2015届高三二诊考试数学(理)试题
遂宁市高中2015届第二次诊断性考试数学(理科)试题及答案

高三数学(理科)试题第1页(共16页)遂宁市高中2015届第二次诊断性考试数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
总分150分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。
并检查条形码粘贴是否正确。
2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}sin |{x y y A ==,{|(3)(21)0}B x x x =+-≤, 则=B AA .]21,3[-B .]21,1[-C .)21,1[-D .)21,3(- 2.在某校的一次英语听力测试中用以下茎叶图记录了甲、乙两组各5名学生的听力成绩(单位:分).甲组 乙组9 0 9x5 1 3 y8 7127已知甲组数据的众数为15,乙组数据的中位数为17,则x 、y 的值分别为A .2,5B .5,5C .5,7D .8,7高三数学(理科)试题第2页(共16页)3.已知复数z 满足:i zi +=2(i 是虚数单位),则z 的虚部为 A .i 2 B .i 2- C .2 D .2- 4.为了得到函数2sin3y x =的图象,可以将函数x x y 3cos 3sin += 的图象A .向右平移12π个单位长 B .向右平移4π个单位长C .向左平移12π个单位长D .向左平移4π个单位长5.已知向量)1,(λ=a ,)1,2(+=λb ,若b a b a -=+,则实数λ的值为A .1B .2C .1-D .2- 6.设a 、b 是实数,则“22a b >”是“0a b >>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 7.执行如图所示的程序框图,如果输入x ,t 的值均为2,最后输出S 的值为n ,在区间[0,10]上随机选取一个数D , 则D n ≤的概率为A .410 B .510 C .610 D .7108.从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是 A .590 B .570 C .360 D .2109.已知双曲线22221x y a b-=(a >0,b >0)的离心率为4,过右焦点F 作直线交该双曲线的右支于M ,N 两点,弦MN 的垂直平分线交x 轴于高三数学(理科)试题第3页(共16页)点H ,若10MN =,则HF =A .14B .16C .18D .2010.若函数)(x f 满足对任意的)](,[m n m n x <∈,都有km x f kn≤≤)( 成立,则称函数)(x f 在区间)](,[m n m n <上是“被K 约束的”。
新疆乌鲁木齐地区2015届高三第二次诊断性测试数学理试题Word版含答案

上的减函数,则实数 t 的取值范围
2
是
A. 2k
,2 k
(k Z ) B.
3
6
11
2k
,2 k
(k Z )
3
6
C. 2k
,2 k
( k Z ) D.
6
3
7
2k
,2 k
(k Z)
3
6
7. 一个几何体的三视图如图所示,则这个几何体的外接球的表
面积为
A. 16
B.
8
C. 4 3
3
3
D.
23
8. 如图算法,若输入 m=210,n=119,则输出的 n 为
二. 填空题
5
13. 二项式 x m 的展开式中 x 的系数为 10,则实数 m 等于 _______.( 用数字填 x
写答案 ) 14. △ABC中, C 90 ,且 CA=3,点 M满足 BM 2 AM ,则 CM CA = _________. 15. 设 函 数 f x 2x 1 , 实 数 a b , 且 f (a) f (b) , 则 a b 的 取 值 范 围 是 __________. 16. 设抛物线 y2 4x 的焦点为 F,其准线与 x 轴的交点为 Q,过点 F 作直线与此抛 物线交于 A,B 两点,若 QB AB 0 ,则 AF BF ________.
mn
m
①n
m
;② m
;
m ③n
m
m∥n ; ④ n ∥
m∥n
。
其中为真命题的是
A. ①②
B. ②③
C. ③④
D. ①④
5. 曲线 y
xe x 在点( 1,e)处的切线与直线 ax by c
广东深圳市2015届高三下学期第二次调研考试数学理试题word版含解析

2015年深圳市高三年级第二次调研考试数学(理科)第I卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有项是符合题目要求的•1.设i为虚数单位,则复数i2015等于A. 1B. -1C. iD. - i【答案】D【解析】试题分析:i2015 =i2012?i3 i3 =-i,故选D.考点:复数的运算•2.平面向量a 二(1, -2) , b = (-2, x),若a // b,则x 等于A. 4 B . -4 C . -1 D . 2【答案】A【解析】试题分析:根据向量共线的条件,可知1?x (- 2)?( 2) =4,所以x = 4.考点:向量共线的坐标表示•3.下列四个函数中,在闭区间[-1,1]上单调递增的函数是A. y =x2B. y =2xC. y=log2xD. y=sin2x【答案】B【解析】试题分析:y = x2在[-1,0]上是减函数,故A不对,y = log2x在[-1,0]上没有意义,故C 不对,y二si n2x在[p,1]上是减函数,故D不对,只有y = 2x在[-1.1]上是增函数,故选 B.4考点:函数的单调性的判断.侧视图卜1- 2 - 1-正视图俯视图4.如图1,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽略不计)A. 8 nB. 8 4 nC. 16 nD. 16 4 n【答案】C【解析】试题分析:根据所给的三视图,可知该几何体为一个长方体和一个圆柱的组合体,故其容积2为V =4鬃2+P鬃1=16+p,故选C.考点:根据几何体的三视图求其体积•11三x v三35.若实数x,V满足约束条件,则2x v的取值范围是—1兰x —y兰1A [0,6]B . [1,6]C. [1, 5] D . [0,5]【答案】C【解析】试题分析:i^2x+ v = m(jr+ + = + 则有彳,解得*= 11 ix+y£3 S 3 a 1 1 1根据* - ” 一「所以-(“刃丘―一],-<x-j)e[—所以有2工十川[1.5]・故选U2 2 2 2 2 2考点:不等式的性质•6.如图2,在执行程序框图所示的算法时,若输入-1 ,则输出v的值为侧视图卜1 ”,2…1 ‘A. -2B. 2C. -8D. 8【答案】D【解析】试题分析:起始值i = 3,输入a3= 1, v = 0?3 1 = 1 , i = 2,输入a? = - 3, v = 1 ?3 3 = 0 , i =1,输入= 3 , v = 0 ?3 3 = 3 , i = 0 输入a0= -1, v = 3?3 1 =8 , i = -1,输出v =8,故选D.考点:程序框图•7.从1,2,2,3,3,3这六个数字中任取五个,组成五位数,则不同的五位数共有A. 50 个B. 60 个C . 100 个 D. 120 个【答案】B【解析】试题分析主当选定的五个数为22363时,组成册五位数为©-@ = 10个,当选定的五个数兀U33* 时,组成的五位魏为思当选定的五位数为12 233时,组戚的五位鞭沟© W = 个, 所以总共有10十20十范=60个.故选E考点:两个计数原理,排列组合数•8.设X是直角坐标平面上的任意点集,定义X*={(1-y,x-1)|(x,y)・X}.若X^X ,则称点集X “关于运算*对称”.给定点集A二{(x,y)|x2 y—1} , B 二{( x, y)| y = x-1} , C 二{( x, y)||x-1| | y"},其中“关于运算*对称”的点集个数为A. 0B. 1C. 2D. 3【答案】B【解析】a3, a2 , a1试题分析:将(1- y,x- 1)带入x2+ y2=1,化简得x + y=1,显然不行,故集合A不满足关于运算*对称,将(1- y,x- 1)带入y = x - 1,即x-1 =1 -y-1 ,整理得x + y =1 ,显然不行,故集合B不满足关于运算*对称,将(1- y,x- 1)带入x- 1 +y = 1,即1 - y-1 + x- 1 =1 ,化简得x- 1 + y =1,故集合C满足关于运算*对称,故只有一个集合满足关于运算*对称,贝U P(X _2)= 【答案】0.2 【解析】试题分析:根据正态分布的特定,可知P(X ?1) 0.5,而1P(X ? 2) P(X ? 0)-- P(0 < X ? 1) =0.5- 0.3 = 0.2. 2考点:正态分布.故选B.考点:新定义问题的求解•二、填空题(本大题共 7小题,考生作答 6小题,每小题5分,满分30分•本大题分为必做 题和选做题两部分,将答案填在答题纸上)9.不等式|x-1| |x-2|乞5的解集为【答案】[-1,4]【解析】试题分析:原不等式等价于如下不等式组:a x <1(1) 'i ? 1?x?1- x + 2- x? 5(2) 21 #x 2蓿 1x?2, (3)?x- 1+2 - x ? 5a x>2 '1?x- 1所以原不等式的解集为[-1,4] • 考点:绝对值不等式的解法 10.已知随机变量 X 服从正态分布 N(1,二 2),若 P(0 :: X <1^0.3 ,11.已知双曲线的中心在原点,焦点在x 轴上,若其渐近线与抛物线y 2 =4x 的准线围成的三角形面积为1,则此双曲线的离心率等于【答案】2【解析】试题分析:抛物线的准线x = -1与双曲线的渐近线y=?b x的交点分别为(-1,- -),(-1,b), a a' a 所以对应的三角形的面积为丄鬃2b = b = 1,所以该双曲线为等轴双曲线,故其离心率为2 a a2.考点:双曲线的离心率•12.设等差数列{a n}的前n项和为S n,已知S3 =15,S g =153,则S6 = .【答案】66【解析】试题分析:根据等差数列的性质,可知禺;心-禺;国-片成等差数列,即2(^-15)= 15十153■心,解得盼66考点:等差数列的性质n 13.已知△ ABC的内角A、B、C所对的边为a、b、c,则“ ab c2”是“ C :::—”3的条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种).【答案】充分非必要【解析】2 2 2 2 2试题分析:由余弦定理可知cosC = a +b -c ?g^- =ab+ab-c >辿=1,所以ab 2ab 2 ab 2abC <P,故满足充分性,取三角形的边长为3,4,5,令cosC =- , C <P,但是,3 5 3ab = 3?5 15<16= c2,所以不满足必要性,故为充分非必要条件.考点:余弦定理,重要不等式,充要条件的判断(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.1 x = 1 亠S14.(坐标系与参数方程选做题)在直角坐标系中,已知直线l : (S为参数)与曲ly = 2 — s"x =t +3线C : <2(t 为参数)相交于 A 、B 两点,贝U AB = ________7 =t【答案】2【解析】所以 AB 二 J i 2 +12 S i - S 2 二 J2.考点:直线的参数方程,曲线的参数方程,直线被曲线截得的弦长问题15. (几何证明选讲选做题)如图3, AB 、AC 是O O 的两条切线,切点分别为 B 、C •若EBAC =60 , BC = 6,则O O 的半径为【答案】2,3 【解析】试题分析:连结 BO,CO ,则? BOC所以RS .;* 考点:圆的性质三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)设函数 f (x) = Acos(2x +9)(其中 A A 0 , 0< n , R ).已知 x =— 时,f (x)取得 6最小值-2 .(1)求函数f (x )的解析式;nn (2)若角二满足2si n(r) = f L),且0空汗n ,求sin (二-)的值.332 n【答案】(1) f(x) =2cos(2x —)3(2) sin( v -卫)=丄3 2试题分析:x = 1 s曲线C 可化为y = (x-3)2,将 l y = 2 -s带入 y = (x- 3)2,化简解得 s 1 =1,S 2 =2,C【解析】试题分析:对于第一问,根据函数的性质,结合题的条件,确定出相应的参数的值,从而求出函数的解析式,对于第二问,可以用倍角公式,结合着角的取值范围,求出相应的三角函数值,也可以用诱导公式求解,结合着角的范围求出角的三角函数值试题解析:(1)由f(x)最小值一2且A .0 ,所以A = 2•1分n n因为f(—)=—2,所以cos(—1, (2)6 3分由0 :::•「::n可得亠上」::匕,所以丄•「二n, (3)3 3 3 3分所以,二® (4)3分2 n故f (x)的解析式为f (x) = 2cos(2 x ——)• (5)3分(2)(法1)由(1),得sin(日 +丄)=cos(2日+2n),3 3即sin(日+n) =1 —2sin2(B +-), 2sin2(日+n) +sin(0 + -)-^0 ,3 3 3 38分所以sin(丁f) = 一1 或sin()” = 1 •10分又0 " ::: n,所以-- n■■■:.士.3 3 3所以sin(日+」)=—•......3 212分即cos(-日)=cos(2日十手)•11分= cos("爭(法2)由(1),得sin(v所以 2「3= 2k n 或 2k n-, k ・ Z . ............................... 10 分3636即二=2kn _n 或门-2k n-5n , k ・ Z .3 6 6又0 *:: v ::: n 所以二-上........................................... ii 分2所以 sin (B + 兀)=1 .....................................................................................3 212分 考点:y 二Acos (,x •的性质,倍角公式、解三角方程、特殊角的三角函数值 17.(本小题满分12分)深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占 20%通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一 半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:(1) 采取分层抽样的方式从 30至50岁的人中抽取10人,求其中各种意向人数; (2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;(3) 用样本估计总体,在全体市民中任意选取 4人,其中摇号申请电动小汽车意向的人数记 为•,求的分布列和数学期望.【答案】(1)抽取的人10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为:3人、6人1人、试题分析:第一问注意分层抽样的条件,注意把握随机事件发生的概率,对于第三问,注意(3)分布列略, 【解析】 Ex =4人数占总体的比例分另U 为50500 110150 3 500 一 10300 6 500 _10所以,抽取的人 10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为:—10 =1 人、 10 —10 =3 人、—10 =6 人;10 10 (2)由题意可知,在上述 10人中有竞价申请意向的人数为10型=6人,500所以,4人中恰有2人竞价申请意向的概率为Cf >C;Cw(3) n =4 , ■的可能取值为0, 1, 2, 3,4. 因为用样本估计总体,任取一人,其摇号电动小汽车意所以,随机变量•服从二项分布,即〜B(4,1 ).5P(=。
2015年普通高中高三第二次联合考试理科数学附答案

BA BC 2 ,则 ABC 的面积为 (
A. 2
2
) C. 2 2 D. 4 2
B.
3 2
(10)已知抛物线 y =2px(p>0)与双曲线 2- 2=1(a>0,b>0)有相同的焦点 F,点 A 是两曲线的一个交点,且 AF⊥x 轴,则双曲线的离心率为( ( ) A. 2+2 B. 5+1 C. 3+1
2015 年普通高中高三第二次联合考试理科数学
注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上。 2. 回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框 涂黑。如 需改动,用橡皮擦干净后,再选涂其它答案标号框。写在本试卷上无效。 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。
D. 1,1
第Ⅱ卷
本卷包括必考题和选考题两部分。 第 13 题~第 21 题为必考题, 每个试题考生都必须做 答。第 22 题~第 24 题为选考题,考生根据要求做答。 二、填空题:本大题共 4 小题,每小题 5 分。
(13)若复数 z
(a 2 4) (a 2)i 为纯虚数,则
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的。
(1)设集合 A
x y lg(3 2x),集合 B y y
B. (﹣∞,1] C.
)
A. [ 0, )
3 2
(2) 若命题 p 为真命题,命题 q 为假命题,则以下为真命题的是(
A. p q
2015届高三质检二数学(理)试卷及答案剖析

石家庄市2015届高三复习教学质量检测(二)高三数学(理科)(时间120分钟,满分150分)第I 卷 (选择题,60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数iiz 42+=(i 为虚数单位)对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如果0a b <<,那么下列不等式成立的是A .11a b-<- B .2ab b < C .2ab a -<- D .b a < 3.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生性别与支持活动有关系”的犯错误的概率不超过 A .0.1% B .1% C .99% D .99.9% 附:4.已知实数,x y 满足条件11y x xy x ≥⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值为A .3B .2C .32D .05.运行如图所示的程序框图,如果输出的(2,2]t ∈-,则输入x 的范围是A .[-B .(-C .[D .( 6.已知等差数列{}n a 中,100720144,2014a S ==,则2015S =A .2015-B .2015C .4030-D .40307.一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为 A .120 B .36 C .24 D .728.若圆222)1()5(r y x =-+-上有且仅有两点到直线0234=++y x 的距离等于1,则r 的取值范围为A .[4,6]B .(4,6)C .[5,7]D .(5,7)10.某几何体的三视图如右图所示,则该几何体的表面积为 B .4+ C .2+ D .4+11.已知函数()f x 的定义域为2(43,32)a a --,且(23)y f x =-是偶函数. 又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足条件的k 的个数为A .3B .2C .4D .112.已知定义在R 上的函数()f x 满足:21)()()1(2+-=+x f x f x f ,数列{}n a 满足 *2),()(N n n f n f a n ∈-=,若其前n 项和为1635-,则n 的值为 A .16 B .17 C .18 D .19第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线2241x y -=的渐近线方程为_____. 14.已知212(1)4k dx ≤+≤⎰,则实数k 的取值范围是_____.16.三棱锥中有四条棱长为4,两条棱长为a ,则a 的取值范围为_____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边长,且222cos ()a bc A b c -=+.(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1,2B C b +==,试求ABC ∆的面积. 18.(本小题满分12分)我国城市空气污染指数范围及相应的空气质量类别见下表:我们把某天的空气污染指数在0-100时称作A 类天,101--200时称作B 类天,大于200时称作C类天.右图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶) (Ⅰ)从这18天中任取3天,求至少含2个A 类天的概率;(Ⅱ)从这18天中任取3天,记X 是达到A 类或B 类天的天数,求X 的分布列及数学期望. 19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1A A AB =,90ABC ∠=︒,侧面11A ABB ⊥底面ABC . (I )求证:1AB ⊥平面1A BC ;(II )若5AC =,3BC =,160A AB ∠=︒,求二面角11B AC C --的余弦值.20.(本小题满分12分)已知椭圆22122:1(0)4x y C b b b+=>,抛物线22:4()C x y b =-.过点(01)F b +,作x 轴的平行线,与抛物线2C 在第一象限的交点为G ,且该抛物线在点G 处的切线经过坐标原点O . (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线:l y kx =与椭圆1C 相交于两点C 、D 两点,其中点C 在第一象限,点A 为椭圆1C 的右顶点,求四边形ACFD 面积的最大值及此时l 的方程. 21.(本小题满分12分) 已知21()ln ,2f x x x mx x m R =--∈. (Ⅰ)当2m =-时,求函数()f x 的所有零点; (Ⅱ)若()f x 有两个极值点12,x x ,且12x x <,求证:212x x e >(e 为自然对数的底数). 请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.几何证明选讲(本小题满分10分) 如图:已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B C 、,APC ∠的平分线分别交AB AC 、于点D E 、,.点G 是线段ED 的中点,AG 的延长线与CP 相交于点F .(Ⅰ)证明:AF ED ⊥; (Ⅱ)当F 恰为PC 的中点时,求PCPB的值. 23.坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为24(4x t y t⎧=⎨=⎩其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos()42πρθ+=. (Ⅰ)把曲线1C 的方程化为普通方程,2C 的方程化为直角坐标方程;(Ⅱ)若曲线1C ,2C 相交于B A ,两点,AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于F E ,两点,求PE PF ⋅.24.不等式选讲(本小题满分10分) 已知1()33f x x x a a=++-.(Ⅰ)若1a =,求8)(≥x f 的解集;(Ⅱ)对任意()+∞∈,0a ,任意R x ∈,()m x f ≥恒成立,求实数m 的最大值.80907873635267934738386730121290683243210B 1C 1C2014-2015学年度高三数学质检二答案(理科)一、 选择题1-5 DABAD 6-10 CCBCB 11-12 AB 二、填空13. 20x y ±= 14. [1,3] 15 -1016. ()2262,0+注意:此题如果写成(也可以 三、解答题(解答题如果和标准答案不一样,可依据本标准酌情给分) 17.解:(Ⅰ)∵222cos ()a bc A b c -=+,又根据余弦定理A bc c b a cos 2222-+=,∴22222cos 2cos 2b c bc A bc A b bc c +--=++,…………………………2分 化简得4cos 2bc A bc -=,可得1cos 2A =-, ……………………………………………………………………4分 ∵0A π<<,∴23A π=.……………………………………………………………………5分(Ⅱ)∵1sin sin =+C B , ∴1)3sin(sin =-+B B π,∴1sin 3cos cos 3sin sin =-+B B B ππ, ∴1sin 3cos cos 3sin =+B B ππ,∴1)3sin(=+πB , ……………………………………………………………………8分又∵B 为三角形内角, 故6B C π==,所以2==c b , ……………………………………………………………………………10分 所以3sin 21==∆A bc S ABC . …………………………………………………………12分 18. 解:(Ⅰ) 从这18天中任取3天,取法种数有 318816C =,3天中至少有2个A 类天的取法种数213315346C C C += , ..... ....2分所以这3天至少有2个A 类天的概率为23408; .............................. ..4分 (Ⅱ)X 的一切可能的取值是3,2,1,0. ……………… 5分当X=3时,1027)3(31838===C C X P …………………… 6分当X=2时,10235)2(31811028===C C C X P …………………… 7分 当X=1时,341510245)1(31821018====C C C X P ……………… 8分 当X=0时,34510215)0(318310====C C X P …………… 9分数学期望为34102136102457021==++ . ……………12分 19.解:(Ⅰ)证明:在侧面A 1ABB 1中,因为A 1A=AB ,所以四边形A 1ABB 1为菱形,所以对角线AB 1⊥A 1B ,…………………………………2分 因为侧面A 1ABB 1⊥底面ABC ,∠ABC=900,所以CB ⊥侧面A 1ABB 1, 因为AB 1⊂平面A 1ABB 1内,所以CB ⊥AB 1,…………………………4分 又因为A 1B ∩BC=B ,所以AB 1⊥平面A 1BC . …………………………………6分(Ⅱ)在Rt △ABC 中, AC=5, BC=3, 所以AB=4,又菱形A 1ABB 1中,因为∠A 1AB=600,所以△A 1AB 为正三角形,如图,以菱形A 1ABB 1的对角线交点O 为坐标原点OA 1方向为x 轴,OA 方向为y 轴,过O 且与BC 平行的方向为z 轴建立如图空间直角坐标系,则1(2,0,0)A ,(2,0,0)B -,(2,0,3)C -,1(0,B -,1(0,C -,所以1(2,0)C C =-,113)C A =-,设(,,)n x y z =为平面11ACC的法向量,则11100n C C n C A ⎧=⎪⎨=⎪⎩,所以20230x x z ⎧-+=⎪⎨+-=⎪⎩,令3x =,得(3,3,4)n =为平面11ACC 的一个法向量,…………………………………9分又1(0,OB =-为平面1A BC 的一个法向量,111cos ,2723n OB n OB n OB <>===,……………………………11分所以二面角B —A 1C —C 1的余弦值为.…………………………………12分 法2:在平面BC A 1中过点O 作OH ⊥C A 1于H ,连接AH ,则C A 1⊥平面AOH ,所以∠AHO 即为二面角B —A 1C —A 的平面角,……………………………………………………8分在△BC A 1中5611=⋅=C A BC O A OH , 又Rt △AOH 中32=AO ,所以521422=+=OH AO AH , 所以1421cos =∠AHO ,………………………………………………………………11分 因为二面角B —A 1C —C 1与二面角B —A 1C —A 互补,所以二面角B —A 1C —C 1的余弦值为二面角B —A 1C —A 的余弦值的相反数,则二面角B —A 1C —C 1的余弦值为1421-.………………………………12分 20.解:(Ⅰ)由24()x y b =-得214y x b =+,当1y b =+得2x =±, ∴ G 点的坐标为(2,1)b +,则1'2y x =,2'|1x y ==,过点G 的切线方程为(1)2y b x -+=-即1y x b =+-,………………………2分 令0y =得10x b =-=,∴ 1b =。
宜宾市高2015级高三二诊理科数学试题

俯视图侧视图正视图334343宜宾市高2015级高三第二次诊断测试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.本试卷满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合}0158|{},6|{2<+-=<∈=x x x B x N x A ,则B A 等于A .}53|{<<x xB .}4{C .}4,3{D .}5,4,3{2.已知i 是虚数单位,复数2(12i)+的共轭复数虚部为A .i 4B .3C .4D .4-3.如图的平面图形由16个全部是边长为1且有一个内角为 的菱形组成,那么图形中的向量,AB CD 的数量积AB CD ⋅等于A .172 B .152C .8D .7 4.某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小组积分的方差为A .0.5B .0.75C .1D .1.255.某几何体的三视图如图所示,则此几何体的表面积是A.18+B.18+ C.24+D.24+6.设537535714(),(),log 755a b c -===,则c b a ,,的大小顺序是A .c a b <<B .b a c <<C .a c b <<D .a b c <<7.执行如图所示的程序框图,则输出的S 的值为AB1 CD18.在各项均不为零的等差数列}{n a 中,若2110(2)n n n a a a n +--+=≥,则=--n S n 412A .2-B .0C .1D .29.若21sin cos 1=+αα,则=+ααsin 2cosA .1-B .1C .25-D .1或25-10.某班级需要把6名同学安排到周一、周二、周三这三天值日,每天安排2名同学,已知甲不能安排到周一,乙和丙不能安排到同一天,则安排方案的种数为 A .24 B .36 C .48 D .7211.已知双曲线224x y -=上存在两点,M N 关于直线2y x m =-对称,且线段MN 的中点在抛物线216y x =上,则实数m 的值为 A .016或-B .016或C .16D .16-12.设1=x 是函数3212()1()n n n f x a x a x a x n N +++=--+∈的极值点,数列{}n a 满足:11a =,22a =,n n a b 22log =,若[]x 表示不超过x 的最大整数,则122320182019201820182018[]b b b b b b +++=A .1008B .1009C .2017D .2018二、填空题:本题共4小题,每小题5分,共20分。
中学2015届高三第二次模拟数学理试题 Word版含答案
2015年山东省济宁市汶上县第五中学高三第二次模拟数学理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分1.已知集合{}3,2,1,0=A , 集合{}A a a x xB ∈==,2, 则=⋂B AA .}0{B .}2{C .}2,0{D .}3,2,1,0{2.复数1ii -的共轭复数为 A .i 2121+- B .i 2121+C .i 2121--D .i 2121- 3.“2=x ”是“1log 2=x ”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.在一组样本数据的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的25,且样本容量为280,则中间一组的频数为 A .56 B .80 C .112 D .120 5.已知()2παπ∈ , ,3sin()45πα+=,则cos α=A .10-B .10 C .10-或10 D .10-6.函数211x y x +=+的图像可能是7.等差数列{}n a 中的1a 、4025a 是函数16431)(23-+-=x x x x f 的极值点,则=20132log a A .2B .3C .4D .58.如图,在直三棱柱111ABC A B C -中,E 是AB 的中点,D 是1AA 的中点,则三棱锥11D B C E -的体积与三棱柱111ABC A B C -的体积之比是A .14B .16C .18D .389.设F 1、F 2分别是双曲线C :22221x y a b-=的左,右焦点,过F 1的直线l 与双曲线的左支相交于A 、B 两点,且三角形2ABF 是以B ∠为直角的等腰直角三角形,记双曲线C 的离心率为e ,则2e 为A .522-B .5224+ C .522+D .5224- 10.菱形ABCD 23360ABC ∠=︒,沿对角线AC 折成如图所示的四面体,二面角B AC D --为60︒,M 为AC 的中点,P 在线段DM 上,记DP x =,PA PB y +=,则函数()y f x =的图像大致为二、填空题:本大题共4小题,第小题5分,共20分. 11.已知程序框图如图,则输出的i= .12.在Rt ABC ∆中,1AB =,2BC =,3AC =,D 在边BC 上,23BD =,则AB AD ⋅= .13.已知抛物线22y x =的焦点为F ,过F 点,且斜率为3的直线交抛物线于A, B 两点,其中第一象限内的交点为A ,则AFFB= . 14.设集合}{1,2,3,4,5,6,7,8S =,集合}{123,,A a a a =,A S ⊆,123,,a a a 满足123a a a <<且325a a -≤,那么满足条件的集合A 的个数为 .三、选做题:请在下列两题中任选一题作答,若两题都做,则按第一题评阅计分,本题共5分.15.(1)如图,在极坐标下,写出点P 的极坐标 .(2)方程11x x x m --++=有四个解,则m 的取值范围为 . 四、解答题:本大题共6题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角C B A ,,所对的边分别为,,a b c ,满足A a sin 2=,cos 20cos B a bC c c++=. (I )求边c 的大小; (II )求△ABC 面积的最大值. 17.(本小题满分12分)设21()ln 2f x ax x x =-- (1)当2a =时,求()f x 的单调区间;(2)若()f x 在[2,)∞上单调递增,求a 的取值范围. 18.(本小题满分12分)为了了解某班在全市“一检”中数学成绩的情况,按照分层抽样分别抽取了10名男生和5名女生的试卷成绩作为样本,他们数学成绩的茎叶图如图所示,其中茎为百位数和十位数,叶为个位数.(Ⅰ)若该样本男女生平均分数相等,求x 的值;(Ⅱ)若规定120分以上为优秀,在该5名女生试卷中每次都抽取1份,且不重复抽取,直到确定出所有非优秀的女生为止,记所要抽取的次数为ξ,求ξ的分布列和数学期望E ξ.19.(本小题满分12分)如图,在等腰梯形ABCD 中,//AD BC 122AB BC CD AD ====,O 为AD 上一点,且1AO =,平面外两点P 、E 满足,1AE =,EA AB ⊥,EB BD ⊥,//PO EA .(1)求证:EA ⊥平面ABCD ;(2)求平面AED 与平面BED 夹角的余弦值;(3)若//BE 平面PCD ,求PO 的长.20.(本小题满分13分)单调递增数列{}n a 满足21231()2n n a a a a a n ++++=+.(1)求1a ,并求数列{}n a 的通项公式;(2)设111, 2 1 n n n a n a n c a n -+-⎧⎪=⎨⨯+⎪⎩为奇数,为偶数,求数列{}n c 的前2n 项和2n T .21.(本小题满分14分)已知双曲线C :221(0)x y m m-=>,A .B 两点分别在双曲线C 的两条渐近线上,且m AB 2=,又点P 为AB 的中点.(1)求点P 的轨迹方程并判断其形状;(2)若不同三点D (-2,0)、S 、T 均在点P 的轨迹上,且0DS ST ⋅=;求T 点横坐标r x 的取值范围。
2015二模理数答案
长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1. D2. A3. C4. C5. D6. D7. B8. B9. C 10.A 11. C 12. A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D. 2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D. 7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A 由直线与圆相切可知||m n +=1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A. 11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b a θ=,222tan 2aba bθ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C.12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =, 即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分)13. 6014.4915.83π16. 19(2,)8简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023a a x ==⎰,所以49a =. 15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB为直径,可求得3AB =,进而截面面积的最小值为283ππ=. 16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴= (6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =.(9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=. (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力.【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,126433(250)10C C P X C ===,343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求. 【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(6分) (2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=.(12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠. (5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=--21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分) 【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+ 22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++.① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减, 即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++ 211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n ++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n=,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立.因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 这样依据不等式215211(1)(1)n n e n n+++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容.本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PDBD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠, 在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由125t t +=,1285t t =,得21||5d t t =-==. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1) 当3a =时,174,213()5,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩,所以()7f x >的解集为{|0x x <或2}x >.(5分)(2) ()|21||2||212||1|f x x a x a x a x a a a =-+-+≥-+-+=-+, 由()3f x ≥恒成立,有|1|3a a -+≥,解得2a ≥ 所以a 的取值范围是[)2,+∞.(10分)。
(理数参考答案)深圳市2015届高三年级第二次调研考试
深圳市2015届高三年级第二次调研考试数学(理科)参考答案一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.[]2,3- 10.0.211.12.66 13.(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分. 14. 15.(几何证明选讲选做题)三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)设函数()cos(2)f x A x =+ϕ(其中0A >,0π<<ϕ,R ∈x ).已知π6x =时,()f x 取得最小值2-.(1)求函数)(x f 的解析式; (2)若角θ满足π2sin()()3f +=θθ,且π0<≤θ,求πsin()3θ+的值. 解:(1)由()f x 最小值2-且0A >,所以2A =. …………………………………………1分因为π()26f =-,所以πcos()13ϕ+=-, ……………………………………………………2分 由0π<<ϕ可得ππ4π333ϕ<+<,所以ππ3ϕ+=, ………………………………………3分 所以2π3ϕ=. ……………………………………………………………………………………4分 充分非必要故)(x f 的解析式为2π()2cos(2)3f x x =+. …………………………………………………5分 (2)(法1)由(1),得)3π22cos()3πsin(+=+θθ, 即)3π(sin 21)3πsin(2+-=+θθ,01)3πsin()3π(sin 22=-+++θθ, ……………………8分所以1)3πsin(-=+θ或21)3πsin(=+θ. ………………………………………………10分又0πθ≤<,所以ππ4π333θ≤+<. …………………………………………………11分 所以21)3πsin(=+θ. ………………………………………………………………………12分 (法2)由(1),得)3π22cos()3πsin(+=+θθ,即)3π22cos()6πcos(+=-θθ. ………………………………………………………8分所以θθ-+=+6ππ23π22k 或θθ+-=+6ππ23π22k ,Z ∈k . …………………………10分即6π3π2-=k θ或65ππ2-=k θ,Z ∈k .又0πθ≤<,所以2π=θ. …………………………………………………………11分所以21)3πsin(=+θ. ………………………………………………………………………12分【说明】本题主要考查cos()y A x ωϕ=+的性质,倍角公式、解三角方程、特殊角的三角函数值,考查学生的运算能力. 17.(本小题满分12分)深圳市于2014年12月29日起实施汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,在全市有购车意向的市民中,某网站针对不同年龄段的申请意向进行了抽样调查,结果如下表所示:(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率; (3)用样本估计总体,在全体有购车意向的市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.解:(1)因为30至50岁的人中有意向参与摇号电动小汽车、非电动小汽车和竞价的人数占总体的比例分别为:50150010=、150350010= 、300650010=. ………………………………………2分 所以,抽取的人10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为:110110⨯=人、310310⨯=人、610610⨯=人. ……………………………………4分 (2)由题意可知,在上述10人中有竞价申请意向的人数为650030010=⨯人, 所以,4人中恰有2人竞价申请意向的概率为734102426=C C C . …………………………………6分 (3)4=n ,ξ的可能取值为4,3,2,1,0. ………………………………………7分因为用样本估计总体,任取一人,其摇号电动小汽车意向的概率为511000200==p ,……………8分所以,随机变量ξ服从二项分布,即ξ~)51,4(B . …………………………………………9分62525651151)0(4004=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ,62525651151)1(3114=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ, 6259651151)2(2224=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ,6251651151)3(1334=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ, 625151151)4(0444=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ. 即ξ的分布列为:……………………………………………………………………………11分 ξ的数学期望为:54514=⨯==np E ξ. …………………………………………12分 【说明】本题主要考查分层抽样、排列组合、古典概型、二项分布等知识,考查了考生读取图表、数据处理的能力. 18.(本小题满分14分)如图4,已知三棱锥O ABC -的三条侧棱OA ,OB ,OC 两两垂直,△ABC 为等边三角形,M 为△ABC 内部一点,点P 在OM 的延长线上,且PB PA =.(1)证明:OB OA =;(2)证明:平面⊥PAB 平面POC ;(3)若::AP PO OC =,求二面角B OA P --的余弦值. 证明:(1)因为OA ,OB ,OC 两两垂直, 所以222AC OC OA =+,222BC OC OB =+.又△ABC 为等边三角形,BC AC =, 所以=+22OC OA 22OC OB +,故OB OA =. …………………………………………………………………………3分 (2)因为OA ,OB ,OC 两两垂直,所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥OAB OB OA OOB OA OB OC OA OC 平面, ⊥⇒OC 平面OAB , 而⊂AB 平面OAB ,所以OC AB ⊥. …………………………………………………………5分取AB 中点D ,连结OD ,PD . 由(1)知,OB OA =,所以OD AB ⊥. 由已知PB PA =,所以PD AB ⊥.所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥POD PD OD DPD OD PD AB OD AB 平面, ⊥⇒AB 平面POD , 而⊂PO 平面POD ,所以PO AB ⊥. …………………………………………………7分所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥POC PO OC OPO OC PO AB OC AB 平面, ⊥⇒AB 平面POC , 又PAB AB 平面⊂,所以,平面⊥PAB 平面POC . …………………………………………9分 解:(3)(法一)由(2)知AB ⊥平面POD , 所以平面OAB ⊥平面POD , 且平面OAB平面POD OD =,过点P 作PH ⊥平面OAB ,且交OD 的延长线于点H ,连接AH , 因为OC PA 5=,OC OP 6=,由(1)同理可证OC OB OA ==,OBCPM∙D在△POA 中,222OP PA OA =+, 所以OA PA ⊥,又因为PH ⊥OA , 所以OA ⊥平面PAH ,所以PAH ∠为二面角B OA P --的平面角, ………………………………………………11分 在直角△PHA 中,cos AHPAH PA∠=, ……………………………………………………12分 由(2)知45AOD ∠=︒,所以△OAH 为等腰直角三角形, 所以AH OA OC ==,所以cos 5AH PAH PA ∠==, 所以,二面角B OA P --的余弦值为5. …………………………………………………14分 (法2)如图6,以OA ,OB ,OC 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系. 由(1)同理可证OC OB OA ==, 设1===OC OB OA ,则)0,0,1(A ,)0,1,0(B ,)1,0,0(C ,(1,0,0)OA =,(1,1,0)AB =-.设),,(z y x P ,其中0>x ,0>y ,0>z . 由(,,)OP x y z =,(1,,)AP x y z =-.由(2)知OP AB ⊥,且5PA OC ==,6OP OC =得()222222(1)0615x y x y z x y z ⎧-⨯+=⎪⎪++=⎨⎪-++=⎪⎩.解之,得1x y ==,2z =. ……………………………11分 所以,(1,1,2)OP =设平面POA 的法向量为),,(1111z y x =n ,由1OA ⊥n ,1OP ⊥n ,得1111020x x y z =⎧⎨++=⎩.取11=z ,得12y =-,1(0,2,1)=-n .由(2)知,平面OAB 的法向量为2(0,0,1)OC ==n , …………………………………13分 记二面角P OA B --的平面角为θ,由图可得θ为锐角, 所以12cos |cos ,|θ=〈〉==n n . 图6Pz所以,二面角B PC A --……………………………………………………14分 【说明】本题主要考察空间点、线、面的位置关系,线面垂直、面面垂直的判定与性质,用空间向量求二面角,考查空间想象能力、运算能力和逻辑推理能力. 19.(本小题满分14分)设数列}{n a 的前n 项和为n S ,满足4231-⋅-=++n n n n a S ,*N ∈n ,且42,,321+a S a 成等比数列.(1)求1a ,2a ,3a 的值;(2)设2nn n a b =,*N ∈n ,求数列{}n b 的通项公式; (3)证明:对一切正整数n ,有++2143a a (12)<++na n . 解:(1)由已知,得⎪⎩⎪⎨⎧-=+-=+=+.68,20,)()42(3212122131a a a a a a a a a …………………………………………2分解之,得41=a ,242=a ,963=a . …………………………………………………4分 (2)(法1)因为4231-⋅-=++n n n n a S ,*N ∈n , ……① 所以42)1(21-⋅--=+-n n n n a S ,其中2≥n . ……②① ②,并整理得212)1(2++⋅++=n n n n a a ,2≥n , ……………………………6分即12(1)n n b b n +=++,2≥n .所以,3243123242n n b b b b b b n -=+⨯⎫⎪=+⨯⎪⎬⋅⋅⋅⋅⋅⋅⎪⎪=+⎭相加,得()()223n b b n n =+-+. ……………………………8分由(1)知242=a ,所以26b =,所以2≥n 时,()1n b n n =+, ……………………9分 又41=a ,12b =也符合上式,所以,数列{}n b 的通项公式为()1n b n n =+,*N ∈n . …………………………………10分 (法2)因为4231-⋅-=++n n n n a S ,*N ∈n , ……① 所以42)1(21-⋅--=+-n n n n a S ,其中2≥n . ……②① ②,并整理得212)1(2++⋅++=n n n n a a ,2≥n ,即12(1)n n b b n +=++,2≥n . ……………………………………………………………6分由(1)知22141⨯⨯==a ,2223224⨯⨯==a ,3324396⨯⨯==a .可得1212b ==⨯,2623b ==⨯,31234b ==⨯.猜想()1n b n n =+,*N ∈n . …………………………………………………………8分 以下用数学归纳法证明之:(i )当1=n 时或2=n 时,猜想显然正确.(ii )假设k n =(2≥k )时,猜想正确,即()1n b k k =+. 那么1+=k n 时,12(1)k k b b k +=++(1)2(1)k k k =+++ (1)(2)k k =+⋅+.[](1)(1)1k k =+++即1+=k n 时,猜想也正确.由(i )(ii ),根据数学归纳法原理,对任意的*N ∈n ,猜想正确.所以,数列{}n b 的通项公式为()1n b n n =+,*N ∈n . …………………………………10分(3)对一切正整数n ,因为nn n n n n n n n a n 2)1(1212)1(221⋅+-⋅=⋅++=+-, …………12分 所以,++2143a a …+⨯⨯+⨯⨯=++21232422132n a n …nn n n 2)1(2⋅++++⎪⎭⎫ ⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=2110231*********…⎥⎦⎤⎢⎣⎡⋅+-⋅+-n n n n 2)1(1211 12)1(11<⋅+-=n . ………………………………………14分 【说明】本题主要考查等比数列的定义,处理n S 与n a 的递推公式,用累加法求数列通项,数学归纳法,理解裂项求和,考查考生运算求解、推理论证、归纳猜想的能力. 20.(本小题满分14分)已知动点(,)M x y 和定点(0,1)N , MN 的中点为P .若直线MN ,OP 的斜率之积为常数λ (其中O 为原点,10λ-<<),动点M 的轨迹为C . (1)求曲线C 的方程;(2)曲线C 上是否存在两点A 、B ,使得△NAB 是以N 为顶点的等腰直角三角形?若存在,指出这样的三角形共有几个;若不存在,请说明理由. 解:(1)设直线MN ,OP 的斜率分别为1k ,2k ,因为1(,)22x y P +, ………………1分 所以11y k x-= (0x ≠),2122y k x += (0x ≠), ……………………………………3分由12k k λ=可得:()1122y y x x λ+⎛⎫-⋅⎪⎝⎭=⋅(0x ≠), ……………………………………4分 化简整理可得221x y λ-+=(0x ≠),所以,曲线C 的方程为221x y λ-+=(0x ≠). ………………………………………5分 (2)由题意()0,1N ,且NA NB ⊥,当直线NA 的斜率为0,则N 与A 重合,不符合题意, 所以直线NA 、NB 的斜率都存在且不为0,设直线NA 的斜率为k , 所以直线NB 的斜率为1k-,不妨设0k >, 所以直线NA 的方程为1y kx =+,直线NB 的方程为11y x k=-+,………………………6分 将直线NA 和曲线C 的方程联立,得2211y kx x y λ=+⎧⎨-+=⎩,消y 整理可得()2220k x kx λ-+=, 解得22A k x k λ=--,所以22k NA k λ=-, 以k 1-替换k,可得222211k NB kk λλ==--, …………………………8分由NA NB =22221k k k λλ=--, ………………………………9分所以320k k k λλ+--=,即()()2110k k k λλλ⎡⎤-+++=⎣⎦,……………………………10分(1)当 113λ-<<-时, 方程()210k k λλλ+++=有()()()22143110λλλλ∆=+-=-+-<,所以方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有唯一解1k =; ……………………………11分(2)当13λ=-时,()()211k k k λλλ⎡⎤-+++=⎣⎦()31103k --=,解得1k =; ………12分 (3)当103λ-<<时,方程()210k k λλλ+++=有()()()22143110λλλλ∆=+-=-+->,且()2111310λλλλ⨯++⨯+=+≠,所以方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有三个不等的根.综上,当 113λ-<≤-时,有一个圆符合题意;当103λ-<<时,有三个符合题意的圆. ……………………………………………………………………………………14分(注:(3)也可直接求解: 当103λ-<<时, 方程()210k k λλλ+++=,因为()()()22143110λλλλ∆=+-=-+->,所以1,2k =,又因为()2111310λλλλ⨯++⨯+=+≠,所以1,21k ≠,故方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有三个不等的根.) 【说明】本题主要考查曲线与方程,直线与椭圆的位置关系,弦长问题,一元二次方程根的个数问题,考查考生数形结合、函数与方程的数学思想方法及运算求解能力. 21.(本小题满分14分)已知函数x b ax x x f +-=ln )(,对任意的),0(∞+∈x ,满足0)1()(=+xf x f , 其中b a ,为常数.(1)若)(x f 的图象在1=x 处的切线经过点)5,0(-,求a 的值;(2)已知10<<a ,求证:0)2(2>a f ; (3)当)(x f 存在三个不同的零点时,求a 的取值范围. 解:(1)在0)1()(=+xf x f 中,取1=x ,得0)1(=f , 又b a b a f +-=+-=1ln )1(,所以a b =. ……………………………………1分从而x a ax x x f +-=ln )(,)11(1)(2xa x x f +-=',a f 21)1(-='. 又510)1(5)1(=---='f f , 所以521=-a ,2-=a . ………………………………………………………………3分(2)2ln 22ln 2222ln)2(3322--+=+-=a a a a a a a f . 令2ln 22ln 2)(3--+=x x x x g ,则24222)1(432322)(x x x x x x x g -+-=--='.所以,)1,0(∈x 时,0)(<'x g ,)(x g 单调递减, …………………………………5分 故)1,0(∈x 时,1()(1)2ln 21ln e 02g x g >=-->-=.所以,10<<a 时,0)2(2>a f . ……………………………………………………7分(3)222)11(1)(x ax ax x a x x f -+-=+-='.①当0≤a 时,在),0(∞+上,0)(>'x f ,)(x f 递增,所以,)(x f 至多只有一个零点,不合题意; …………………………………………8分 ②当21≥a 时,在),1(∞+上,0)(≤'x f ,)(x f 递减, 所以,)(x f 也至多只有一个零点,不合题意; ……………………………………10分 ③当210<<a 时,令0)(='x f ,得124111<--=aa x ,124112>-+=a a x . 此时,)(x f 在),0(1x 上递减,),(21x x 上递增,),(2∞+x 上递减,所以,)(x f 至多有三个零点. …………………………………………………………12分 因为)(x f 在)1,(1x 上递增,所以0)1()(1=<f x f .又因为0)2(2>a f ,所以),2(120x a x ∈∃,使得0)(0=x f . ……………………………13分又0)()1(00=-=x f x f ,0)1(=f ,所以)(x f 恰有三个不同的零点:0x ,1,01x .综上所述,当)(x f 存在三个不同的零点时,a 的取值范围是)21,0(. ………………14分【说明】本小题主要考查函数、导数、不等式证明等知识,包括函数的极值、零点,二次方程根的分布等知识,考查考生综合运用数学知识解决问题的能力,同时也考查函数与方程思想、化归与转化思想.。
2015届高三阶段性诊断考试(二模)数学(理)试题 Word版含答案
高三阶段性诊断考试试题理 科 数 学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()11z i +=(其中i 为虚数单位),则z 的共轭复数是A. 12i +B. 12i -C. 12i -+D. 12i --2.设{}{}21,,2,xP y y x x R Q y y x R ==-+∈==∈,则A. P Q ⊆B. Q P ⊆C. R C P Q ⊆D. R Q C P ⊆3.设命题23:231,:12x p x q x --<≤-,则p 是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知随机变量()()()2~0,.3=0.02333=N P P ξσξξ>-≤≤若,则A.0.477B.0.628C.0.954D.0.9775.已知不共线向量,,,a b a b a b a b a ---+r r r r r r r r r则与的夹角是A.12π B.6π C.4π D.3π 6.设函数()()()01xxf x a ka a a -=->≠-∞+∞且在,上既是奇函数又是减函数,则()()log a g x x k =+的图象是7.已知函数()sin cos f x a x b x =+(,a b 为常数,0a ≠)在4x π=处取得最小值,则函数()34g x f x π⎛⎫=-⎪⎝⎭是A.偶函数且它的图象关于点(),0π对称B.偶函数且它的图象关于点3,02π⎛⎫⎪⎝⎭对称 C.奇函数且它的图象关于点3,02π⎛⎫⎪⎝⎭对称 D. 奇函数且它的图象关于点(),0π8.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为A.4B.2C.D. 3π9.若(),0,2a b ∈,则函数()3212413f x ax x bx =+++存在极值的概率为 A. 12ln 24+ B. 32ln 24- C. 1ln 22+ D. 1ln 22-10.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 做与x 轴垂直的直线交两渐近线于A,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若()4,,25OP OA OB R λμλμλμ=+=∈uu u r uu r uu u r ,则双曲线的离心率e 是A.B.2C.52D.54二、填空题:本大题共5小题,每小题5分,共25分. 11.若x,y都是锐角,且1sin tan ,53x y x y ==+=则_________. 12.二项式5的展开式中常数项为___________.13.已知0,0a b >>,方程为22420x y x y +-+=的曲线关于直线10ax by --=对称,则2a bab+的最小值为________.14.已知抛物线24y x =上有一条长为6的动弦AB ,则AB 的中点到y 轴的最短距离是_____.15.已知数列{}n a 满足()()11,log 12,n n a a n n n N *==+≥∈.定义:使乘积12k a a a ⋅⋅⋅⋅为正整数的()k k N*∈叫做“易整数”.则在[]1,2015内所有“易整数”的和为________. 三、解答题:本大题共6小题,共75分.16. (本小题满分12分)已知向量()cos ,cos ,3sin cos ,2sin 6m x x n x xx π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,且满足()f x m n =⋅u r r.(I )求函数()f x 的单调递增区间;(II )在ABC ∆,角A,B,C 的对边分别是a,b,c ,满足2,22A a f ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.17. (本小题满分12分)如图1,在直角梯形ABCD 中,90,2,3,//A B AD AB BC EF AB ∠=∠====,且AE=1,M,N 分别是FC,CD 的中点.将梯形ABCD 沿EF折起,使得BC =连接AD,BC,AC 得到(图2)所示几何体. (I )证明:AF//平面BMN ; (II )求二面角B AC D --的余弦值.18. (本小题满分12分)已知函数()()()log 01,,2m n f x x m m a n =>≠且点在函数()f x 的图象上. (I )若()3n n n b a f a m =⋅=,当时,求数列{}n b 的前n 项和n S ; (II )设lg n nn n na a c m m =⋅,若数列{}n c 是单调递增数列,求实数m 的取值范围.19. (本小题满分12分) 某商场组织购物抽奖活动,现场准备了两个装有6个球的箱子,小球除颜色外完全相同,A 箱中放有3个红球、2个白球、1个黄球,B 箱中放有红球、白球和黄球各2个,顾客购物一次可分别从A 、B 两箱中任取(有放回)一球,当两球同色即中奖,若取出两个黄球得3分,取出两个白球得2分,取出两个红球得1分,当两球异色时未中奖得0分,商场根据顾客所得分数多少给予不同奖励. (I )求某顾客购物一次中奖的概率;(II )某顾客先后2次参与购物抽奖,其得分之和为ξ,求ξ的分布列及期望E ξ.20. (本小题满分13分)如图,12,F F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,椭圆C 上的点到1F 点距离的最大值为5,离心率为23,A,B 是椭圆C 上位于x 轴上方的两点,且直线1AF 与直线2BF 平行. (I )求椭圆C 的方程;(II )若122AF BF =uuu r uuu r,求直线1AF 的方程;(III )设21AF BF 与的交点为P , 求证:12PF PF +是定值.21. (本小题满分14分) 已知函数()()2,xxf x ae bex a b R -=--∈的导函数()f x '为偶函数,且曲线()y f x =在点()()0,0f 处的切线斜率0(其中e=2.71828…) (1)求a ,b 的值;(2)设()()()()24g x f x mf x g x =-,若有极值. (i )求m 的取值范围; (ii )试比较11m e em --与的大小并证明你的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015届高三二诊考试数学(理)试题
第Ⅰ卷
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、复数(12)z i i =+,则复数z 的共轭复数z 在复平面内对应的点的坐标为( )
A .()2,1-
B .()2,1-
C .()2,1
D .()2,1--
2、已知集合12{|24},{|230}x A x B x x x -=≥=--<,则()R A C B 等于( )
A .{}|3x x ≥
B .{}|3x x >
C .{}|13x x -<<
D .{|3x x ≥或1}x ≤-
3、双曲线22
221(0,0)x y a b a b
-=>>的离心率为2,则其渐近线的方程为( )
A .y x =
B .y x =
C .y =
D .2y x =± 4、设等差数列{}n a 的前n 项和为n S ,且316,4S a ==,则公差d 等于( )
A .-2
B .1
C .53
D .3 5、为了了解某学校1500名高中男生的身体发育情况,抽查了
该校100名高中男生的体重情况,根据所得数据画出样本的频
率分布直方图,据此估计该校高中男生体重在70~78kg 的人数
为( )
A .240
B .210
C .180
D .60
6、已知两个单位向量,a b 的夹角为60,(1)c t a tb =-+,若12b c ⋅=- ,则实数t 的取值范围是( )
A .2
B .-2
C .12
D .12
- 7、执行如图所示的程序框图所表述的算法,若输出的x 的值为48,
则输入x 的值为( )
A .3
B .6
C .8
D .12
8、函数ln x x
y x =的图象大致是( )
9、某四面体的三视图如图所示,则该四面体的六条棱的长度中,
最大值的是( )
A ..
C ..10、已知函数()211sin 2sin cos cos sin()(0)222
f x x x πϕϕϕϕπ=
+--<<,将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,且1()42
g π=,则ϕ等于( ) A .6π B .4π C .3π D .23π 11、抛物线22(0)y px p =>的交点为F ,已知点,A B 为抛物线上的两个动点,且满足120AFB ∠=
过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则AB
MN 的最小值为( )
A .3
B .3
C .1
D .12、已知113
k ≤<,函数()21x f x k =--的零点分别为1212,()x x x x <,函数()2121
x k g x k =--+的零点分别为3434,()x x x x <,则4321()()x x x x -+-的最小值为( ) A .1 B .2log 3 C .2log 6 D . 3
第Ⅱ卷
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
.
13、在6
2
()x x -的二项展开式中,常数项等于
14、设变量,x y 满足约束条件221y x x y x ≥⎧⎪+≤⎨⎪≥-⎩
,则3z x y =-的最小值为
15、正三角形ABC 的三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点D 是线段BC 的中点,过D 作球O 的截面,则截面面积的最小值为
16、设n n n A B C ∆的三边长分别为,,,1,2,3,n n n a b c n =,若11111,2,b c b c a >+= 111,,22
n n n n n n n n a c a b a a b c +++++==
=,则n A ∠的最大值是 三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤
17、(本小题满分12分)
在ABC ∆中,角,,(A B C C 为钝角)所对的边分别为,,a b c ,且1cos(),2,4A B C a +-== sin()2sin A B A
+=。
(1)求cos C 的值;
(2)求b 的长。
18、(本小题满分12分)
如图,三棱锥P ABC -中,PB ⊥底面ABC 于B ,90,2BCA PB CA ∠===,点E 是PC 的中点。
(1)求证:侧面PAC ⊥面PBC ;
(2)若异面直线AE 与PB 所成的角为θ
,且tan 2
θ=
, 求二面角C AB E --的大小。
19、(本小题满分12分)
某单位有车牌号为2的汽车A 和尾号为6的汽车B ,两车分属两个独立业务部门,对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率06,B 车日出车频率0.5,该地区汽车限行规定如下:
现将汽车日出车频率理解为日出车概率,且A 、B 两车出车相互独立。
(1)求该点位在星期一恰好出车一台的概率;
(2)设X 表示该单位在星期一与星期天两天的出车台数之和,求X 的分布列及其数学期望E(X)。
20、(本小题满分12分)
已知椭圆22
22:1(0)x y C a b a b
+=>>的左右焦点和短轴的两个端点构成边长为2的正方形。
(1)求椭圆C 的方程;
(2)过点(1,0)Q 的直线l 与椭圆C 相较于,A B 两点,且点(4,3)P ,
记直线,PA PB 的斜率分别为12,k k ,当12k k ⋅取最大值时,求直线l 的方程。
21、(本小题满分13分)
已知函数()()1(2)(1)2ln ,(x f x a x x g x xe
a -=---=为常数,e 为自然对数的底数) (1)当1a =时,求()f x 的单调区间;
(2)若对任意的(]00,x e ∈,在(]0,e 上存在两个不同的(1,2)i x i =使得0()()i f x g x =成立,求a 的取值范围。
请考生在第(22)、(23)(24)三体中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.
22、(本小题满分10分)
如图,,,,A B C D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上。
(1)若11,32EC ED EB EA ==,求DC AB
的值;
(2)若2EF FA FB =⋅,证明://EF CD 。
23、(本小题满分10分)
在直角坐标平面内,直线l 过点(1,1)P ,且倾斜角4π
α=,以坐标原点O 为极点,x 轴的
非负半轴为极轴建立极坐标系,已知圆C 的极坐标方程为4sin ρθ=。
(1)求圆C 的直角坐标方程;
(2)这直线l 与圆C 交于,A B 两点,求PA PB ⋅的值。
24、(本小题满分10分)
已知函数()21f x x =-
(1)若对任意的,,()a b c R a c ∈≠,都有()a b b c f x a c -+-≤
-恒成立,求x 的取值范围;
(2)解不等式()3f x x ≤。