是()A.B.C.D.25.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,若∠C′=45°,且AB′⊥BC于点E,则∠BAC的度数为()A.60°B.75°C.45°D.50°6.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为36,DE=2,则AF的长为()A.6B.C.8D.7.如图,Rt△ABC中,∠ACB=90°,BC=4,AC=3,将△ABC绕点B逆时针旋转得△A'BC',若点C'在AB上,则AA'的长为()A.B.4C.D.58.如图,在等腰△AOB中,OA=AB,∠OAB=120°,OA边在x轴上,将△AOB绕原点O逆时针旋转120°,得到△A'OB',若,则点A的对应点A'的坐标为()A.(﹣1,﹣1)B.(﹣1,)C.(﹣1,2)D.(﹣1,)二.填空题(共7小题)9.若点A(2,﹣3)关于坐标原点的对称点是B,则点B的坐标为.10.如图,已知四边形ABCD是长方形,点E、F分别在线段AB、CD上,将四边形AEFD沿EF翻折得到四边形A'EFD',若∠CFD'=36°,则∠DFE=.11.如图,将长为6,宽为4的长方形ABCD先向右平移2,再向下平移1,得到长方形A'B'CD',则阴影部分的面积为.12.线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.13.如图,有一块长方形区域,AD=2AB,现在其中修建两条长方形小路,每条小路的宽度均为1米,设AB边的长为x米,则图中空白区域的面积为.14.如图,在Rt△ABC中,∠BAC=30°,BC=3,将△ABC绕点A顺时针旋转90°得到△AB′C′,则BB′=.15.如图,在平面直角坐标系中,将点P(2,3)绕原点O旋转90°得到点P′,则点P′的坐标为.三.解答题(共3小题)16.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出A1的坐标;(2)求(1)中C点旋转到C1点所经过的路径长(结果保留π).17.如图所示,点O是等边△ABC内的任一点,连接OA,OB,OC,∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.(1)求∠DAO的度数;(2)用等式表示线段OA,OB,OC之间的数量关系,并证明.18.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当∠BDE=25°时,求∠BEF的度数.一.选择题(共7小题)1.如图,将长方形ABCO放置于平面直角坐标系中,点O与原点重合,点A,C分别在y轴和x轴上,点B(8,4),连接BO,并将△ABO沿BO翻折至长方形ABCO所在平面,点A的对称点为点E,则点E 的坐标为()A.B.C.D.2.如图,将周长为8的△ABC沿BC方向向右平移2个单位长度得到△DEF,则四边形ABFD的周长为()A.10B.12C.14D.163.如图,正方形ABCD,边长AB=2,对角线AC、BD相交于点O,将直角三角板的直角顶点放在点O处,三角板两边足够长,与BC、CD交于E、F两点,当三角板绕点O旋转时,线段EF的最小值为()A.1B.2C.D.24.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.B.C.D.5.如图,菱形ABCD,点A,B,C,D均在坐标轴上,∠ADC=120°,点A的坐标为(﹣4,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.4B.C.D.6.如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF 为交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①△PBE∽△QFG;②S△CEG=S+S四边形CDQH;③EC平分∠BEG;④EG2﹣CH2=GQ•GD,正确的是()△CBEA.①②③B.①③④C.①②④D.②③④7.如图,在矩形ABCD中,AB=8,BC=10,点E、F分别是边AB、BC上一动点,将△BEF沿EF折叠,若点B恰好落在AD边上的点G处,设EF=x,则x的取值范围为()A.B.C.D.二.填空题(共6小题)8.如图,在Rt△ABC中,∠ABC=90°,∠C=65°,将△ABC绕点B逆时针旋转至△EBD,使点C落在边AC上的D处,则∠EBA=.9.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=5,则BE的长度为.10.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使CD∥AB,则∠BAE的度数为.11.如图,在等边△ABC中,AB=6,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是.12.如图,正方形ABCD中,AB=4,点P为射线AD上一个动点.连接BP,把△ABP沿BP折叠,当点A 的对应点A'刚好落在线段BC的垂直平分线上时,AP的长为.13.如图,已知四边形ABCD是边长为4的正方形,点E是BC边的中点,连接DE,将△DCE沿DE翻折得到△DC'E,连接AC′,则AC′的长为.三.解答题(共2小题)14.如图,在△ABC中,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,连接AE.求证:AB=AE.15.[教材呈现]下面是华师版九年级上册数学教材第76页的部分内容.如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1,证明△AFD∽△DCE,并计算点A到直线DE的距离(结果保留根号).结合图①,完成解答过程.[拓展](1)在图①的基础上,延长线段AF交边CD于点G,如图②,则FG的长为;(2)如图③,E、F是矩形ABCD的边AB、CD上的点,连结EF,将矩形ABCD沿EF翻折,使点D 的对称点D'与点B重合,点A的对称点为点A'.若AB=4,AD=3,则EF的长为.1.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)2.(2023•自贡)下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(2023•天津)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD4.(2023•通辽)如图,将△ABC绕点A逆时针旋转到△ADE,旋转角为α(0°<α<180°),点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=24°,则旋转角α的度数为()A.24°B.28°C.48°D.66°5.(2023•黄石)如图,已知点A(1,0),B(4,m),若将线段AB平移至CD,其中点C(﹣2,1),D(a,n),则m﹣n的值为()A.﹣3B.﹣1C.1D.36.(2023•绍兴)在平面直角坐标系中,将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.(m﹣2,n﹣1)B.(m﹣2,n+1)C.(m+2,n﹣1)D.(m+2,n+1)7.(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB=60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是()A.96B.96C.192D.1608.(2022•张家界)如图所示的方格纸(1格长为一个单位长度)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2O2B2(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B绕点O旋转到点B2所经过的路径长(结果保留π).。
新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。
初中数学复习资料图形的平移旋转轴对称

图形的平移、旋转、轴对称[知识梳理]⒈知识结构及要点归纳:(1) 图形平移的基本要素及特点是什么?在平面内,将一个图形沿某个方向移动一定单位距离,这样的图形运动称为平移. 要素1:沿某一个方向移动;要素2:移动一定的单位距离.平移的特点:平移不改变图形的形状和大小.(2)图形平移的作图中应注意什么问题?因为图形经过平移后,对应点所连的线段平行,(或在同一条线上)且相等;对应线段平行(或在一条直线上)且相等;对应角相等.如图6-1所示,对应点所连的线段AD ∥BE ∥CF ,且AD=BE=CF ,BC ∥EF ,BC=EF .AC ∥DF ,AC=DF ;对应角的关系是∠ABC=∠DEF ,∠BCA=∠EFD ,∠GAB=∠FDE .所以在图形平移的作图中要注意以下几点:①首先确定图形中的关键点;②将这些关键点沿指定的方向移动指定的单位距离; ③然后连接对应的部分形成相应的图形.(3)图形旋转的基本要素及特点是什么?在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.要素1:绕一个定点(旋转中心)要素2:沿某个方向向旋转一定的角度.图形旋转的特点:旋转不改变图形的形状和大小.(4)图形旋转的作图中应注意什么问题?因为图形经过旋转后,对应点旋转的角度都相等,方向都相同,对应点到旋转中心的距离相等,且对应线段、对应角相等.如图所示,旋转中心与对应点所连的线段的关系是OA=OD ,OB=OE ,OC=OF ;对应线段的关系是AB=DE ,BC=EF ,CA=FD ;对应角的关系是∠ABC=∠DEF ,∠BCA=∠EFD ,∠CAB=∠FDE所以在图形旋转的作图中要注意以下几个问题:①首先确定旋转中心;②其次确定图形的关键点;③将这些关键点沿指定的方向旋转指定的角度;④然后连接对应的部分,形成相应的图形.(5)中心对称图形的基本要求是什么?他有什么特点?图6-1 图6-2中心对称图形是一种特殊的旋转对称图形.在平面内,将一个图形绕着中心旋转180°后能与自身重合,则这种图形叫做中心对称图形,这个中心叫做对称中心.要素1:绕一个定点(对称中心)要素2:旋转180°后与自身重合.中心对称图形的特点:图形绕着它自身的中心旋转180°后能与自身重合.(6)图形中心对称的作图中应注意什么问题?因为在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分.如图所示,AO=OA′,BO=OB′.CO=OC′,A、O、A′三点在同一直线上,B、O、B′三点在同一直线上,C、O、C′三点在一条直线上.反过来,如果两个图形的对称点连线的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.图6-3所以在图形中心对称的作图中要注意以下几点:①首先确定图形的对称中心;②其次确定图形的关键点;③作这些关键点关于对称中心的对称点;④最后连接对应的部分,形成相应的图形.(7)轴对称图形及图形的轴对称之间有哪些区别?如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就叫轴对称图形,这条直线叫做这个图形的对称轴.把一个图形沿着某条直线折叠,如果他能够与另一个图形重合,那么就说这两个图形关于这条直线对称(轴对称),这条直线就是对称轴.两图形中的对应点叫做关于这条直线的对称点.两者的区别是:轴对称图形是一个具有特殊性质的图形,而轴对称是说两个图形之间的位置关系.两者的联系是:若把轴对称的两个图形视为一个整体,则它就是一个轴对称图形;若把轴对称图形在对称轴两旁的部分视为两个图形,则这两个图形就形成轴对称的位置关系.(8)轴对称的性质是什么?①关于某直线对称的两个图形是全等的.②如果两个图形关于某条直线对称,那么对称轴是对应点连线段的垂直平分线.③两个图形关于某直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上.另外如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线成轴对称.线段、角、等腰三角形、矩形、菱形、正多边形及圆等都是常见的轴对称图形.2.中考考点研究本章的知识主要涉及七年级(下)第七章“生活中的轴对称”,八年级(上)第三章“图形的平移与旋转”八年级(下)第四章“相似图形”的部分内容,其中相似图形的部分内容在前边第五章中已复习到,另外还有八年级(上)第五章“位置的确定”及“等积变换”的内容,它们渗透与“空间与图形”的各章之中.“生活中的轴对称”、“位似图形”以及“图形的平移和旋转”等是新教材特有的内容,设置这些教学内容的目的,是使大家通过观察现实生活中的图形运动变化现象,自觉地进行数学思考,逐步形成正确的数学观,其意义是深远的.由此可见,本单元何等重要,它在以后的中考中,必将占有突出的位置,而且是命题的热点.由于在理解本单元的内容时,需要一定的直觉思维与辩证思维能力,所以有关的试题多属中、高档,具体来说有以下几点:(1)关于图形的对称变换①关于轴对称图形:有关这一考点的试题非常多,主要涉及轴对称图形及其对称轴的识别.②关于轴对称的性质与作图.主要考查能够按要求作出简单平面图形经过一次或几次轴对称后的图形,有关试题考查轴对称性质的问题情境常为纸片的折叠,而且着重探索基本图形如等腰三角形、矩形、菱形、正多边形、圆的轴对称相关性质.③关于现实生活中轴对称图形的欣赏(镜面对称)与利用轴对称进行图案设计.主要考查应用意识,多为容易题.(2)关于图形的平移变换①能够识别平移变换,探索它的变换规律.并能理解和运用“对应点所连接的线段平行且相等;对应线段平行且相等;对应角相等”的规律,会解答有关平移变换的证明或计算问题.②简单图形平移的作图.常常考查线段、角、三角形、特殊四边形的平移作图,有时综合其它知识如函数来考查.③关于现实生活中图形平移变换的欣赏和应用,会运用平移变换进行简单图案的设计.(3)关于图形的旋转变换①能够识别旋转变换(包括中心对称变换),探索它的变换规律,并能理解和运用“每对对应点与旋转中心的连线所能组成的角都是旋转角,对应点到旋转中心的距离都相等”的规律,会解答有关旋转变换的证明或计算问题.②简单图形旋转变换的作图.常考查线段、角、三角形、特殊四边形、圆、简单组合图形的旋转变换作图(包括中心对称变换)③关于现实生活中图形旋转变换(包括中心对称变换)的欣赏和应用,会运用旋转变换进行简单图案设计.(4)其它变换①图形的等积变换是指图形在变换中保持面积不变,实际上对称、平移、旋转变换都是全等变换,通过这些变换,图形的形状、大小和面均未改变.但实际上有些试题的设计所涉及的等积变换并非都是全等变换.②图形的相似与位似变换能运用相似或位似变换将一个图形放大或缩小而保持形状不变.③灵活运用平移,轴对称、旋转等变换的组合进行图案设计或构思计算和作图题.④图形与坐标,用坐标的方法研究图形的运动变换.在直角坐标系(或方格纸)中,研究图形的位置的各种变换,从而使变换后的图形中各点的坐标也在进行规律的变化,如在直角坐标系中,图形沿x轴向右(左)平移m个单位,则图形上每一点纵坐标不变,而横坐标都增加(减少)了m;图形沿y轴向上(下)平移n 个单位,则图形上每一点横坐标不变,而纵坐标都增加(减少)了n;图形关于x轴对称时,对应点的横坐标相同,纵坐标互为相反数;图形绕着某一点旋转时,图形上每一点到旋转中心的距离不变.总之图形的变换是《课标》中加强的部分,加强这部分内容的学习可进一步丰富对空间观念的认识和感受,体验在现实生活中的应用,发展空间观念,所以是中考的重要内容,题型很丰富,难度也不一致,各层次可能都有,有时也可能和其它知识综合出现在压轴题中,这类问题既考查学生分析、综合、概括、逻辑推理的能力,考查几何建模以及探究活动的能力,是学生展示个体思维的好平台,又考查了学生对几何与代数之间的联系、多角度、多层次综合运用数学知识、数学思想方法分析和解决问题的能力.复习备考时要注意以下几个方面的问题:(1)要重视巩固“知识梳理”中所涉及到的基本知识、基本规律、与基本技能.(2)要注意通过大量的观察、动手操作、团设计等实践活动进一步理解各种变换的内涵,去抓住各种图形变换的关键点.(3)要注意观察现实生活中图形变换的案例,认识和欣赏各种图形变换在现实生活中的应用.(4)要认真审题,注意观察图形在变换过程中那些元素是不变的,那些元素是变化的,怎么变的,从而抓住变化过程中的等量关系和变量关系,并特别关注一些不变量、不变关系或特殊关系,通过建立函数模型或方程模型来解题.。
中考数学总复习专项课件图形的对称平移与旋转

40
14.(2023·吉林)如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点B'.若点B'刚好落在边AC上,∠CB'E=30°,CE=3,则BC的长为 9 .
9
15.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).
(1)将△ABC向上平移4个单位长度,再向右平移1个单位长度,得到△A1B1C1,请画出△A1B1C1;
(2)请画出△ABC关于y轴对称的△A2B2C2.
16.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.
A
B
C
D
A
4.(2023·贵阳模拟)某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x轴、y轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( A )
A.(6,2)
B.(-6,-2)
C.(2,6)
11.如图,AO为∠BAC的平分线,且∠BAC=50°,将四边形ABOC绕点A逆时针旋转后,得到四边形AB'O'C',且∠OAC'=100°,则四边形ABOC旋转的度数是 75° .
12.在平面直角坐标系中,点(4,5)绕原点O逆时针旋转90°,得到的点的坐标是 (-5,4) .
75°
初中数学图形的平移,对称与旋转的知识点(1)
初中数学图形的平移,对称与旋转的知识点(1)一、选择题1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选B .2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B 2C 3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒ ∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.在Rt △ABC 中,∠BAC =90°,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在C ′的位置,C ′D 交AB 于点Q ,则BQ AQ的值为( ) A 2B 3C .22D 3【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD =DC =BD ,AC =AC′,∠ADC =∠ADC ′=45°,CD =C′D ,进而求出∠C 、∠B 的度数,求出其他角的度数,可得AQ =AC ,将BQ AQ 转化为BQ AC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A 作AE ⊥BC ,垂足为E ,∵∠ADC =45°,∴△ADE 是等腰直角三角形,即AE =DE =22AD , 在Rt △ABC 中,∵∠BAC =90°,AD 是△ABC 的中线,∴AD =CD =BD ,由折叠得:AC =AC ′,∠ADC =∠ADC ′=45°,CD =C ′D , ∴∠CDC ′=45°+45°=90°,∴∠DAC =∠DCA =(180°﹣45°)÷2=67.5°=∠C ′AD ,∴∠B =90°﹣∠C =∠CAE =22.5°,∠BQD =90°﹣∠B =∠C ′QA =67.5°,∴AC ′=AQ =AC ,由△AEC ∽△BDQ 得:BQ AC =BD AE , ∴BQ AQ =BQ AC =AD AE =2AE =2. 故选:A .【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.4.如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60︒得到线段AQ ,连接BQ .若6PA =,8PB =,10PC =,则四边形APBQ 的面积为( )A .2493+B .483+C .243+D .48183+【答案】A【解析】连结PQ ,先根据等边三角形的性质和旋转的性质证明△APQ 为等边三角形,则P Q=AP=6,再证明△APC ≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ 为直角三角形,再根据三角形面积公式求出面积,最后利用S 四边形APBQ =S △BPQ +S △APQ 即可解答.【详解】解:如图,连结PQ ,∵△ABC 为等边三角形,∴∠BAC=60°,AB=AC ,∵线段AP 绕点A 顺时针旋转60°得到线段AQ ,∴AP=PQ=6,∠PAQ=60°,∴△APQ 为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ ,∵在△APC 和△ABQ 中,AC=AB ,∠CAP=∠BAQ ,AP=AQ∴△APC ≌△AQB ,∴PC=QB=10,在△BPQ 中, PB 2=82=64,PQ 2=62=36,BQ 2=102=100,∴PB 2+PQ 2=BQ 2,∴△PBQ 为直角三角形,∴∠BPQ=90°,∴S 四边形APBQ =S △BPQ +S △APQ =12×6×8+3×62=24+93 故答案为A ..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.5.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.6.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.7.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x 轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A .(2018+6723,0)B .(2019+6733,0)C .(40352+6723,32) D .(2020+6743,0) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.8.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.9.下列四个交通标志图中,是轴对称图形的是( )A .B .C .D .【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.下列说法中正确的是( )①角平分线上任意一点到角的两边的线段长相等 ②角是轴对称图形③线段不是轴对称图形 ④矩形是轴对称图形A .①②③④B .①②③C .②④D .②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C .12.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD.【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD= 22AB AD+=22+=2,11故选:B.【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.13.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.14.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角∠三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三AOB角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A .正三角形B .正方形C .正五边形D .正六边形【答案】D【解析】【分析】 对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB 被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D .【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.15.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.16.如图,将ABC V 沿射线BC 方向平移2 cm 得到DEF V .若ABC V 的周长为13 cm ,则四边形ABFD 的周长为( )A .12 cmB .15 cmC .17 cmD .21 cm【答案】C【解析】【分析】 根据平移的特点得AD=BE=CF=2,将四边形ABFE 的周长分解为AB+BC+DF+AD+CF 的形式,其中AB+BC+DF=AB+BC+AC 为△ABC 的周长.【详解】∵△DEF 是△ABC 向右平移2个单位得到∴AD=CF=BE=2,AC=DF四边形ABFD 的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17故选:C .【点睛】本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.17.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.18.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.19.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.20.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.。
七年级数学平移和旋转的变换复习知识点总结
七年级数学平移和旋转的变换复习知识点
总结
本文档旨在回顾七年级数学中与平移和旋转变换相关的知识点,并提供简明扼要的总结。
以下是重要的知识点回顾:
平移变换
- 平移变换是指将一个图形在平面上按照一定的距离和方向移
动的变换。
- 平移变换的性质:
- 平移变换不改变图形的大小、形状和方向。
- 平移变换保持图形的各点之间的相对位置关系不变。
- 平移变换的示例:
- 将图形沿着横轴向右平移2个单位。
- 将图形沿着纵轴向上平移3个单位。
旋转变换
- 旋转变换是指将一个图形按照一定的角度绕着某个点旋转的变换。
- 旋转变换的性质:
- 旋转变换不改变图形的大小和形状。
- 旋转变换保持图形的各点之间的相对位置关系不变。
- 旋转变换的示例:
- 将图形绕着原点逆时针旋转90度。
- 将图形绕着任意点顺时针旋转180度。
这些是七年级数学中平移和旋转变换的基本知识点回顾。
通过掌握这些知识,你将能够更好地理解和应用平移和旋转变换。
请注意:本文档的内容仅为简要总结,不涉及详细的计算方法和具体题目。
如需更深入的研究,请参考相关教材和课堂讲义。
图形的平移,对称与旋转的知识点总复习
解:第一个图形不是轴对称图形,是中心对称图形;
第二、三个图形是轴对称图形,也是中心对称图形,
第四个图形不是轴对称图形,不是中心对称图形;
故选:B.
【点睛】
此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握
5.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为( )
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,
故选:C.
【点睛】
正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.
10.如图,圆柱形玻璃杯高为 ,底面周长为 ,在杯内壁离杯底 的点 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿 且与蜂蜜相对的 处,则蚂蚁从外壁 处走到内壁 处,至少爬多少厘米才能吃到蜂蜜()
故选C.
【点睛】
本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
2024年初中数学旋转平移对称知识点总结
一、旋转旋转是指将平面图形绕着一个确定的点旋转一定的角度,使原来的图形变为位置相对于原来的图形。
1.旋转的概念旋转是平面上一个点以另一个点为中心旋转一定角度所形成的点的运动。
2.旋转的主要要素旋转有三个主要要素:旋转中心、旋转方向和旋转角度。
3.旋转的性质(1)旋转是一个点分别以一个中心为圆心旋转,那么旋转时产生的点都在同一个圆上。
(2)旋转角度为360°时,即为一周。
4.旋转的表示方法以旋转中心为原点,建立直角坐标系,用点的坐标表示旋转的位置。
二、平移平移是指在平面上将一个图形全部向一个方向移动一定的距离,而不改变图形的形状和方向。
1.平移的概念平移是指一个图形的每一点都按照同一方向和距离进行移动。
2.平移的性质(1)平移前后的图形大小、形状和方向都是不变的。
(2)平移前后对应的两条线段是平行的。
(3)平移前后的两个点的距离保持不变。
3.平移的表示方法以平移向量作为平移的中心,以向量的始点为原点建立直角坐标系。
三、对称对称是指由一个物体通过中心对称轴或面对称面对折后,两侧对应点重合。
1.对称的概念对称是指图形按照其中一种规律以其中一线为中心分割成两个相同的部分。
2.对称图形的基本要素对称图形有三个基本要素:对称中心、对称轴和对称面。
3.对称的性质(1)对称图形的对称中心、对称轴或对称面所分割的部分是完全相同的。
(2)两个对称点的连线与对称轴或对称面垂直。
4.对称图形的表示方法对称图形可以通过对称中心、对称轴或对称面分析得出对称点的位置。
以上是对2024年初中数学中旋转、平移、对称知识点的总结。
这些知识点在初中数学中是非常重要和常见的,对于理解几何图形的变化和性质有很大帮助。
通过掌握这些知识点,可以更好地解决与旋转、平移和对称相关的数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学图形的平移,对称与旋转的知识点总复习有答案一、选择题1.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD ≌△A ′OD ′(SSS ),∵A (-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A .【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.2.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(4035233D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=, ∴2019673(123)20196733OC =+=+, ∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.3.下列图形中,是轴对称图形但不是中心对称图形的是( )A .等边三角形B .干行四边形C .正六边形D .圆【答案】A【解析】【分析】【详解】解: A 、是轴对称图形,不是中心对称图形,符合题意;B 、不是轴对称图形,是中心对称图形,不合题意;C 、是轴对称图形,也是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,不合题意.故选A .【点睛】本题考查中心对称图形;轴对称图形.4.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q 分别是BD,AB上的动点,则AP+PQ的最小值为()A.4 B.42C.2 D.22【答案】D【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴2.故选:D.【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.5.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.6.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π-B .33π+C .3338π-D .259π【解析】【分析】由旋转的性质可得△ACB≌△AED,∠DAB=40°,可得AD=AB=5,S△ACB=S△AED,根据图形可得S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC绕A逆时针方向旋转40°得到△ADE,∴△ACB≌△AED,∠DAB=40°,∴AD=AB=5,S△ACB=S△AED,∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B【解析】【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【详解】A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选B.8.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1 B.﹣7 C.1 D.7【答案】A【解析】【分析】∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴m-1=2,n+1+3=0,∴m=3,n=-4,∴m+n=3+(﹣4)=﹣1.故选A.【点睛】本题考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,纵坐标互为相反数,横坐标相等.9.如图,在边长为1522的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=55的点P的个数是()A.0 B.4 C.8 D.16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD 1522,∴15222=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴222210555EC CM+=+=∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.11.下列图形中,不一定是轴对称图形的是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.12.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A .向右平移1格,向下3格B .向右平移1格,向下4格C .向右平移2格,向下4格D .向右平移2格,向下3格【答案】C【解析】 分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可. 解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C .13.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:3y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.14.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4【答案】A【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 113故选A.考点: 1.旋转;2.勾股定理.15.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''+=+故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.16.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.17.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D 、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A .【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.下列图形中,是轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A 、B 、C 都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D 、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.。