第三章 力学量与算符

合集下载

第三章 力学量的算符汇总

第三章 力学量的算符汇总
Fˆn Fnn
其中Fn, ψn 分别称为算符 F的本征值和相应的本征态, 上式即是算符F的本征方程。求解时,ψ 作为力学量 的本征态或本征函数还要满足物理上对波函数的要求 即波函数的标准条件。
问题:本征值、本征态、本征方程
§3-3 算符的运算规则 线性厄米算符
(1)线性算符
满足如下运算规律的 算符 Ô 称为线性算符
第三章 力学量的算符
§3-1 算符的引入
代表对波函数进行某种运算或变换的符号
由于算符只是一种运算符号,所以它单独存 在是没有意义的,仅当它作用于波函数上,对波 函数做相应的运算才有意义,例如:
Ôu
换的算符。
1)du / dx = v , d / dx
n
综上所述,量子力学作如下假定:
就是算符,其作用 是对函数 u 微商, 故称为微商算符。
2)x u = v, x
也是算符。 它对 u 作用 是使 u 变成 v。
体系状态用坐标表象中的波函数 ψ(r) 描 写时,坐标 x 的算符就是其自身,即
xˆ x
说明力学量在自身表象中的算符形式最简单。
而动量 px 在坐标表象(非自身表象)中的形式 必须改造成动量算符形式:
(12) 厄米算符
满足如右关系的算符 称为厄密算符.
d *Oˆ d (Oˆ )*
或 Oˆ Oˆ
性质 I: 两个厄密算符之和 仍是厄密算符。
Ô + = Ô , Û+ = Û (Ô +Û)+ = Ô + + Û+ = (Ô +Û)
问题:厄米算符
性质 II: 两个厄密算符之积一般 不是厄密算符, 除非二算符对易。 因为
注意,算符运算没有相减,因为减可用加来代替。 Ô - Û = Ô + (-Û)。

第三章-表示力学量算符-习题答案

第三章-表示力学量算符-习题答案

第三章 量子力学中的力学量 1. 证明 厄米算符的平均值都是实数(在任意态)[证] 由厄米算符的定义**ˆˆ()F d F d ψψτψψτ=⎰⎰厄米算符ˆF的平均值 *ˆF Fd ψψτ=⎰ **ˆ[()]F d ψψτ=⎰ ***ˆ[]Fd ψψτ=⎰**ˆ[()]Fd ψψτ=⎰**ˆ[]F d ψψτ=⎰ *F =即厄米算符的平均值都是实数2. 判断下列等式是否正确(1)ˆˆˆHT U =+ (2)H T U =+(3)H E T U ==+[解]:(1)(2)正确 (3)错误因为动能,势能不同时确定,而它们的平均值却是同时确定 。

3. 设()x ψ归一化,{}k ϕ是ˆF的本征函数,且 ()()k kkx c x ψϕ=∑(1)试推导k C 表示式(2)求征力学量F 的()x ψ态平均值2k k kF c F =∑(3)说明2k c 的物理意义。

[解]:(1)给()x ψ左乘*()m x ϕ再对x 积分**()()()()mm k k k x x dx x c x dx ϕϕϕτϕ=⎰⎰*()()k m k kc x x dx ϕϕ=∑⎰因()x ψ是ˆF的本函,所以()x ψ具有正交归一性**()()()()mk m k k k kkx x dx c x x dx c mk c ϕψϕϕδ===∑∑⎰⎰ ()m k = *()()k m c x x dx ϕψ∴=⎰(2)k ϕ是ˆF 的本征函数,设其本征值为kF 则 ˆk k kF F ϕϕ= **ˆˆm k m k k kF F dx F c dx ψψψϕ==∑⎰⎰**()m mk k k kc x F c dx ϕϕ=∑∑⎰**m k kmkx mkc c F dϕϕ=∑⎰*m k k mk mkcc F δ=∑2k k kc F =∑即 2k k kF c F =∑(3)2k c 的物理意义;表示体系处在ψ态,在该态中测量力学量F ,得到本征值k F 的 几率为2k c 。

第3章 力学量用算符表达:习题解答

第3章 力学量用算符表达:习题解答

第3章 力学量用算符表达习题3.1 下列函数哪些是算符22dxd 的本征函数,其本征值是什么?①2x , ② x e , ③x sin , ④x cos 3, ⑤x x cos sin +解:①2)(222=x dxd∴ 2x 不是22dxd 的本征函数。

② x xe e dxd =22∴ xe 是22dxd 的本征函数,其对应的本征值为1。

③x x dx dx dxd sin )(cos )(sin 22-== ∴ 可见,x sin 是22dx d 的本征函数,其对应的本征值为-1。

④x x dx dx dxd cos 3)sin 3()cos 3(22-=-= ∴ x cos 3 是22dxd 的本征函数,其对应的本征值为-1。

⑤)cos (sin cos sin sin (cos )cos (sin 22x x xx x x dxd x x dx d +-=--=-=+) ∴ x x cos sin +是22dxd 的本征函数,其对应的本征值为-1。

3.2 一维谐振子处在基态t i x e t x ωαπαψ22022),(--=,求:(1)势能的平均值2221x V μω=; (2)动能的平均值μ22p T =.解:(1) ⎰∞∞--==dx e x x V x2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221 ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ⎰∞∞----=dx e dxd e x x22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα ][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=V E T 习题3.3 指出下列算符哪个是线性的,说明其理由。

量子力学讲义第三章讲义

量子力学讲义第三章讲义

第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。

ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。

为强调算符的特点,常常在算符的符号上方加一个“^”号。

但在不会引起误解的地方,也常把“^”略去。

二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。

例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。

2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。

3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。

ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。

一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。

5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。

若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。

若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。

例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。

力学量和算符

力学量和算符

第三章力学量和算符内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数。

用波函数描述粒子的运动状态。

本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。

然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。

我们将证实算符的运动方程中含有对易子,出现。

§3.1 力学量算符的引入§3.2 算符的运算规则§3.3 厄米算符的本征值和本征函数§3.4 连续谱本征函数§3.5 量子力学中力学量的测量§3.6 不确定关系§3.7 守恒与对称在量子力学中。

微观粒子的运动状态用波函数描述。

一旦给出了波函数,就确定了微观粒子的运动状态。

在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。

一般说来。

当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。

当给定描述这一运动状态的波函数后,力学量出现各种可能值的相应的概率就完全确定。

利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。

既然一切力学量的平均值原则上可由给出,而且这些平均值就是在所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。

力学量的平均值对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2(,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是:()2*(,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞∞-∞-∞==⎰⎰坐标r 的函数()f r 的平均值是:()()()*(,)(,) 3.1.2f r r t f r r t dr ψψ∞-∞=⎰现在讨论动量的平均值。

量子力学 第三章3.6算符与力学量的关系

量子力学 第三章3.6算符与力学量的关系

定 已归一)
ˆ F C d Fdx
2
ˆ 证明: F dx

C d


ˆ [( C ' ' d' )F ( C d )]dx
' ˆ = C ' C [ ' F dx ] dd
n
C 其中: n n dx ; C dx ;
C
n
2
2
2 n
C d 1 ;
2
C n 为在 ( x ) 态中测 F 得 n 的几率;
C d 为在 ( x ) 态中测 F 得 d 在范围内的
几率;
平均值公式: F
代表的力学量的 F 关系如何?这需引进新的假设,适 合于一般情况,且不能与假定2相抵触,应包含它。
ˆ (1)F的 n 平方可积 ˆ 若 F 是满足一定条件 (2)F的 级数收敛 的厄米算符, ˆ n 且它的正交归一的本征函数系 1 (x)、 2 ( x) … n ( x ) …
即:C ( x ) ( x )dx
(同理可得二、三维的结果)
可见: 力学量在一般的状态中没有确定值, 而有许多可能值, 这些可能值就是表示这个力学量算符的本征值的集合, 且每 个可能值都以确定的几率出现。
三、平均值公式 在 ( x ) 所描写的状态中,F 在 ( x )态的统计平均 值(由几率求平均值)为
ˆ F n C n ( x )F ( x )dx
2 n
dx 1 ) (假定
ˆ ( x )dx 代入完全性 证明: ( x )F

量子力学第三章算符

量子力学第三章算符

第三章 算符和力学量算符3.1 算符概述设某种运算把函数u 变为函数v ,用算符表示为:ˆFuv = (3.1-1) ˆF 称为算符。

u 与v 中的变量可能相同,也可能不同。

例如,11du v dx=,22xu v =3v =,(,)x t ϕ∞-∞,(,)x i p x hx edx C p t -=,则ddx,x dx ∞-∞⎰,x ip x he-⋅都是算符。

1.算符的一般运算(1)算符的相等:对于任意函数u ,若ˆˆFuGu =,则ˆˆG F =。

(2)算符的相加:对于任意函数u ,若ˆˆˆFuGu Mu +=,则ˆˆˆM F G =+。

算符的相加满足交换律。

(3)算符的相乘:对于任意函数u ,若ˆˆˆFFu Mu =,则ˆˆˆM GF =。

算符的相乘一般不满足交换律。

如果ˆˆˆˆFGGF =,则称ˆF 与ˆG 对易。

2.几种特殊算符 (1)单位算符对于任意涵数u ,若ˆIu=u ,则称ˆI 为单位算符。

ˆI 与1是等价的。

(2)线性算符对于任意函数u 与v ,若**1212ˆˆˆ()F C u C v C Fu C Fv +=+,则称ˆF 为反线性算符。

(3)逆算符对于任意函数u ,若ˆˆˆˆFG u G F u u ==则称ˆF 与ˆG 互为逆算符。

即1ˆˆG F -=,111ˆˆˆˆˆˆ,1FG FF F F ---===。

并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。

对于非齐次线性微分方程:ˆ()()Fux af x =,其中ˆF 为ddx与函数构成的线性算符,a 为常数。

其解u 可表示为对应齐次方程的通解u 。

与非齐次方程的特解υ之和,即0u u v =+。

因0ˆ0Fu =,所以不存在1ˆF -使100ˆˆF Fu u -=。

一般说来,在特解υ中应允许含有对应齐次方程的通解成分,但如果当a=0时,υ=0,则υ中将不含对应齐次方程的通解成分,这时存在1ˆF-使11ˆˆˆˆFFv FF v v --==,从而由ˆFvaf =得:1ˆF af υ-=。

量子力学--力学量用算符表示与表象变换 ppt课件

量子力学--力学量用算符表示与表象变换  ppt课件

ppt课件

4
2、算符的运算性质 (1)算符相等:
若 Aˆ Bˆ
★算符的运算离不开 对波函数的作用
对于任意的波函数都成立
则 Aˆ Bˆ
(特例:若I ,则I 称为单位算符)
(2)算符相加: (Aˆ Bˆ) Aˆ Bˆ
这是算符最基本的运算。
ppt课件
5
交Байду номын сангаас律和结合律:
Aˆ Bˆ Bˆ Aˆ Aˆ (Bˆ Cˆ) (Aˆ Bˆ) Cˆ
用在任意波函数上,看它们是否相等。
若相等,则对易;否则,不对易。
比如将要讨论的位置算符 x 和动量算符 pˆ x 的对易关系。
ppt课件
7
因为对任意波函数ψ :
xpˆ x
ix
d
dx

pˆ x x
i d dx
(x )
i( x d ) i ix d
dx
dx
那么
xpˆ x pˆ x x i
Hˆ pˆ 2 V (r) 2m
2 2 V (r) 2m
其中动量算符 pˆ i,

pˆ x
i x
又如前面引进的能量算符
Hˆ i 等 t
ppt课件
2
§3.1 算符的运算规则
1、算符的定义
表示运算的符号叫算符,又叫作用量

d, dx

, ( )*等
线性算符:
如果算符 Â 满足下列条件
Aˆ(c11 c2 2 ) c1Aˆ 1 c2 Aˆ 2
第三章 力学量用算符表示 与表象变换
前面我们学习了两个量子力学的基本原理
1)微观粒子体系的状态可以用波函数来表示;
2)描述微观粒子运动状态的方程是薛定谔方程;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、时间演化算符
定义 由
i
r , t H r , t t
r , t U t , t0 r , t0 U t , t0 是时间演化算符。
性质 (1)当 t t0 则 ( 2) ( 3)
U t , t0 1
U t , tU t, t U t , t , 1 U t, t0 U t0 , t
力学量与算符
3.2.2设算符 A、B 不可对易: A , B C ,但
A, C , B , C ,试证明Glauber公式:
e A B e A e B e
B
1 C 2
e B e Ae
1 C 2
A, e Ae
B
e B A C e B
Tr S AS TrA

1

Tr ABC Tr BCA Tr CAB

1

力学量与算符
4.几个重要的算符 一、幺正算符
A A1
性质 (1)本征值是模为1的虚数,本征函数正交; (2)两个幺正算符的乘积是幺正算符; (3)如果
A
是厄米算符,则
e
iA
是幺正算符;
(4)幺正算符所对应得矩阵一定是幺正的。
力学量与算符
3.3 算符的迹和行列式
一、算符的迹
则算符的迹为 TrA Aii i 2.性质 (1)算符的迹与表象无关,算符的迹等于 本征值之和, 1.定义 算符 A 在某个表象 ui 中的矩阵元为
Aij
Tr ABC Tr CAB Tr BCA ( 2)
力学量与算符
力学量与算符
(4) U t , t0 (5)当 不是厄米,但是幺正的; 不显含时间,
i H t t 0
H
U t , t0 e
力学量与算符
• • • • • 作业: 1、分析厄米算符 2、讨论幺正算符(投影算符、宇称算符) 3、算符运算的证明 4、讲课过程中的简单证明,一些概念、或 是各算符的特性
力学量与算符
二、投影算符 定义 pn n n
n 是一个完备波函数中的一个函数。
性质 (1) p pn ,本征值为0,1; (2)完备性 pn 1 ;
2 n
n
( 3)
pn
是厄米算符。
力学量与算符
三、宇称算符
定义
r r
性质 (1) 2 1 ,本征值为 1 ; (2)是厄米、幺正算符 (3)波函数和算符按宇称分类

力学量与算符
二、算符导数 1.定义
F F ,
为参量,
dF F F lim 0 d
2.基本性质 d A B A B
d
d A B A B A B d
复共轭 厄米共轭 逆 幺正算符 算符对易子
AB
*
*

AB
*
*
* * A dr A dr
A A

A
1
AB
B A
A A

1
线性算符
A, B AB BA A C AC
i i i i i
i
力学量与算符
厄米算符的性质 1.本征值为实 2.平均值为实 3.不同本征值之间的本征函数正交 4.假定:本征函数是完备,则

i
i
i 1
厄米算符的判断1.实数算符是厄米的 2.两个厄米算符的和是厄米的 3.相互对易的厄米算符的积是厄米的 4.由定义判定
力学量与算符
1 证明
p L L p 2i p
F F iF
2证明,任何一个算符均可分解为 均为厄米算符,且
1 1 F F F , F F F 2 2i




力学量与算符
3.2 算符函数和导数 一、算符函数
1 n 定义: B F A F 0An, n n!
A 为厄米,若 F 0
n
为实,则 几个定理 1.如果
B 厄米。
a ,则算符函数
A 的本征方程为 A
F A
满足同样的本征方程,即
F A F a 。
A, 0
r r
偶宇称
奇宇称
A, 0 r r
力学量与算符
(4)宇称算符的选择定律
A
具有相同的宇称积分项不为零;
பைடு நூலகம்
A
为偶,当且仅当

A为奇,当且仅当
与 具有不相同的宇称积分项不为零;
力学量与算符
力学量与算符
力学量与算符
算符的定义及运算 算符的定义 单位算符 算符的和 积 转置
ˆ F
I
ˆB ˆ B ˆ ˆ A A
ˆ B ˆ B ˆ ˆ A A
~ * Adr A dr
*
~~ AB B A
~
力学量与算符
力学量与算符
二、算符的行列式
1.定义 在
a A的自身表象中,det A ,
i i
ai 为本征值。
2.性质 (1)行列式与表象无关,
(2)det AB det A det B
力学量与算符
证明
det AB det A detB
det S AS det A
Tr AB Tr BA
力学量与算符
2.如果知道算符的函数形式则可推知它的本征值情况。 3.如果在某个表象下,算符A 对角,则 F A 对角。 4.如果算符满足 Cn A Cn 1 A
n n 1
C1 A C 0,则
A有 n 个本征值,且满足
Cnan Cn 1an 1 C1a C 0
相关文档
最新文档