六年级正比例和反比例知识点总结(共10篇)

合集下载

六年级下册正比例和反比例数学知识点

六年级下册正比例和反比例数学知识点

六年级下册正比例和反比例数学知识点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、正比例1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。

2. 应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

三、画一画正比例的图像是一条直线。

四、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:xy=k(一定)。

2. 判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。

五、观察与探究当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。

六、图形的放缩一幅图放大或缩小,只有按照相同的比来画,画的图才像。

七、比例尺1. 比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。

图上距离=实际距离比例尺实际距离=图上距离比例尺2. 比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。

根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

3. 比例尺的应用:(1)、已知比例尺和图上距离,求实际距离课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

正反比例六年级上册知识点

正反比例六年级上册知识点

正反比例六年级上册知识点正反比例是数学中的重要概念,它在我们日常生活中也有着广泛的应用。

在六年级上册的学习中,我们将接触到正反比例的相关知识。

本文将就正反比例的基本概念、性质以及解题方法进行详细介绍。

一、正反比例的基本概念正反比例是指两个量之间的变化关系,其中一个量的增大或减小,对应的另一个量也会按照相同的比例进行减小或增大。

正反比例通常以“倍数”来描述,也可以用分数来表示。

例如,小明每天骑自行车上学的时间是20分钟,而他的速度是每分钟骑行1公里。

我们可以发现,小明的骑车时间和他的速度成正反比例关系。

当小明的骑车时间增加到40分钟时,他的速度将会降低到每分钟的一半,即0.5公里。

二、正反比例的性质1. 存在一个常数k,使得两个量的比值始终相等。

即y/x=k,其中y和x分别代表两个量,k为常数。

2. 当一个量增加n倍时,另一个量也会按照相同的比例增加n 倍;当一个量减少n倍时,另一个量也会按照相同的比例减少n 倍。

三、正反比例的解题方法在解决正反比例问题时,可以运用如下两种方法。

1. 列表法通过列出两个量的对应关系列表,找出它们之间的规律,从而确定它们之间的关系是正反比例。

例如,我们可以列出小明速度与骑车时间的对应关系列表:骑车时间(分钟)速度(公里/分钟)20 140 0.560 0.3380 0.25从上面的列表中可以看出,骑车时间每增加20分钟,速度就减少一半。

因此,小明速度和骑车时间成反比例关系。

2. 公式法在一些情况下,我们可以通过建立数学模型来解决正反比例问题。

其中,y代表一个量,x代表另一个量,k为常数。

我们可以列出如下公式:y = k/x通过这个公式,我们可以根据已知条件求解未知量。

例如,当x=20分钟时,根据已知条件y=1公里/分钟,带入公式可以求得:1 = k/20通过解方程可得k=20。

这样,我们就可以基于公式计算其他未知量的数值。

综上所述,正反比例是六年级上册的重要知识点之一。

小学六年级比例知识点总结

小学六年级比例知识点总结

小学六年级比例知识点总结一、比例的基本性质: 1。

2。

成反比例的量,除了量的增减外,还有两种情况:一是一种量变化,引起另一种量的相应的变化,这时前后两种量的变化的比,等于后者同前者的比;二是两种量的前后两个数相除所得的商,等于它们的和同除以它们的差,即1: 4。

3。

成正比例的量,它们的比值是一定的,一般在0和1之间,其中最大的是一。

二、比例的基本性质:两种相关联的量,一种量变化,如果另一种量也随着它变化,那么这两种量的乘积就(扩大),这两种量的乘积就(缩小)。

3。

如果两个比相除又叫两个比的比值,表示这两个比相除的结果,这种说法不确切。

4。

比例的基本性质可归纳为以下几点:(1)比例中项必须是一个数,或者是一个数的比,两个外项互为倒数。

(2)比例两个外项的积等于两个内项积的。

(3)两个外项的积等于两个内项积的。

(4)比例的基本性质两边同时乘或除以相同的数( 0除外)比值不变,这与正比例、反比例的情形不同,而且0除外。

(5)两个外项的积等于两个内项积的,叫做两个外项互为倒数。

(6)如果两个外项的积等于两个内项积的,并且一个外项是另一个外项的倒数,那么这两个外项互为倒数。

(7)把比例的基本性质和正比例、反比例的基本性质结合起来,就可以写出比例的基本性质,用字母表示为: p:q=a3。

5。

比例的基本性质两边同时乘或除以一个相同的数(零除外)比值不变,这与反比例的情形类似,但是比例的基本性质中“比例的基本性质两边同时乘或除以相同的数(零除外)比值不变”是没有意义的,因为比例的基本性质的两边仍然可能分别是不相等的量,比值也可能分别是不相等的量,都满足不变性质,故本题错误。

(8)(简)设比例中两个外项的积为x,则x:(9)由比例的基本性质,可知当一个外项是另一个外项的(p÷q),且比例的两个外项的积为a时,比例的两边相等,即两个外项的积等于两个内项积的,这时,(a÷a)成反比例。

当a成比例时,比例的两边仍然相等,即两个外项的积不等于两个内项积的,即a与a成反比例。

苏教版六年级下册数学正比例与反比例知识整理

苏教版六年级下册数学正比例与反比例知识整理

苏教版六年级下册数学正比例和反比例1、变化的量包括(相关联的量)和(不相关联的量),我们主要研究相关联的量。

正比例和反比例都属于相关联的量。

2、变化的量有(表格)、(图像)、(关系式)三种表现形式。

3、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy = K (一定)。

4、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。

5、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。

6、用“描点法”可以得到正比例的图像。

反比例的图像是一条曲线。

7、两个相关联的量,两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述三种关系,这两个变量不成比例。

8、一个长方形,按1:2缩小,按2:1放大。

(提示孩子们注意比的前项)9、长方形的长、宽扩大N 倍,那面积就扩大N 2倍。

10、比例尺=图上距离实际距离11、比例尺通常有三种表示方法。

(1)数字式,用数字的比例式或分数式表示比例尺的大小。

例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。

(2)线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。

(3)文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一12、比例尺依据把实际距离缩小还是放大,可以分为:缩小比例尺和放大比例尺。

小学六年级数学正反比例

小学六年级数学正反比例

小学六年级数学正反比例一、什么是正反比例1、正比例:正比例是指两个变量之间的变化率是一致的,当其中一个变量增大时,另一个也会相应地增大,反之亦然。

两个值之间的正比例可以用y=ax+b (a>0)这样的函数表达出来。

2、反比例:反比例是指两个变量之间的变化率相反,当其中一个变量增大时,另一个会相应地减小,反之亦然。

反比例可以用y=a/x+b (a>0)的函数表示出来。

二、小学六年级数学中的正反比例1、小学六年级数学中常见的正反比例实例有:(1)时间与内容的正比例:学习的时间与学习的内容正比,也就是说,投入的时间越多,学习的内容就会比较多。

(2)距离与时间的反比例:一般来说,距离和所耗时间是反比例的。

也就是说,距离越大,耗费的时间也就越长。

(3)质量与价格的反比例:大家购买物品也是质量和价格是反比例的。

也就是说,质量越高,价格也就越高。

三、正反比例在小学六年级数学中的应用1、分数的反比例:比如有一个划分为两部分的数,其中一部分是原数的3分之一,另一部分是原数的2分之1,这就是表达反比例的例子,可以让学生掌握反比例的概念。

2、重量和体积的反比例:利用试管、称重的方式,让学生观察自己所得的试管中重量和体积的反比例关系,并且按照规律画出反比例的图像,总结出反比例特点,这样就可实现对正反比例的洞察和掌握。

3、面积与周长之间的正比例:通过画图测量形状的面积和周长,从中可以观察面积与周长之间的正比例关系,让学生把正反比例概念掌握其中,从而可以解决有关正反比例的问题。

4、实际问题求解:可以用折线图、比例图等形式来表示,在给定2个变量情况下,实现对反比例、正比例的概念掌握,从而解决实际问题,培养学生使用正反比例进行实际问题求解的能力。

六年级数学下册正比例和反比例知识点

六年级数学下册正比例和反比例知识点

六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。

好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。

反比例则是当两个量中的其中一个增加时,另一个会减少。

像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。

掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。

1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。

我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。

在学习正比例和反比例之前,我们要先打好基础。

回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。

买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。

这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。

比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。

再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。

明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。

2021年北师大版数学六下第四单元《正比例和反比例》章节知识点、达标训练附解析

2021年北师大版数学六下第四单元《正比例和反比例》章节知识点、达标训练附解析

北师大版数学六年级下册章节复习知识点、达标训练附解析第四单元《正比例和反比例》知识点一:变化的量1.相互关联的变量在一定条件下的变化是有规律的。

2.列表与画图都可以表示变量之间的变化关系。

分析表格时,要弄清两个变量及相对应的数据;分析图时,要弄清图中横轴、纵轴表示的量的名称,以及图中每一个点所对应的两个量的多少。

3. 一般用含有字母的式子表示有规律的变量的变化规律,应先根据题中的条件写出等量关系式,再将等量关系式用字母表示出来。

知识点二:正比例1.成正比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的比值一定。

2.如果用x和y表示两个相关联的量,用k(一定)表示它们的比值,正比例关系可以表示为=k(一定)。

3.判断两个量是否成正比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的比值;(3)最后,根据比值是否一定来判断这两个变量是否成正比例。

知识点三:正比例图像1.成正比例的两个量表示的各点在同一条直线上,即正比例图象的特征是一条直线。

2.从正比例图象中可以得出任意一点所表示的意义。

3. 观察正比例图象时,要先明确横轴、纵轴表示的意义,从图象中可以直观地看出两个量的变化情况,不需要计算,由一个量的值可以直接找到与它对应的另一个量的值。

知识点四:反比例1.成反比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的积一定。

2.如果用字母x和y表示两个相关联的量,用k(一定)表示它们的乘积,反比例关系可以表示为xy=k(一定)。

3.判断两个量是否成反比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的积;(3)最后,根据积是否一定来判断这两个变量是否成反比例。

六年级下册数学正比例、反比例知识梳理

六年级下册数学正比例、反比例知识梳理

六年级下册数学『正比例、反比例——知识梳理』一、正比例①概念:什么叫正比例?两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k(k一定)②例子:1.速度一定,路程和时间成正比例。

(路程÷时间=速度——速度一定)2.时间一定,路程和速度成正比例。

(路程÷速度=时间——时间一定3.长方形面积:面积一定,长和宽成反比例。

(长×宽=面积——面积一定)二.反比例①概念:什么叫反比例?两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。

这两种量叫做成反比例k=y*x(k一定)②例子:1.百米赛跑,路程100米不变,速度和时间成反比例。

(速度×时间=路程——路程/积一定)2.排队做操,总人数不变,排队的行数和每行的人数成反比例。

(排队的行数×每行=总人数——总人数/积一定)3.做纸盒子,总个数一定,每人做的个数和人数成反比例。

(个数×人数=总盒数——总盒数/积一定)六年级下册数学『正比例、反比例——知识梳理』一、正比例①概念:什么叫正比例?两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k(k一定)②例子:1.速度一定,路程和时间成正比例。

(路程÷时间=速度——速度一定)2.时间一定,路程和速度成正比例。

(路程÷速度=时间——时间一定3.长方形面积:面积一定,长和宽成反比例。

(长×宽=面积——面积一定)二.反比例①概念:什么叫反比例?两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。

这两种量叫做成反比例k=y*x(k一定)②例子:1.百米赛跑,路程100米不变,速度和时间成反比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级正比例和反比例知识点总结(共10篇) 反比例正比例知识点正比例和反比例判断正比例反比例的题正比例反比例应用题篇一:六年级下册正比例和反比例的知识点知识点:1变化的量:一种量变化,另一种量也随着变化。

2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。

A÷B=K(一定)除法关系A=K(一定) B3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。

5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇二:六年级下册正比例和反比例的知识点六年级下册第二单元知识点1变化的量:一种量变化,另一种量也随着变化。

2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。

A÷B=K(一定)除法关系3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。

5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离A=K(一定) B7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇三:正比例和反比例的意义知识点总结加典型例题正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。

用字母x和y表示两种相关联的量,用k表示一定的量,那么正比例关系可以写成:y?k?一定? x例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。

工总=工效(一定)工总和工时是成正比例的量工时路程=速度(一定)所以路程与时间成正比例。

时间(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用字母x和y表示两种相关联的量,用k表示一定的量,那么反比例关系可以写成:x×y=k(一定)例如,长×宽=面积(一定)长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定)每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。

(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。

知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。

(2)反比例关系的量是一条不过原点的曲线。

知识点四:正比例和反比例的判断(1)先判断两种量x和y是不是相关联的量,即一种量变化,另一种量也随着变化。

(2)若符合y?k?一定?,则x和y成正比例;若符合x×y=k(一定),则x和xy成反比例;否则,这两种量就不成比例关系。

【典型例题】题型一:根据图标填写信息例1 :购买面粉的重量和钱数如下表,根据表填空。

(1)随着()的变化而变化。

(2)与总价7.6元相对应的重量是()千克;与6千克相对应的总价是()元。

(3)总价与重量中相对应的两个数的比值所表示的意义是()。

(4)因为比值一定,所以表中总价和重量叫做成()的量。

题型二:根据关系式正比例反比例的判断例2:判断下面两种相关联的量成不成比例,如果成比例,成什么比例。

(1)瓷砖面积一定,瓷砖的块数和瓷砖的面积。

(2)铺地面积一定,每块砖的面积和所需块数。

(3)铺地面积一定,方砖的边长和所需块数。

(1)生产总时间一定,生产一个零件的时间和个数。

(2)生产一个零件的时间一定,生产零件的总时间和个数。

(1)圆的周长和半径。

(2)圆的周长一定,圆周率和直径。

(3)圆的面积和半径的平方。

例3:判断下面各题中的两种量成不成比例(在括号里填上“成正比例”或“不成正比例”)。

(1)正方形的面积和边长。

()(2)比的前项一定,比的后项和比值。

()(3)人的体重和身高。

()(4)每本书的单价一定,买书的本数与总价。

()(5)出粉率一定,小麦的重量和出粉重量。

()(6)正方体的体积和棱长。

()(7)产品合格率一定,产品合格数和产品总数。

()(8)工作时间一定,工作总量和工作效率。

()例4 :判断下面每题中的两种量成什么比例关系,并说明理由。

(1)每公顷施肥量一定,施肥总量与公顷数。

(2)每台织布机的每小时织布的米数一定,织布的总米数和所用的小时数。

(3)汽车行1千米的耗油量一定,汽车所行路程和总耗油量。

(4)同一辆汽车所行驶的路程和车轮转数。

例题9:判断下列各题的两种量是否成比例?如果成,成什么比例?(1)工作效率一定,工作时间和工作总量。

()(2)货物总数一定,每次运货吨数和运货次数。

()(3)路程一定,已走路程和剩下路程。

()(4)圆的半径和面积。

()(5)平行四边形的底和面积。

()(6)在太阳照射下,同时同地的竿高和影长。

()(7)煤的总量一定,每天烧煤量和可烧的天数。

()(8)a〃b=c,c一定,a和b。

()(9)分数值一定,分子和分母。

()(10)路程一定,车轮的直径和转动的周数。

()【巩固练习】(1)比例尺一定,图上距离与实际距离成()比例。

(2)圆的半径和面积()比例。

(3)三角形的高一定,它的面积和底成()比例。

(4)订阅《中国少年报》的钱数和份数成()比例。

(5)圆的直径和周长成()比例。

(6)差一定,被减数和减数()比例。

(7)圆锥的高一定,底面积和它的体积()比例。

(1)每公顷的施肥量一定,施肥总量与公顷数成( )比例。

(2)要修的路程一定,每天修的路程与天数成( )比例。

(3)肥料总数一定,每平方米施肥量和平方米成( )比例。

(4)钱的总数一定,铅笔数量和单价成( )比例。

(5)制造一批零件的个数一定,制造一个零件的时间和需要的总时间成( )比例。

A.成正比例B.成反比例C.不成比例(1)平行四边形的底一定,高和面积。

( )(2)积一定,一个因数与另一个数。

( )(3)一本书的页数一定,已看的页数和没看的页数。

( )(4)工作效率一定,工作总量和工作时间。

( )下面各题中的两种量是不是成比例,如果成比例,成什么比例,并说明理由。

1、每个小朋友分的饼干数一定,饼干数的总块数和分的人数。

篇四:正比例和反比例知识点正比例和反比例知识点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、正比例1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。

2. 应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

三、画一画正比例的图像是一条直线。

四、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

2. 判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。

五、观察与探究当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。

六、图形的放缩一幅图放大或缩小,只有按照相同的比来画,画的图才像。

七、比例尺1. 比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。

图上距离=实际距离×比例尺实际距离=图上距离÷比例尺2. 比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。

根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

3. 比例尺的应用:已知比例尺和图上距离,求实际距离比例尺=图上距离÷实际距离图上距离=实际距离×比例尺实际距离=图上距离÷比例尺篇五:第六单元正比例和反比例知识点第六单元正比例、反比例知识点比例的意义、性质及应用:比例的意义:表示两个比相等的式子叫作比例。

比例的意义的应用:根据比例的意义,可以判断两个比能不能组成比例。

两个比是否能组成比例,要看它们的比值是不是相等。

比例的基本性质:在比例里,两个内项的积等于两个外项的积。

比例的基本性质的应用:应用比例的基本性质,可以求比例中的未知项,这就是解比例。

正比例和反比例意义:1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫作成正比例的量,它们的关系叫作正比例关系。

关系式为:?k(一定)2.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫作成反比例的量,它们的关系叫作反比例关系。

关系式为:xy?k(一定)yx正比例和反比例关系的判断:1.正比例的判断:首先看是不是两种相关联的量;其次看:“一种量变化(变大),另一种量是不是也随着变化(变大)”、或“一种量变化(变小),另一种量是不是也随着变化(变小)”,也就是变化方向相同;最后看这种量中相对应的两个数的比值(也就是商)是不是一定,比值一定就是正比例,反之则不是。

相关文档
最新文档