2.1.3不等式的证明

合集下载

2.1等式性质与不等式性质(共2课时)课件-2024-2025学年高一上学期数学人教A版必修第一册

2.1等式性质与不等式性质(共2课时)课件-2024-2025学年高一上学期数学人教A版必修第一册

1 比较两数(式)的大小
目 录
01 新知探究
问题2你能用不等式或不等式组表示下列问题中的不等关系吗?
01 新知探究
问题2 常见的不等关系下列,你能用文字语言和符号语言表述吗?
文字 语言
大于
大于 等于
小于
小于 等于
至多
至少 不少于 不多于
符号 语言
>

<
≤≤
≥ ≥≤
问题3 在初中阶段如何比较两个实数的大小关系呢?
还有其他方法吗
A
B
C
-4 -3 -2 -1
0
1 2 3 4 5x
实数与数轴上的点一一对应,且从左到右依次增大。
01 新知1——比较两数(式)的大小
1.两实数大小关系的基本事实 作差法
B
A
b
x
A(B)
(b)
x
A
B
b
x
0是正数与负数的分界点,它为实数比较大小提供了“标杆”.
练一练
练一练
例 2.已知a≥1,试比较 M a 1 a
解 依题意,得50x+40y≤2 000,即5x+4y≤200.
例2.一个两位数,个位数字为x,十位数字为y,且这个两位数大于70, 用不等式表示为1_0_y_+__x_>_7_0____.
解 ∵该两位数可表示为10y+x,∴10y+x>70.
04 题型1-作差法比较大小
例3 比较2x2+5x+3与x2+4x+2的大小. 解 (2x2+5x+3)-(x2+4x+2)=x2+x+1=x+122+34. ∵x+122≥0, ∴x+122+34≥34>0. ∴(2x2+5x+3)-(x2+4x+2)>0,∴2x2+5x+3>x2+4x+2.

证明不等式的几种方法

证明不等式的几种方法

昭通学院学生毕业论文论文题目证明不等式的几种方法姓名学号 201103010128学院数学与统计学院专业数学教育指导教师2014年3月6日证明不等式的几种方法摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。

本文主要归纳了几种不等式证明的常用方法。

关键词:不等式; 证明; 方法 1.引言在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。

证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。

主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。

2.不等式证明的常用方法2.1 比较法比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。

具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式BA与1比较大小[]1。

差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则b a ≤.”其一般步骤为:1.作差:观察不等式左右两边构成的差式,将其看成一个整体。

2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。

其中变形是求差法的关键,配方和因式分解是经常使用的方法。

3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。

应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。

商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若ba1≤则b a ≤.”其一 般步骤为:1.作商:将左右两端作商。

2.变形:化简商式到最简形式。

3.判断:商与1的大小关系,就是判定商大于1还是小于1。

应用范围:当被证的不等式两端含有幂指数式时,一般使用商值比较法。

不等式与绝对值不等式的证明与推广积分应用

不等式与绝对值不等式的证明与推广积分应用

不等式与绝对值不等式的证明与推广积分应用不等式与绝对值不等式的证明与推广在数学中,不等式是一种数学语句,用于比较两个量的大小关系。

而绝对值不等式则是一种特殊的不等式形式,主要用于研究绝对值的性质。

本文将探讨不等式与绝对值不等式的证明方法,并展示它们在积分应用中的推广。

一、不等式的证明方法不等式的证明是数学推理的重要部分,通常有以下几种常见的证明方法。

1.1. 直接证明法直接证明法是最常见的证明方法。

我们通过推导和运算,利用已知条件和逻辑推理推导出不等式的结论。

例如,对于形如a > b的不等式,我们可以令c = a - b,然后通过运算得到c > 0的结果,证明a > b。

1.2. 反证法反证法是一种通过假设不等式的反面,然后证明其矛盾来得出结论的方法。

假设不等式的反面成立,然后推导出矛盾的结论,从而证明原不等式是正确的。

例如,对于形如a > b的不等式,我们可以假设a≤ b,然后通过运算得到矛盾的结果,从而证明a > b。

1.3. 数学归纳法数学归纳法是证明关于整数的不等式的有效方法。

它包括两个步骤:首先证明当n = 1时不等式成立,然后假设对于任意n,不等式都成立,再证明对于n + 1时不等式也成立。

通过这种递推的方式,可以证明不等式对于所有整数都成立。

二、绝对值不等式的证明方法绝对值不等式是一类特殊的不等式,其中含有绝对值符号。

在证明绝对值不等式时,我们通常利用绝对值的性质进行推导。

2.1. 基于定义的证明绝对值不等式的定义是:|a| ≤ b等价于 -b ≤ a ≤ b。

我们可以利用这个定义,根据不等式的特点进行推导,来证明绝对值不等式的成立。

2.2. 基于绝对值性质的证明绝对值具有非负性、可加性、三角不等式等性质,我们可以将这些性质应用于绝对值不等式的证明中。

例如,对于形如|a - b| ≥ c的不等式,我们可以利用绝对值的可加性和基本不等式来推导出结果。

三、不等式与绝对值不等式的推广积分应用不等式和绝对值不等式在积分应用中有着广泛的应用。

上海统编教材——2.1.3(1)不等式的性质

上海统编教材——2.1.3(1)不等式的性质
如果a>b乘以同一个正数,不等号 不改变方向;
不等式两边同时乘以同一个负数,不等号 改变方向。 同样地: 如果a b,c 0,则 a b ;
cc 如果a b,c 0,则 a b。
cc
证明:如果a+b>c,那么a>c-b;反之亦然.
将不等式中的任一项改变符号后,可以从 不等式的一边移到不等式的另一边.在研究 不等式时,移项常用于化简一个不等式.
性质4:如果a>b,c>d,那么a+c>b+d (同向相加)
说明:
这一性质可以推广到任意有限个同向不等 式两边分别相加.
即:两个或者更多个同向不等式两边分别 相加,所得不等式与原不等式同向。
例 已知a>b ,c>d ,求证:a-d>b-c
思考:较大的数的倒数是否一定比 较小的数的倒数大?
小结
2.不等式基本性质:
性质1: 设a、b 、c均为实数, (传递性)如果a>b , b>c,那么a>c
性质2: 设a、b 、c均为实数, (可加性)如果a>b,那么a+c>b+c
说明: 不等式两边同时加上(或同时减去)同一个实 数,不等号方向不变。
性质3: 设a、b 、c均为实数,
(可乘性)如果a>b,c>0,那么ac>bc ;
§2.1.3(1) 不等式的性质
1.等价关系(证明不等式性质的基础): (1) a>b a-b>0, (2) a=b a-b=0, (3) a<b a-b<0.
显然,对于任意给定的实数a、b, b>a a<b.
根据实数的大小关系,对任何给定的实数 a、b,或者a>b,或者a<b,或者a=b, 三者中有且仅有一种情况成立.

基本不等式 (课件)必修第一册湘教版数学

基本不等式 (课件)必修第一册湘教版数学

题型二 用基本不等式证明不等式
【例 2】 已知 a,b,c 为正数,且 a+b+c=1,证明:1a+1b+1c≥9. 证明 1a+b1+1c=a+ab+c+a+bb+c+a+bc+c=3+ba+ab+ac+ac+bc+bc ≥3+2+2+2=9. 当且仅当 a=b=c=13时,等号成立.
思维升华
即 ab>a,排除 D 项,故选 B.
法二
取 a=2,b=8,则
ab=4,a+2 b=5,所以 a<
a+b ab< 2 <b.
思维升华
利用基本不等式比较实数大小的注意事项 1.利用基本不等式比较大小,常常要注意观察其形式(和与积). 2.利用基本不等式时,一定要注意条件是否满足a>0,b>0.
【训练 1】 比较大小: xx2+2+21___≥_____2(填“>”“<”“≥”或“≤”). 解析 xx2+2+21= x2+1+ x21+1≥2,当且仅当 x2+1= x21+1.即 x=0 时,等 号成立.
在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或 恒等地变形配凑成适当的数、式,以便于利用基本不等式.
【训练 2】 已知 a,b,c 是全不相等的正实数,求证:b+ac-a+a+bc-b+
a+b-c c >3.
证明 因为a,b,c是全不相等的正实数,
所以ba与ab,ac与ac,bc与bc全不相等, 所以ba+ab>2,ac+ac>2,bc+bc>2, 三式相加得,ba+ac+bc+ab+ac+bc>6, 所以ba+ac-1+bc+ab-1+ac+bc-1>3, 即b+ac-a+a+bc-b+a+bc-c>3.
1.思考辨析,判断正误 (1)a+2 b≥ ab对任意实数 a,b 都成立.( × ) 提示 只有当 a≥0 且 b≥0 时,a+2 b≥ ab才能成立. (2)若 a>0,b>0 且 a≠b,则 a+b>2 ab.( √ ) (3)若 a>0,b>0,则 ab≤a+2 b2.( √ )

数学论文【不等式的证明方法】(汉)

数学论文【不等式的证明方法】(汉)

黔南民族师范学院(贵定分院)毕业论文题目:不等式的证明姓名:丁成义班级:12级数学(2)班学号:2012052206专业:数学教育指导教师:张大书日期:2015年2月26日2不等式的证明方法不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。

其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。

1.证明不等式的基本方法1.1比较法比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下:比差法。

主要依据是实数的运算性质与大小顺序关系。

即 ,0,0,0a b a b a b a b a b a b ->⇔>-<⇔<-=⇔=基本解题步骤是:作差——变形——判断符号。

(1)作商比较法。

当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。

当0b > 欲证a b >只需证1ab > 欲证a b <只需证1ab< 基本解题步骤是:作商——变形——判断。

(与1的大小)例1.求证: 222(2)5a b a b +≥--322224254250a b a b a b a b +≥--=>+-++≥22(44)(21)0a a b b -++++≥ 2,1a b ==-时等号成立。

所以222(2)5a b a b +≥--成立。

例2.已知,a b R +∈求证a b b a a b a b ≥证: ,a b R +∈又()a b a b b a a b aa b b -=∴()1a b b a a b a a b a b b-≥⇔≥ (1)当a b >时,1a b >,0a b ->所以()1a b ab -> (2)当a b <时01,a a b o b <<-<所以()1a b ab-> (3)当a b =时不等式取等号。

职高一年级 第二章 不等式

职高一年级 第二章 不等式

第二章《不等式》§2.1不等式的性质与证明一、高考要求:掌握不等式的性质、简单不等式的证明和重要不等式及其应用. 二、知识要点:1. 实数大小的基本性质: a-b >0⇔a >b; a-b =0⇔a =b; a-b <0⇔a <b.2. 不等式的性质:(1)传递性:如果a >b,b >c,则a >c;如果a <b,b <c,则a <c; (2)加法法则:如果a >b,则a+c >b+c;如果a >b,则a-c >b-c; (3)乘法法则:如果a >b,c >0,则ac >b c;如果a >b,c <0,则ac <b c; (4)移项法则:如果a+b >c ,则a >c-b;(5)同向不等式的加法法则:如果a >b 且c >d,则a+c >b+d;如果a <b 且c <d,则a+c <b+d; (6)两边都是正数的同向不等式的乘法法则:如果a >b >0,且c >d >0,则ac >b d. 3. 几个拓展的性质: a >b >0⇒a n >b n (n ∈N,n >1); a >b >0⇒n a >n b (n ∈N,n >1); a >b 且c >d ⇒a-d >b-c ; a >b >0,且c >d >0⇒cb d a >; a >b >0(或0>a >b)⇒ba 11<; 4. 重要不等式:(1) 整式形式: a 2+b 2≥2a b (a 、b ∈R ); a 2+b 2+c 2≥3a bc (a 、b 、c ∈R +);ab ≤22⎪⎭⎫ ⎝⎛+b a (a 、b ∈R); abc ≤33⎪⎭⎫ ⎝⎛++c b a (a 、b 、c ∈R +);(2) 根式形式:2b a +≥ab (a 、b ∈R +); 3c b a ++≥3abc (a 、b 、c ∈R +); (3) 分式形式:b a a b +≥2(a 、b 同号); c ab c a b ++≥3(a 、b 、c 同号);(4) 倒数形式:a a 1+≥2(a ∈R +); aa 1+≤-2(a ∈R -). 三、典型例题:例1:已知a >b,则不等式①a 2>b 2;②b a 11<;③ab a 11>-中不能成立的个数是( ) A.0个 B.1个 C.2个 D.3个 例2:证明不等式:(1)对∀实数a 、b,求证:22⎪⎭⎫⎝⎛+b a ≤222b a +; (2)求证:对∀正实数a 、b 、c,a+b+c ≥ca bc ab ++;(3)若p >0,q >0,p 3+q 3=2,试用反证法证明p+q ≤2; (4)对∀实数x 、y,求证:x 2+xy+y 2≥0; (5)对∀实数a 、b ∈R +,且a+b=1,求证:)11)(11(ba ++≥9.四、归纳小结:1.实数大小的基本性质反映了实数运算的性质和实数大小顺序之间的关系,是不等式证明和解不等式的主要依据.2.不等式证明的常用方法:(1)比较法常和配方法结合使用.用比较法证明的一般步骤是:作差→变形→判断符号;(2)综合法和分析法常结合使用.综合法就是“由因导果”,使用不等式的性质和已证明的不等式去直接推证;分析法就是“执果索因”,叙述的形式是:要证A,只要证B; (3)反证法的步骤:假设→推理→矛盾→原命题成立;3.在利用不等式求最大值或最小值时,要注意变量是否为正,和或积是否为定值,等号是否能成立.通过变形,使和或积为定值,是用不等式求最值的基本技巧. 五、基础知识训练: (一)选择题:1. (96高职-2)在下列命题中,是真命题的是( )A.x >y 和|x|>|y|互为充要条件B.x >y 和x 2>y 2互为充要条件C.a 2>b 2 (b ≠0)和2211ba >互为充要条件 D.b a 4131-<-和4a >3b 互为充要条件 2. (98高职-2)已知a >b,c ∈R,由此能推出下列不等式成立的是( )A.a+c >b-cB.ac >bcC.ac 2>bc 2D.a c2⋅>b c2⋅ 3. (99高职-2)如果ab >0且a >b,则有( )A.a 1>b 1 B.a 1<b1C.a 2>b 2D.a 2<b 2 4. (2001高职-4)“a <b <0”是“a 1>b1”成立的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件5. 不等式2>+abb a 成立的充要条件是( ) A.ab >0且a ≠b B.ab ≠0且a ≠b C.a >0,b >0且a ≠b D.a ≠1且b ≠1 6. (2003高职-2)已知x >2,则函数21-+=x x y 的最小值是( ) A.4 B.3 C.2 D.17. 不等式①a 2+2>2a;②a 2+b 2>2(a-b-1);③(a 2+b 2)(c 2+d 2)>(ac+bd)2中,恒成立的个数是( )A.0个B.1个C.2个D.3个 8. 若实数a 、b 、c 满足b+c=3a 2-4a+6,b-c=a 2-4a+4,则a 、b 、c 的大小关系是( ) A.b ≥c >a B.b >c >a C.b <c <a D.b <c ≤a 9. 若f(x)=3x 2-x+1,g(x)=2x 2+x-1,则f(x)与g(x)的大小关系是( )A.f(x)>g(x)B.f(x)=g(x)C.f(x)<g(x)D.随x 值变化而变化 10. 若a ≠2或b ≠-1,则M=a 2+b 2-4a+2b 的值与-5的大小关系是( )A.M >-5B.M <-5C.M=-5D.不能确定 11. 已知0<a <1,则aa 1、aa -、aa 的大小关系是( )A.aa 1>aa >aa- B.aa ->aa >aa 1 C.aa >aa 1>aa- D.aa->aa 1>a a12. 已知a <b <0,则下列不等式中不能成立的是( ) A.a 2>b 2 B.b a > C. b a 11> D. ab a 11>- 13. 设a 、b 是不相等的正数,则( )A.2222b a ab ba +<<+ B.2222b a b a ab +<+< C.2222b a b a ab +<+< D.2222ba ab b a +<<+ 14. 若0<x <1,0<y <1,且x ≠y,而x 2+y 2,x+y,2xy,xy 2中最大的一个是( ) A.2xy B.x+y C.xy 2 D.x 2+y 215. 若a 、b 为非零实数,则在①222b a +≥ab ;②22⎪⎭⎫⎝⎛+b a ≤222b a +;③2b a +≥b a ab +;④baa b +≥2中,恒成立的个数是( ) A.4个 B.3个 C.2个 D.1个 16. 设正数a,b 满足ab=4,则2a+3b 的最小值是( )A.12B.10C.64D.3417. 设a,b ∈R 且a+b=3,则b a 22+的最小值是( )A.6B.8C.24D.22 18. 若实数x,y 满足方程x+y-4=0,则x 2+y 2的最小值是( )A.4B.6C.8D.10 19. 令0<a <b,且a+b=1,则下列四数中最大的是( ) A.21B.aC.2abD.a 2+b 2 20. 设a 、b 是两实数,给出下列条件:①a+b >1;②a+b=2;③a+b >2;④a 2+b 2>2;⑤ab >1.其中能推出“a 、b 中至少有一个数大于1”的条件是( )A.②③B.①②③C.③④⑤D.③21. 下列命题中,(1)x x 1+的最小值是2;(2)1222++x x 的最小值是2;(3)4522++x x 的最小值是2;(4)xx 432--的最小值是2.正确命题的个数是( ) A.1个 B.2个 C.3个 D.4个 (二)填空题:22. 若x >y 且a >b,则在“①a-x >b-y ; ②a+x >b+y ; ③ax >by ;④x-b >y-a ; ⑤xby a >”这五个式子中恒成立的不等式的序号是 . 23. 已知三个不等式: ①ab >0;②bda c -<-;③bc >ad.以其中两个作为条件,余下的一个作为结论,则可以组成 个正确的命题.24. 以下四个不等式: ①a <0<b ;②b <a <0;③b <0<a ;④0<b <a.其中使ba 11<成立的充分条件有 .25. (99高职-17)已知x >0,函数xx y 432--=的最大值是 . 26. (2002高职-16)已知函数xx y 22+=,(x >0),则y 的最小值是 . (三)解答题: 27. (1)已知:1>x ,求294x x +的最小值;(2)已知:0<x ,求3364xx y +=的最大值.28. 已知:a 、b ∈R +,求证:2ba +≥ab .(要求用比较法、综合法、分析法、反证法分别证明)29. 若a 、b 、c ∈R +,且a+b+c=1,求证:(a 1-1)(b 1-1)(c1-1)≥8.六、综合能力提高: 30. 函数116-+=x x y (x >1)的最小值是 .31. 已知:R x ∈,求2322++=x x y 的最小值.§2.2一次不等式和不等式组的解法一、高考要求:熟练求不等式组的解集. 二、知识要点:1. 能直接表明未知数的取值范围的不等式叫做最简不等式,解集相等的不等式叫做同解不等式,一个不等式变为它的同解不等式的过程叫做同解变形.2. 一次不等式ax >b(a ≠0)的解法:当a >0时,解集是{a b x x >},用区间表示为(a b,+∞); 当a <0时,解集是{a b x x <},用区间表示为(-∞,ab).3. 不等式组的解集就是构成不等式组的各不等式解集的交集. 三、典型例题: 例1:解下列不等式(组):(1) (x-3)2(x-4)≥0. (2) ⎩⎨⎧-<+<-+65430)3)(1(2x x x x .四、归纳小结:一次不等式和不等式组的解法是解各种不等式(组)的基础.解不等式实际上就是利用数与式的运算法则,以及不等式的性质,对所给不等式进行同解变形,直到变形为最简不等式为止.五、基础知识训练: (一)选择题:1. 已知方程x 2+(m+2)x+m+5=0有两个正根,则实数m 的取值范围是( )A.m <-2B.m ≤-4C.m >-5D.-5<m ≤-4 2. 已知方程mx 2+(2m+1)x+m=0有两个不相等的实根,则实数m 的取值范围是( ) A.m <41-B.m >41-C.m ≥41-D.m >41-且m ≠0 (二)填空题: 3. 若关于x 的不等式组⎩⎨⎧>+->01a x ax 的解集不是空集,则实数a 的取值范围是 . (三)解答题: 4. 解不等式(组): (1)52(x-2)≤x-52 ⎪⎩⎪⎨⎧<->+<-06305201)2(x x x§2.3分式不等式的解法一、高考要求:会解线性分式不等式:0>++d cx b ax 或)0(0≠<++c dcx bax .二、知识要点:在分式的分母中含有未知数的不等式叫做分式不等式.线性分式不等式的一般形式为:0>++d cx b ax 或)0(0≠<++c dcx bax ,不等号也可以是“≥”或“≤”.三、典型例题: 例:解不等式:1523-+>-+x x x x .四、归纳小结:1. 分式不等式的求解可应用同解原理转化为整式不等式求解,常用的解法有: (1)转化为一次不等式组;(2)区间分析法.2. 解分式不等式的关键是利用除法运算的符号法则化成不等式组或用区间分析法. 注意:①不能按解分式方程的方法去分母;②不能忘记分母不能为零的限制. 五、基础知识训练: (一)选择题:1. 满足21<x 与31->x 的x 适合的条件是( ) A.2131<<x B. 21>x C. 31-<x D. 3121-<>x x 或2. 下列不等式中与xx --34≥0同解的是( )A.(x-4)(3-x)≥0B.43--x x≥0 C.)3(-x Ig ≤0 D.(x-4)(3-x)>03. 不等式1212>-+x x 的解集是( )A.{x|0≤x <3}B.{x|-2<x <3}C.{x|-6≤x <3}D.{x|x <-3或x >2} 4. 不等式1232+--x x x <0的解集是( ) A.{x|x <3} B.{x|1<x <3} C.{x|x <3或x ≠1} D.{x|x <3且x ≠1}5. 不等式2)1()3(2--+x x x ≤0的解集是( )A.{x|1≤x <2}B.{x|1<x <2或x=-3}C.{x|1≤x <2或x =-3}D.{x|1≤x ≤2或x=-3}6. 设a >b >c,则不等式cx b x a x ---))((≥0的解集是( )A.(-∞,c )∪[b,a )B.(c,b ]∪[a,+∞)C.(c,b]∪(b,a]D.(c,a]∪[b,+∞) (二)填空题: 7. 不等式1312>+-x x 的解集是 . 8. 不等式)3)(4()2()1(22x x x x --+-≥0的解集是 .9. 若不等式342+++x x ax ≥0的解集为{x|-3<x <-1或x ≥2},则a= . 10. b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据这个事实提炼一个不等式 .11. 设关于x 的不等式ax+b >0的解区间为(1,+∞),则关于x 的不等式0652<+--bax x x 的解区间为 . (三)解答题: 12. 解下列不等式: (1) 12+<x x (2) 110<-<xx六、综合能力提高: 13. 若不等式x 2+px+q <0的解集是{x|1<x <2},则不等式06522>--++x x qpx x 的解集是( ) A.(1,2) B.(-∞,-1)∪(6,+∞) C.(-1,1)∪(2,6) D.(-∞,-1)∪(1,2)∪(6,+∞)§2.4含有绝对值的不等式一、高考要求:熟练求绝对值不等式的解集. 二、知识要点:1. |x-a|(a ≥0)的几何意义是x 在数轴上的对应点到a 的对应点之间的距离.2. 不等式|x|≤a(a >0)的解集是{x|-a ≤x ≤a};不等式|x|>a(a >0)的解集是{x|x <-a 或x >a}.3. 不等式|ax+b|<c(c >0)的解集是{x|-c <ax+b <c},然后解这个一次不等式,求出原不等式的解集;不等式|ax+b|>c(c >0)的解集是{x|ax+b <-c 或ax+b >c},然后解这个一次不等式,求出原不等式的解集,即这两个一次不等式的解集的并集为原不等式的解集. 三、典型例题: 例:解下列不等式:(1) |x 2-3x|>4 (2) 1≤|2x-1|<5 (3) x+|x-1|<2四、归纳小结:解绝对值不等式时,应先了解基本绝对值不等式|x|<a 、|x|>a (a >0)的解法,并把含有绝对值的不等式转化为不含绝对值的不等式. 五、基础知识训练: (一)选择题:1. (2002高职-2)不等式|x-2|>1的解集是( )A.(1,3)B.(3,+∞)C.(-∞,1)D.(-∞,1)∪(3,+∞) 2. 不等式|2-3x|>5的解集是( )A.(-1,37) B.(37,+∞) C.(-1,+∞) D.(-∞,-1)∪(37,+∞) 3. 不等式|2-3x|≤21的解集是( )A.{x|21<x <65}B. {x|x <21或x >65}C. {x|x ≤21或x ≥65}D. {x|21≤x ≤65}4. 已知A={x 2+x ≥5},B={x x -3<2},则A ∪B 等于( )A.{x|x ≤7或x >1}B.{x| -7≤x <1}C.{x|x ∈R}D.{x|x ≤7或x ≥3} 5. 已知A={x 2-x <3},B={x 1-x >1},则A ∩B 等于( )A.{x|x <0或x >2}B.{x| -1<x <5}C.{x|-1<x <0}D.{x|-1<x <0或2<x <5} 6. 设ab >0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是( )A.①和②B.①和③C.①和④D.②和④7. 下面四个式子①|a-b|=|b-a|;②|a+b|+|a-b|≥2|a|;③a a =-2)(;④()b a +21>ab 中,成立的有( )A.①、②B.①、②、④C.①、②、③D.①、②、③、④ (二)填空题:8. (2001高职-14)若不等式|x-a|<b 的解集为{x|-3<x <9},则ba2log = . 9. 若{x||a-2x|>b,b >0}={x|x <-5或x >4},则a 2+b= . 10. 若x ∈Z,则不等式382<-x 的解集是 . (三)解答题:11. 设集合A={x||2x-1|≤3},B={x||x+2|<1},求集合C,使其同时满足下列三条件: (1)C ⊆[(A ∪B)∩Z];(2)C 中有三个元素;(3)C ∪B ≠Φ.12. 解下列不等式: (1) 3<322-x ≤7 (2)123-+x x ≥1六、综合能力提高: 13. 解下列不等式:(1) |3x-1|>x+3 (2) 42>++x x§2.5一元二次不等式的解法一、高考要求:熟练求一元二次不等式的解集.二、知识要点:三、典型例题:例1:求下列不等式的解集:(1)2x+3-x 2>0;(2)x(x+2)-1≥x(3-x);(3)x 2-32x+3>0;(4)x 2+6(x+3)>3;(5)3x 2+5≤3x.例2:m 是什么实数时,方程(m-1)x 2-mx+m=0有两个不相等的实数根?例3:已知ax 2+2x+c >0的解集为2131<<-x ,试求a 、c 的值,并解不等式-cx 2+2x-a >0.四、归纳小结:解一元二次不等式的方法主要有:(1)转化为一次不等式组;(2)区间分析法;(3)配方法;(4)利用二次函数的图象.五、基础知识训练:(一)选择题:1. (97高职-1)不等式x 2+2x+1>0的解集是( )A.ΦB.RC.{x|x= -1}D.{x|x ≠-1,x ∈R}2. 不等式(x 2-4x-5)(x 2+8)<0的解集是( )A.{x|-1<x <5}B.{x|x <-1或x >5}C.{x|0<x <5}D.{x|-1<x <0}3. 不等式ax 2+2x+c >0(a ≠0)的解集是空集的充要条件是( )A.a <0且b 2-4ac >0B.a <0且b 2-4ac <0C.a <0且b 2-4ac ≥0D.a <0且b 2-4ac ≤04. 下列不等式中,解集是空集的不等式是( )A.4x 2-20x+25>0B.2x 2-34x+6≤0C.3x 2-3x+1>0D.2x 2-2x+1<05. 若x 2-mx+1<0,则实系数m 的取值范围为( )A.m >2或m <-2B.-2<m <2C.m ≠±2D.m ∈R6. 若ax 2+5x+c >0的解集是}2131{<<x x ,则a+c 的值为( ) A.7 B.5 C.-5 D.-7(二)填空题:7. 已知不等式x 2+bx+c >0的解集为{x|x <3-或x >2},则b= ,c= .8. 已知(m+3)x 2+(2m-1)x+2(m-1)<0对任意x ∈R 都成立,则实系数m 的取值范围为 .(三)解答题:9. 设集合A={x|x 2-2x-8≥0, x ∈R},B={x|1-|x-a|>0, x,a ∈R},A ∩B=Φ,求a 的取值范围.10. 不等式(a 2-1)x 2-(a-1)x-1<0的解是全体实数,求实数a 的取值范围.11. 若函数y=x 2-(1+k)x-k+2的值域为非负实数,求实数k 的取值范围.12.若关于x的方程x2+(a2-9)x+a2-5a+6=0的一根小于0,另一根大于2,求实数a的取值范围.六、综合能力提高:13.已知不等式:①x2-4x+3<0;②x2-6x+8<0;③2x2-9x+m<0.要使同时满足①、②的x也满足③,则有( )A.m>9B.m=9C.m≤9D.0<m≤914.若关于x的方程3x2-5x+a=0的一根大于-2而小于0,另一根大于1而小于3,求实数a的取值范围.15.已知不等式ax2+bx+c>0的解集为0<α<x<β,求不等式cx2-bx+a>0的解集.§2.6不等式的应用一、高考要求:了解不等式或不等式组在解决实际问题中的应用,会列不等式或不等式组解简单的实际问题.二、知识要点:列不等式解应用题的主要步骤是:(1)设未知数;(2)根据题意,列出不等式(或不等式组);(3)解不等式(或不等式组);(4)检验结果是否符合实际,并作答.三、典型例题:例1:某渔业公司年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1) 该船捕捞几年开始盈利(即总收入减去总成本及所有费用为正值)?(2) 该船捕捞若干年后,处理方案有两种:①当年平均盈利达到最大值时,以26万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出,问哪一种方案较为合算?请说明理由.例2:某种商品,现在定价每件p 元,每月售货卖出n 件,因而现在每月售货总金额为np 元.设定价上涨x 成,卖出数量减少y 成,售货总金额变成现在的z 倍.(1) 用x 和y 表示z;(2) 设y=kx,其中k 是满足0<k <1的常数,利用k 来表示当售货总金额最大时的x 值;(3) 若x y 32,求使售货总金额有所增加时的x 的范围.四、归纳小结:应用不等式知识解应用题的关键是建立不等量关系.五、基础知识训练:(一)选择题:1. 某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( )A.x=2b a +B.x ≤2b a +C.x >2b a +D.x ≥2b a + (二)填空题:2. (97高职-19)设某型号的汽车在普通路面上的刹车距离S(米)与汽车车速x(千米/时)之间的关系是20005.02x x S +=,为了避免交通事故,规定该车的刹车距离不大于10米,则该车的车速不得超过 (千米/时).3. (98高职-23)1998年世界杯足球赛组委会决定以每张25美元的单价发行普通入场券,预计可发行80万张,如果定价每张提高1美元,发行量就减少2万张,欲使门票收入不低于2000万美元,则入场券的最高定价不超过 .(三)解答题:4. (2003高职-21)(本小题满分12分)某厂若以50元的价格销售一种产品,则可以销售8000件.如果这种产品的单价每增加1元,则销售量就将减少100件.为了使这种产品的销售收入不低于420000元,那么单价的取值范围应为多少?5. 工厂生产某种产品,每月固定成本10万元,而每件产品的变动成本为25元,产品销售单价为60元,若每月要获得最低利润3万元,求每月最少要销售多少件产品?6. 某地方政府为保护地方电子工业发展,决定对某一进口电子产品征收附加税,已知这种电子产品国内市场零售价每件250元,每年可销售40万件,若政府征收附加税率为每百元t 元时,则每年销售将减少58t 万件. (1) 将税金收入表示为征收附加税率的函数;(2) 若在该项经营中每年征收附加税金不低于600万元,那么政府征收附加税率应控制在什么范围内?。

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

A.x2>y2
B.ax>ay
C.x+5>y+5
D.x+2y>3y
【解析】 B选项中,当a=0时,ax=ay,故选项B不成立.
2.a、b、c 为实数,且 c≠0,下列命题中正确的是( D ) A.a>b⇒ac>bc B.ac<bc⇒a<b C.a>b⇒1a<1b D.a>b⇒ca2>cb2 【解析】 利用不等式的性质或举反例进行判断,取 a=2、b=-1、c=-1 来检验,对 A 有ac<bc,故 A 错;对 B 有 a>b,故 B 错;对 C 有a1>1b,故 C 错;对 D,∵ c≠0,∴ c12>0,由不等式的性质知,选项 D 正确.
【融会贯通】 比较大小. (1)( 2+ 3)2 与 4+2 6; (2)2x2+5x+6 与(x+3)(x+2),x∈R. 解:(1)∵( 2+ 3)2-(4+2 6)=(5+2 6)-(4+2 6)=1>0,∴( 2+ 3)2 >(4+2 6). (2)∵(2x2+5x+6)-(x+3)(x+2)=(2x2+5x+6)-(x2+5x+6)=x2≥0, ∴(2x2+5x+6)≥(x+3)(x+2).
2.1 不等式的基本性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.不等式的概念 用不等号“≠、>、<、≥、≤”表示不等关系的式子叫做不等 式.如:f(x)>g(x),f(x)≤g(x),等等.
知识点1 知识点2 知识点3 知识点4 知识点5
2.几个恒不等式 任意实数的平方不小于0,即a2≥0. 任意实数的绝对值不小于0,即|a|≥0.
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
【解析】 根据不等式的性质可知,a>3 且 b>3⇒a+b>6 成立,a>3 且 b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学学科教案设计(首页)
班级:课时:2 授课时间:年月日
课题:§2.1.3 不等式的证明目的要求:
理解均值定理,掌握利用不等式的性质、均值定理证明不等式的方法,并会利用均值定理求最值.
重点难点:
教学重点是理解均值定理,掌握求函数最值与证明不等式的方法. 教学难点是运用均值定理证明不等式及求最值.
教学方法及教具:
采用讲授法与讨论法相结合完成教学,多媒体设备辅助教学.
教学反思:
作业或思考题:
⑴读书部分:复习教材中§2.1.3;
(2)书面作业:修改课堂练习并完成学习手册第43-44页中强化练习1 —
6.。

相关文档
最新文档