11集合的含义与表示(1)

合集下载

高中数学必修1-第一章-集合与函数概念-知识点

高中数学必修1-第一章-集合与函数概念-知识点

第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集 Z有理数集 Q实数集 R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的A⊆(或B⊇A)子集。

记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。

⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(2).“包含”关系(2)—真子集A⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果集合B如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B “元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

新教材人教版高中数学必修1 第五章 复习知识点

新教材人教版高中数学必修1 第五章  复习知识点

A.(1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
【解析】 由题意M=(1,+∞),N=(0,2), 则M∩N=(1,2),故选A. 【答案】 A
3.设集合A={5,log2(a+3) },集合B={a,b}. 若A∩B={2},则A∪B=________. 【解析】 ∵A∩B={2},∴ log2(a+3) =2. ∴a=1.∴b=2. ∴A={5,2},B={1,2}. ∴A∪B={1,2,5}.
集合中元素的互异性,故a≠1,
∴a=-1,此时集合为{-1,0,1},符合题意, ∴a2012+b2012=(-1)2012+02012=1.
【答案】 1
【发散思维】 在利用集合相等或其他相关概念求字母的 值时,特别需注意利用集合中元素的互异性来检验所得 结果是否正确.
1.集合A={0,2,a},B={1,a2 },
2.(2011·海淀模拟)已知集合S= P={x|a+1<x<2a+15}.
xxx+ -25<0

(1)求集合S;
(2)若S⊆P,求实数a的取值范围.
【解析】
(1)由
x+2 x-5
<0得-2<x<5,∴S={x|-2<x<5}
(2)由S⊆P得
a+1≤-2 2a+15≥5
解之得-5≤a≤-3.
(7,1),(5,3),(8,1). 【答案】 C
则A∩( NB )为( )
A.{1,5,7}
B.{3,5,7}
C.{1,3,9}
D.{1,2,3}
【解析】 显然A∩( NB )= A(A∩B), 且A∩B={3,9},所以结果为{1,5,7}.
【答案】 A
2.(2011·东北四校模拟)已知集合M={y|y=2x ,

黑龙江省大庆市育才中学人教版高中数学必修一课件:111集合的含义与表示(共22张PPT)

黑龙江省大庆市育才中学人教版高中数学必修一课件:111集合的含义与表示(共22张PPT)

3 自主习标
(4)集合元素的特性: (1)确定性:设A是一个给定的集合,x是某一个具体 对象,则x或者是A的元素,或者不是A的元素,两种情 况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集 合的互不相同的个体(对象),因此,同一集合中不 应重复出现同一元素。
(3)无序性:一般不考虑元素之间的顺序,但在表示数列 之类的特殊集合时,通常按照习惯的由小到大的数轴顺序 书写。
,用列举法表示B
B={4,9,16}
5 拓 展 •达 标
2.方程组 { x y 1 的解集是( C ) x y1
A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}
5 拓 展 •达 标
3.点的集合M={(x,y)|xy≥0}是指 ( D ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集
5.描述法表示集合 用文字或公式等描述出元素的特性,并放在{ }内
写成 {x | p(x)} 的形式。
整理B级问题.互相讨论两分钟
研标
B级问题分组
B级问题一
3
B级问题二
6
B级问题三
5
分组
B级问题六
1
B级问题五
2
B级问题四
4
整理B级问题.互相讨论一分钟
研标
4 合 作•解 标
1.给出以下四个对象,其中能构成集合的有( C ) ①某中学的年轻教师;
②你所在班中身高超过1.80米的同学;
③2010年广州亚运会的比赛项目;
④1,3,5.
A.1个
B.2个
C.3个

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集

Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.

集合的含义及其表示

集合的含义及其表示

集合的含义及其表示1.1集合的含义及其表示一.课标解读 1.《普通高中数学课程标准》明确指出:“通过实例,了解集合的含义,体会元素与集合的”属于”关系;能选择自然语言.图形语言(列举法或描述法)描述不同的具体问题感受集合语言的意义和作用.” 2.重点:集合的概念与表示方法.3.难点:运用集合的两种常用表示法---列举法与描述法,正确表示一些简单的集合. 二.要点扫描 1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。

集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。

2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。

设集合给定,若有一具体对象,则要么是的元素,要么不是的元素,二者必居其一,且只居其一。

⑵互异性特征:集合中的元素必须是互不相同的。

设集合给定,的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。

3.集合与元素之间的关系集合与元素之间只有“属于”或“不属于”。

例如:是集合的元素,记作,读作“ 属于”;不是集合的元素,记作,读作“ 不属于”。

4.集合的分类集合按照元素个数可以分为有限集和无限集。

特殊地,不含任何元素的集合叫做空集,记作。

5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。

⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。

例如:集合可以用它的特征性质描述为{ },这表示在集合中,属于集合的任意一个元素都具有性质,而不属于集合的元素都不具有性质。

除此之外,集合还常用韦恩图来表示,韦恩图是用封闭曲线内部的点来表示集合的方法(有时,也用小写字母分别定出集合中的某些元素),同学们在下节课中会接触到这个内容。

预科班高一数学课件:1.1.1《集合的含义与表示》(新人教A版必修1)

预科班高一数学课件:1.1.1《集合的含义与表示》(新人教A版必修1)

列举法表示集合:如果一个集合是有限集,元素又不
太多,常常把集合的所有元素一一列举出来,写在花括号 内表示这个集合。 注意 (1)元素个数多且有限又有规律时,可以列举部分,中间用 省略号表示,例如“从1到1000的所有自然数”可以表示为 {1,2,3…,1000} (2)元素个数无限但有规律时,也可以类似用省略号列举, 例如“自然数集N可以表示为{0,1,2,3,…,n…}”
B.2
C.3
D.4
【解析】 ∵π是实数,是无理数, ∴①②正确,N+表示正整数集,而0不是正整数; |-4|是正整数,∴③④错误. 【答案】 B 集合的表示
知识探究(四) 思考:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
自然数集,正整数集,整数集,有理数集,实数 集等一些常用数集,分别用下列符号表示:
如果令a2=1,0或a 解方程求a
检验得x值
根据集合中元素的确定性可以解出字母的所有可能 的值,再根据集合中元素的特性对集合中的元素进行检验,特别是
互异性,最易被忽略.另外,在利用集合中元素的特性解题时要注意
分类讨论思想的运用.
即时练习
1.若集合M中含有三个元素-2, 3 x 2∈M,求x的值
X=-3或x=2
2
3x 4
, x
2
x4
,且
2.设A是满足x<6的所有自然数组成的集合,若a∈A, 且3a∈A,求a的值
a=1
设集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z}. 若a∈A,b∈B,试判断a+b与A,B的关系.
【思路点拨】 因为A是偶数集,B是奇数集, 所以a是偶数,b是奇数从而a+b是奇数. 【解析】 ∵a∈A,∴a=2k1(k1∈Z). ∵b∈B,∴b=2k2+1(k2∈Z). ∴a+b=2(k1+k2)+1. 又∵k1+k2∈Z,

人教版-高一-数学-1.集合的含义与表示

人教版-高一-数学-1.集合的含义与表示

集合的含义与表示一、知识概括1、集合的概念一般地,我们把研究对象统称为元素(element ),通常用小写拉丁字母a,b,c ,…表示。

把一些元素组成的总体叫集合(set ),也简称集,通常用大写拉丁字母A,B,C ,…表示。

集合如同平面几何中点、线、平面等概念一样,是集合论中的原始概念,只进行描述说明,无法定义概念。

某些教材中对集合的描述是:指定的某些对象的全体称为集合。

其中,注意理解(1)指定即说明某些对象具有共同的特征或共同的属性,说明已具备判定对象是否成为该集合的元素的判定标准,而不是随意组合。

(2)对象在不同的集合中,应有不同的内涵。

在不同的集合中,元素还可能是人、物、质点或抽象事物等。

(3)全体说明集合是一个整体概念,针对全部对象而言,并且在这个整体中各元素间无先后排列要求,没有一定的顺序关系。

【注】(1)只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

(2)构成集合的元素除了常见的数、式、点等数学对象外,还可以是其他任何确定的对象。

2、集合元素的特性集合元素具有确定性、互异性、无序性三大特性。

(1)确定性集合中的元素必须是确定的,也就是说,给定一个集合,按照该集合的构成标准能够明确判定一个对象是否属于这个集合。

如“个子高的同学”这一组对象就不能构成一个集合,因为“个子高”这个标准不够明确,而“身高超过170cm 的同学”这一组对象可以构成一个集合。

(2)互异性集合中的元素一定是不同的(或说是互异的)也就是说,相同的元素在一个集合中只能出现一次。

如方程0122=+-x x 的解构成的集合是{1},而不能写成{1,1}(3)无序性集合中元素的排列次序无先后之分,如集合{1,2}和{2,1}是同一个集合。

3、集合与元素的关系元素与集合有属于(∈)和不属于(∉)两种关系。

如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A 。

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

高三数学(文 新课标)一轮复习课件:第一章 集合与常用逻辑用语 ppt

2019年6月1日
缘分让我们相遇,缘分让我们在一起
1
2.常用逻辑用语 (1)理解命题的概念.
(2)了解“若 p,则 q”形式的命题及其逆命题、否命题
与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的含义. (4)了.解逻辑联结词“或”“且”“非”的含义. (5)理解全称量词和存在量词的意义.
第一章 集合与常用逻辑用语
考纲链接
1.集合 (1)集合的含义与表示 ①了解集合的含义,体会元素与集合的属于关系. ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ①理解两.个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
=∅,则实数 a 的取值范围为________.
2019年6月1日
缘分让我们相遇,缘分让我们在一起
19
解:(1)因为{1,a+b,a}=0,ba,b,a≠0, 所以 a+b=0,ba=-1,从而 b=1, 所以 a=-1,b=1,所以 b-a=2.故填 2. (2)由 A=∅知方程 ax2+3x-2=0 无实根, 当 a=0 时,x=23不合题意,舍去;
(6)能正确地对含一个量词的命题进行否定 .
2019年6月1日
缘分让我们相遇,缘分让我们在一起
2
• 1.1 集合及其运算
2019年6月1日
缘分让我们相遇,缘分让我们在一起
3
1.集合的基本概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、 (★★★★)思考:设 x∈R,集合 A {3, x, x 2 x} .(1)求元素 x 所应满足的条件; (2)若 2 A ,
2
求实数 x.
【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问?
变革学习方式 构建高效课堂
2
B.所有偶数的集合表示为 {x | x 2k} D. 方程 x 2 4 0 实数根的集合表示为 {(2, 2)} D. x 0或x 2
C.全体自然数的集合可表示为{自然数}
(★★★)3. 若 x { 1,2, x
} ,则有(
预习检测:首先独立思考探究,然后合作交流展示
1.一般地,把研究对象统称为 ,把一些元素组成的总体叫 ,也简称 ; 2.集合中的元素具备 、 、 特征性质; 3.集合常用大写字母 表示,元素用小写字母 表示; (1)如果 a 是集合 A 的元素,就说 a 属于 A,记作 a A (2)如果 a 不是集合 A 的元素,就说 a 不属于 A,记作 a A (3)集合相等:构成两个集合的元素 . 4.常用数集及其记法 非负整数集(或自然数集) ,记作 ; 正整数集,记作 或 ;整数集,记作 ; 有理数集,记作 ; 实数集,记作 。 5.集合的常用表示方法有: (1)把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示 集合的方法叫做 ; (2)用集合所含元素的共同特征表示集合的方法称为 ,一般形式为 {x A | P} ,其中 x 代表元素,P 是确定条件; 【课堂合作探究】 【合作探究 1】分析下列对象,能否构成集合,并指出元素: ① 不等式 x 3 0 的解; ② 3 的倍数; ③ 方程 x 2 2 x 1 0 的解; ④ a,b,c,x,y,z; ⑤ 最小的整数; ⑥ 周长为 10 cm 的三角形;
2016 届高一数学必修一导学案 NO 11 编写 蒋丹 审核 第 周 班 课题: 集合的含义与表示(1) 第 课时 组评 【使用说明】1、依据学习目标。课前认真预习,完成自主学习内容;
审批 组 姓名 师评
⑦ ⑧ ⑨ ⑩
中国古代四大发明; 全班每个学生的年龄; 地球上的四大洋; 地球的小河流.
2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难易程度。★越多说明试题越难。 【学习目标】1、了解集合的含义; 2、了解集合元素的确定性,互异性,无序性; 3、掌握常用数集及集合的专用符号. 【教学重点】集合的表示方法
【合作探究 2】用适当的方法表示下列集合: (1)小于 20 的素数组成的集合; (2)由大于 3 小于 9 的实数组成的集合;(
【教学难点】用列举法与描述法正确表示集合 【学习方法】 【自主学习·梳理基础】 阅读教材,组织学生活动(看书,阅读,思考,回答) 1 列举生活中的集合实例。 2 分析,概括各种集合实例的共同特征。 3 思考并回答下列问题: (1)本小节关于集合知识有哪些概念?元素与集合有什么关系? (2)本节关于集合知识涉及哪些符号?是如何表示的? (3)集合的常用表示方法有哪些?各自的特点是什么? ). A.某个村子里的高个子组成一个集合
B.所有小正数组成一个集合
1 3 6 1 C.集合 {1, 2,3, 4,5} 和 {5, 4,3, 2,1} 表示同一个集合 D. 1, 0.5, , , , 这六个数能组成一个集合 2 2 4 4
(★★)2. 下列说法正确的是(
). A.不等式 2 x 5 3 的解集表示为 {x 4}
教学,重要的不是教师的“教” ,而是学生的“学” 。 1/1
A. x 0或x 1
) B. x 1或x 2 C. x 0或x 1或x=2 【课后巩固】
1、下列对象能否组成集合: (1)数组 1、3、5、7; (2)到两定点距离的和等于两定点间距离的点; (3)满足 3x-2>x+3 的全体实数; (4)所有直角三角形; (5)美国 NBA 的著名篮球明星; (6)所有绝对值等于 6 的数; (7)所有绝对值小于 3 的整数; (8)中国男子足球队中技术很差的队员; (9)参加 2008 年奥运会的中国代表团成员.
相关文档
最新文档