高三数学等比数列试题答案及解析
人教A版数学高三等比数列的前n项和精选试卷练习(含答案)4

17.已知数列 an 前 n 项和为 Sn ,且满足 Sn an 2 p ,(p 为非零常数),则下列结
论中正确的是( )
A.数列 an 必为等比数列
C. a3 a8 a5 a6
B.
p
1时,
S5
31 32
D.存在 p,对任意的正整数 m,n,都有
am an amn
评卷人 得分
三、填空题
n;
(3)是否存在互不相等的正整数 m,s,n,使 m,s,n 成等差数列,且 am-1,as-1,an -1 成等比数列?如果存在,请给以证明;如果不存在,请说明理由.
32.定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an} 为
三角形”数列对于“三角形”数列{an} ,如果函数 y f ( x) 使得 bn f (an ) 仍为一个三角
18.设 Sn 是数列 an 的前 n 项和,且 a1 1 , (n 1)an1 (n 1)Sn ,则
Sn __________.
19.设 Sn 是等比数列an 的前 n 项的和,若
a6 a3
1 2
,则
S6 S3
________.
20.已知 a1 4 , anan1 2 an1 , bn
人教 A 版数学高三等比数列的前 n 项和精选试卷练习(含答 案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.设等比数列
an
的公比 q =
2
,前
n
项和为
Sn
,则
S4 a2
(
)
15
A.
高考数学二级结论快速解题:专题11 与等比数列相关的结论(解析版)

专题11与等比数列相关的结论一、结论已知等比数列{}n a ,公比为q ,前n 项和为n S .(1)n mn m a a q(,m n N ).(2)若m n p q ,则m n p q a a a a (,,,m n p q N );反之,不一定成立.(3)123m a a a a ,122m m m a a a ,21223m m m a a a , 成等比数列(m N ).(4)公比1q 时,n S ,2n n S S ,32n n S S ,43n n S S 成等比数列(n N ).(5)若等比数列的项数为2n (n N ),公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S q S 偶奇.(6){}n a ,{}n b 是等比数列,则{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列(0 ,n N ).(7)通项公式111n nn a a a qq q.从函数的角度来看,它可以看作是一个常数与一个关于n 的指数函数的积,其图象是指数函数图象上一群孤立的点.(8)只有同号的两个数才能有等比中项;两个同号的数的等比中项有两个,它们互为相反数.(9)三个数成等比数列,通常设为x q ,x ,xq ;四个数成等比数列,通常设为3x q ,xq,xq ,3xq .二、典型例题1.(2022·安徽·合肥市第十一中学高二期末)设等比数列 n a 的前n 项和为n S ,若63:1:2S S ,则93:S S ()A .1:2B .2:3C .3:4D .1:3【答案】C 【解析】解:因为数列 n a 为等比数列,则3S ,63S S ,96S S 成等比数列,设3S m ,则62m S ,则632mS S ,故633S S S 966312S S S S ,所以964m S S ,得到934S m ,所以9334S S .故选:C.【反思】公比1q 时,n S ,2n n S S ,32n n S S ,43n n S S 成等比数列(n N ),此结论可快速解题,解题时注意等比数列的正负性问题.2.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为()A .2B .4C .8D .16【答案】C 【解析】设这个等比数列 n a 共有 2k k N项,公比为q ,则奇数项之和为132185k S a a a 奇,偶数项之和为 2421321170n n S a a a q a a a qS 奇偶,170285S q S偶奇,等比数列 n a 的所有项之和为212212211708525512kkk a S,则22256k,解得4k ,因此,这个等比数列的项数为8.故选:C.【反思】利用结论若等比数列的项数为2n (n N ),公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S q S 偶奇,可直接根据结论求出q ,进而求出其它量.三、针对训练举一反三一、单选题1.(2022·广东潮阳·高二期末)等比数列 n a 的各项均为正数,且383 a a ,则3132310log log log a a a ()A .5B .10C .4D .32log 5【答案】A 【解析】【详解】由题有293847561103a a a a a a a a a a ,则531323103293847561103log log log log ()lo 3g a a a a a a a a a a a a a =5.故选:A2.(2021·江苏·高二专题练习)在等差数列 n a 中,若100a ,则有等式121219n n a a a a a a (19n 且N n )成立,类比上述性质,在等比数列 n b 中,若111b ,则有()A .121219n n b b b b b b L L (19n 且N n )B .121221n n b b b b b b L L (21n <且N n)C .121921n n b b b b b b (19n 且N n )D .121122n n b b b b b b (21n <且N n )【答案】B 【详解】在等差数列 n a 中,若 ,,,N s t p q s t p q则s t p q a a a a ,若0m a ,则1222210n n m n m n a a a a ,所以121221n m n a a a a a a 成立,当10m 时,121219n n a a a a a a (19n 且N n )成立,在等比数列 n b 中,若 ,,,N s t p q s t p q则s t p q b b b b ,若1m b ,则1222211n n m n m n b b b b ,所以121221n m n b b b b b b 成立,当11m 时,12n b b b L =1221n b b b L (21n <且N n )成立,故选:B.3.(2022·全国·高三专题练习)已知等比数列 n a 的前n 项和为n S ,若43S ,89S ,则16S 的值为()A .12B .30C .45D .81【答案】C 【详解】显然公比不为-1,∵ n a 是等比数列,则4841281612,,,S S S S S S S 也成等比数列,483,9S S ∵,846S S ,12812S S ,则1221S ,161224S S ,则1645S .故选:C.4.(2020·四川·双流中学高二期中(理))设n S 是等比数列 n a 的前n 项和,若423S S ,则64S S ()A .2B .73C .310D .12或【答案】B 【详解】设24,3S k S k ,由数列 n a 为等比数列(易知数列 n a 的公比1q ),得24264,,S S S S S 为等比数列又242,2S k S S k644S S k67,S k 647733S k S k故选:B .5.(2021·全国·高二课时练习)已知等比数列 n a 中,11a ,132185k a a a ,24242k a a a ,则k ()A .2B .3C .4D .5【答案】B 【详解】设等比数列 n a 的公比为q ,则132112285k k a a a a a a q q ,即 2285184k q a a ,因为24242k a a a ,所以2q =,则 21123221112854212712k k k a a a a a ,即211282k ,解得3k ,故选:B.6.(2021·江西·奉新县第一中学高一阶段练习)等比数列的首项为1,项数是偶数,所有得奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为()A .4B .6C .8D .10【答案】C设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则85,170S S 奇偶,所以=2S q S偶奇,结合等比数列求和公式有:22122112==185112nn a q S q奇,解得n =4,即这个等比数列的项数为8.本题选择C 选项.7.(2022·上海·高考真题)已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是()A .若20222021S S ,则数列{}n a 单调递增B .若20222021T T ,则数列{}n a 单调递增C .若数列{}n S 单调递增,则20222021a aD .若数列{}n T 单调递增,则20222021a a 【答案】D 【详解】A :由20222021S S ,得20220a ,即202110a q,则1a 、q 取值同号,若100a q ,,则{}n a 不是递增数列,故A 错误;B :由20222021T T ,得20221a ,即202111a q,则1a 、q 取值同号,若100a q ,,则数列{}n a 不是递增数列,故B 错误;C :若等比数列11a ,公比12q ,则11(122(1)1212nn nS ,所以数列{}n S 为递增数列,但20222021a a ,故C 错误;D :由数列{}n T 为递增数列,得1n n T T ,所以1n a ,即1q ,所以20222021a a ,故D 正确.故选:D8.(2021·全国·高二课时练习)已知n S 是等比数列 n a 的前n 项和,若存在*m N ,满足22519,1m m m m S a m S a m ,则数列 n a 的公比为()A .2B .2C .3D .3【答案】B 【详解】设数列 n a 的公比为q ,若1q ,则22mmS S ,与题中条件矛盾,故212122111115111.19,8.8,111mm mmm m m m mm m a q S a a q m qq q q q S a a q m a q q∵∵33,8,2m q q .故选:B 二、填空题9.(2021·全国·高三专题练习)设正项等比数列 n a 的前n 项和为n S ,132,14a S ,若n nnb a,则数列 n b 中最大的项为_____.【答案】12【详解】根据题意,设正项等比数列 n a 的公比为q ,其中0q ,因为132,14a S ,可得2322214S q q ,解得2q =或3q ,因为0q ,所以2q =,所以112n n n a a q ,则2n n n n n b a,故122121,222b b ,当2n 时,则由11112(1)112(1)212n n n n nb n n b n n ,则有1234b b b b ,所以数列 n b 中最大的项为12.故答案为:12.10.(2020·江西省都昌县第二中学高二阶段练习)已知等比数列 n a 的首项为1a ,公比为q ,其前n 项和为n S ,下列命题中正确的是______.(写出全部正确命题的序号)(1)若等比数列 n a 单调递增,则10a ,且1q ;(2)数列:23243,,n n n n n n S S S S S S ,……,也是等比数列;(3) *11,2n n S qS a n N n ;【答案】(3)【详解】解:对于(1),若等比数列 n a 单调递增,则 11110n n n a a a q q ,所以101a q 或1001a q,故(1)错误;对于(2),若1q ,n 为偶数,则20,0n n S S ,即20n n S S ,因为等比数列中的项不可能为0,故此时23243,,n n n n n n S S S S S S ,……,不是等比数列,故(2)错误;对于(3),当*,2n N n 时,123n nS a a a a1111n a q a a a 11n qS a ,故(3)正确.故答案为:(3).三、解答题11.(2020·上海·高三专题练习)解答下列各题:(S 奇表示奇数项和,S 偶表示偶数项和)(1) n a 是等比数列,11a ,项数n 为偶数.S 奇=85,S 偶=170,求n ;(2) n a 是等差数列,共n 项,n 为奇数,77n S ,S 偶33 ,118 n a a ,求通项公式.【答案】(1)8;(2)323 n a n .【详解】(1) 2S q S偶奇,所以128517012nn S ,解得8n ;(2)S 奇=n S S 偶=44,12n a =S 奇-S 偶=44-33=11,即122 n a a ,由118 n a a ,可得120,2,7 n a a n ,∴220371d.所以通项公式为203(1)323n a n n ..。
2023北京重点校高三(上)期末数学汇编:等比数列

2023北京重点校高三(上)期末数学汇编等比数列一、单选题 1.(2023秋·北京房山·高三统考期末)已知数列{}n a 满足12n n a a +=,且12a =,则数列{}n a 的前四项和4S 的值为( ) A .1516B .1516−C .154D .154−二、填空题2.(2023秋·北京昌平·高三统考期末)已知数列{}n a 中,()*112,20N n n a a a n +=−=∈,则数列{}n a 的通项公式为__________.3.(2023秋·北京石景山·高三统考期末)等比数列{}n a 中,14a ,22a ,3a 成等差数列,若11a =,则公比q = __________.三、解答题4.(2023秋·北京通州·高三统考期末)约数,又称因数.它的定义如下:若整数a 除以整数m ()0m ≠除得的商正好是整数而没有余数,我们就称a 为m 的倍数,称m 为a 的约数.设正整数a 共有k 个正约数,即为121,,,,k k a a a a −⋅⋅⋅()12k a a a <<⋅⋅⋅<.(1)当4k =时,若正整数a 的k 个正约数构成等比数列,请写出一个a 的值; (2)当4k ≥时,若21321,,,k k a a a a a −−−⋅⋅⋅构成等比数列,求正整数a ; (3)记12231k k A a a a a a a −=++⋅⋅⋅+,求证:2A a <. 四、双空题5.(2023秋·北京丰台·高三统考期末)在等差数列{}n a 中,公差d 不为0,19a =,且145,,a a a 成等比数列,则d =___________;当n =___________时,数列{}n a 的前n 项和n S 有最大值.6.(2023秋·北京西城·高三统考期末)已知{}n a 是等差数列,15a =,且2342,4,6a a a +++成等比数列,则6a =______________;{}n a 的前n 项和n S =______________.参考答案1.C【分析】由题意{}n a 是首项为2、公比为12的等比数列,利用等比数列前n 项和公式求4S 的值. 【详解】由题设{}n a 是首项为2、公比为12的等比数列,即212n n a −=,所以4412(1)1521412S ⨯−==−. 故选:C 2.2n n a =【分析】判断数列为等比数列,根据等比数列的通项公式可求得答案.【详解】数列{}n a 中,()*112,20N n n a a a n +=−=∈则0n a ≠,否则与12a =矛盾, 故12n na a +=,即数列{}n a 为首项为2,公比为2的等比数列, 所以2n n a =, 故答案为:2n n a = 3.2【分析】由等差中项的性质以及等比数列的通项列方程即可求解. 【详解】因为14a ,22a ,3a 成等差数列, 所以23144a a a =+,可得211144a q q a a =+,因为10a ≠,所以244q q =+, 解得:2q,故答案为:2. 4.(1)8.(2)12k a a −=()4k ≥. (3)证明见解析.【分析】(1)根据题意即可写出a 的一个值; (2)由题意可知11a =,k a a =,12k a a a −=,23k aa a −=,结合21321,,,k k a a a a a a −−−⋅⋅⋅−构成等比数列,可推出3a 是完全平方数,继而可得232a a =,由此可知21321,,,k k a a a a a a −−−⋅⋅⋅−为212222221,,,k k a a a a a −−−−⋅⋅⋅−,即可求得a ;采用放缩法以及裂项求和的方法,即可证明结论.【详解】(1)当4k =时正整数a 的4个正约数构成等比数列, 比如1,2,4,8为8的所有正约数,即8a =. (2)由题意可知11a =,k a a =,12k a a a −=,23k aa a −=,因为4k ≥,依题意可知3212112k k k k a a a aa a a a −−−−−=−−,所以3222123a a a a a a aa a a a −−=−−,化简可得()()2232231a a a a −=−,所以232321a a a a a ⎛⎫−= ⎪−⎝⎭,因为*3N a ∈,所以*3221N a a a a −∈−, 因此可知3a 是完全平方数.由于2a 是整数a 的最小非1因子,3a 是a 的因子,且32a a >,所以232a a =,所以21321,,,k k a a a a a a −−−⋅⋅⋅−为212222221,,,k k a a a a a −−−−⋅⋅⋅−, 所以12k a a −=,()4k ≥.(3)证明:由题意知1211,,,,k k i k i a a a a a a a a a −+−==⋅⋅⋅=⋅⋅⋅,()1i k ≤≤,所以22212112k k k k a a a A a a a a a a −−−=++⋅⋅⋅+, 因为121121************,,k k k k k k k ka a a a a a a a a a a a a a a a −−−−−−≤=−⋅⋅⋅≤=−, 所以22221211212112111k k k k k k k k a a a A a a a a a a a a a a a a a −−−−−−⎛⎫=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎝⎭ 2212231111111111k k k a a a a a a a a a a −⎛⎫⎛⎫≤−+−+⋅⋅⋅+−=− ⎪ ⎪⎝⎭⎝⎭,因为11a =,k a a =,所以1111ka a −<, 所以22111kA a a a a ⎛⎫≤−< ⎪⎝⎭, 即2A a <.【点睛】关键点点睛:在第二问的解答中,在得到232321a a a a a ⎛⎫−= ⎪−⎝⎭后,要能根据*3N a ∈,推得*3221N a a a a −∈−,继而得出232a a =,这是解决问题的关键.第三问的证明中,难点在于要能注意到和的方法进行化简进而证明结论. 5. 2− 5【分析】根据等比数列得到2415a a a =,解得2d =−,再计算510a =>,610a =−<,得到答案.【详解】145,,a a a 成等比数列,故2415a a a =,即()()293994d d +=⨯+,解得2d =−或0d =(舍).()921112n a n n =−−=−,190a =>,510a =>,610a =−<,故5n =时,n S 有最大值. 故答案为:2−;5 6. -5 26n n −+【分析】(1)设出等差数列的公差,根据2342,4,6a a a +++成等比数列,列出式子,将234,,a a a 均用1,a d 代替,解出d ,即可求6a 的值;(2)由上一空求得的d ,根据等差数列前n 项和公式代入即可求出答案. 【详解】解:由题知{}n a 是等差数列, 不妨记公差为d ,因为2342,4,6a a a +++成等比数列,15a =, 所以()()()2342462a a a +=++, 即()()()2293117d d d +=++, 解得:2d =−,故6155105a a d =+=−=−; 由于15a =,2d =−, 所以()21162n n n d S a n n n −+=−+=. 故答案为:-5;26n n −+。
高三数学数列试题答案及解析

高三数学数列试题答案及解析1.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________【答案】【解析】由题意,,,所以,则时,,两式相减得,,也适合此式,故.【考点】新定义与数列的通项公式.2.已知数列的通项公式an= (n∈N*),求数列前30项中的最大项和最小项.【答案】最大项为a10,最小项为a9【解析】∵an =1+,∴当n≤9时,an随着n的增大越来越小且小于1,当10≤n≤30时,a n 随着n的增大越来越小且大于1,∴前30项中最大项为a10,最小项为a9.3.(本小题满分12分)已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求适合方程的的值.(Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M 的最小值;若不存在,请说明理由。
【答案】,2/9【解析】19. 解:(Ⅰ)当时,,由,得.当时,,,∴,即.∴.∴是以为首项,为公比的等比数列.故.………………6分(Ⅱ),,………………8分………10分解方程,得………………12分(2)解法一:,由错误!不能通过编辑域代码创建对象。
,当,又故存在实数M,使得对一切M的最小值为2/9。
4.把数列的所有项按照从大到小的原则写成如题15图所示的数表,其中的第行有个数,第行的第个数(从左数起)记为则_____________.【答案】【解析】略5.设等差数列的前项和为,若,,则()A.63B.45C.36D.27【答案】B【解析】在等差数列中,成等差数列。
因为,,所以。
故选B。
【考点】等差数列的性质点评:在等差数列中,成等差数列。
6.(本小题满分14分)已知曲线.从点向曲线引斜率为的切线,切点为。
(1)求数列的通项公式;(2)证明:。
【答案】(1);(2)证明见解析。
【解析】(1)设直线:,联立得:,则,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,则有,即。
2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解

2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例1.(2022·河南·一模(理))已知等比数列{}n a 的前n 项和为n S ,()121n n a S n *+=+∈N .(1)求数列{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项,,m k p d d d (其中,,m k p 是公差不为0的等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【解析】(1)当2n ≥时,由121n n a S +=+得:121n n a S −=+,11222n n n n n a a S S a +−∴−=−=,则13n n a a +=,{}n a 为等比数列,∴等比数列{}n a 的公比为3;当1n =时,2112121a S a =+=+,11321a a ∴=+,解得:11a =,()13n n a n −*∴=∈N(2)假设存在满足题意的3项,由(1)得:13nn a +=,又()11n n n a a n d +=++,1113323111n n n n n n a a d n n n −−+−−⋅∴===+++; ,,m k p d d d 成等比数列,2km p d d d ∴=⋅,即()()()2211224323234311111k m p m p m p m p k −−−+−⋅⋅⋅⋅=⋅=+++++, ,,m k p 成等差数列,2k m p ∴=+,()()()2224343111m p m p m p k +−+−⋅⋅∴=+++,()()()2111121k m p mp m p mp k ∴+=++=+++=++,整理可得:2k mp =,又222m p k +⎛⎫= ⎪⎝⎭,222224m p m mp p mp +++⎛⎫∴== ⎪⎝⎭, 即()20m p −=,解得:m p =,则m p k ==,与已知中,,m k p 是公差不为0的等差数列相矛盾,∴假设错误,即不存在满足题意的3项.例2.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,()12,2(1)N n n a n a n S n *=⋅=+⋅∈. (1)求数列{}n a 的通项公式;(2)判断数列231⎧⎫−⎨⎬+⎩⎭n n a n 中是否存在成等差数列的三项,并证明你的结论. 【解析】(1)N n *∈,2(1)n n n a n S ⋅=+⋅,则当2n ≥时,()12(1)−⋅−=+⋅n n n n S S n S ,即121−=⋅−n n S Sn n ,而121S =,因此,数列{}n S n 是公比为2的等比数列,则11221n n n S S n −=⋅=,即2n n S n =⋅,所以1(1)(1)22−+⋅==+⋅n nn n S a n n. (2)记231=−+nn n b a n ,由(1)知,123(1)2321−=−⋅+=−+n n n n n b n n ,不妨假设存在,,()<<m n p b b b m n p 三项成等差数列,则()2323232−=−+−n n m m p p ,因为(),,N m n p m n p *<<∈,所以1+≤n p ,令()()32N nnf n n *=−∈,则3()212⎡⎤⎛⎫=−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n nf n ,于是有()f n 对N n *∈是递增的,则()(1)≥+f p f n ,即113232++−≥−p p n n ,因此()1123232323232++−=−+−≥−+−n n m m p p m m n n ,即332n m m −≥−,其左边为负数,右边为正数,矛盾,所以数列231⎧⎫−⎨⎬+⎩⎭n n a n 中不存在成等差数列的三项. 例3.(2022·福建省福州华侨中学高三阶段练习)已知在正项等比数列{}n a 中13213,,22a a a 成等差数列,则2022202120202019a a a a +=+__________.【答案】9【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13213,,22a a a 成等差数列,所以31212322a a a ⨯=+,即211132a q a a q =+,又10a >,2230q q ∴−−=所以3q =或1q =−(不符合题意,舍去).所以20212020322202220211120192018202020191191a a a q a q q q q a a a q a q q ++===+=+++, 故答案为:9.例4.(2022·湖北·高三期中)已知{}n a 是等差数列,{}n b 是等比数列,n S 是数列{}n a 的前n 项和,1111S =,573b b =,则6326log a b =______. 【答案】−1【解析】因为{}n a 是等差数列,且n S 是数列{}n a 的前n 项和,所以()1111161111112a a S a +===,解得61a =,因为{}n b 是等比数列,所以25763b b b ==,则633261log log 13a b ==−. 故答案为:1−.例5.(2022·河南省淮阳中学模拟预测(理))已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______. 【答案】[)2,+∞【解析】因为9S ,5a ,1成等比数列,所以()192595992a a a S a +===,所以59a =,即149a d +=,即194a d =−.由20400S ≥,得()1201902094190400a d d d +=⨯−+≥,解得2d ≥,即{}n a 的公差d 的取值范围为[)2,+∞. 故答案为:[)2,+∞.例6.(2022·上海·华东师范大学第一附属中学高三阶段练习)已知等差数列{}n a 的公差d 不为零,等比数列{}n b 的公比q 是小于1的正有理数.若1a d =,21b d =,且222123123a a ab b b ++++是正整数,则q 的值可以是______. 【答案】12【解析】由题意知:{}n a 是首项为d ,公差为d ,且0d ≠的等差数列,{}n b 是首项为2d ,公比为q ,且01q <<的等比数列,∴()()()2222222123222222212323141411d d d a a a d b b b d d q d q q q d q q ++++===++++++++, 要使222123123a a ab b b ++++为正整数,即2141q q ++为正整数,∵01q <<,201q <<,∴2113q q <++<,设2141q q n ++=,()0n >,即1413n <<,即14143n <<, 又∵21414141n q q n==++,∴n 为正整数,则满足范围的n 的值有:5,6,7,8,9,10,11,12,13, 又221314124q q q n ⎛⎫++=++= ⎪⎝⎭,即111222q =−=−=−又由题意知:01q <<,且为有理数,∴12q =−8n =时,满足题意,此时:111112222q =−−−+=.故答案为:12.例7.(2022·贵州·顶效开发区顶兴学校高三期中(理))对于集合A ,B ,定义集合{|}A B x x A x B −=∈∉且. 己知等差数列{}n a 和正项等比数列{}n b 满足14a =,12b =,212n n n b b b ++=+,332a b =+.设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B −的所有元素按从小到大依次排列构成一个新数列{}n c ,则数列{}n c 的前30项和30S =_________. 【答案】1632【解析】{}n b 为正项等比数列,则2221222n n n n n n b b b b q b q b q q ++=+⇒=+⇒=+,解得2q =或1q =−(舍),∴1122n nn b b −==;{}n a 为等差数列,则331222a a d =+=+,∴3d =,∴()41331n a n n =+−⋅=+.由231,*nn m b a m n m =⇒=+∈N 、,可得当2468n =、、、时,152185m =、、、, 故数列{}n c 的前30项包含数列{}n a 前33项除去数列{}n b 第2、4、6项,()3043331334166416322S +⨯+⨯=−−−=.故答案为:1632例8.(2022·全国·模拟预测(文))设数列{}n a ,{}n b 满足2n n a =,38n b n =−,则它们的公共项由小到大排列后组成新数列{}n c .在k c 和()1N*k c k +∈中插入k 个数构成一个新数列{}n e :1c ,1,2c ,3,5,3c ,7,9,11,4c ,…,插入的所有数构成首项为1,公差为2的等差数列,则数列{}n e 的前20项和20T =______. 【答案】1589【解析】2nn a =,∴数列{}n a 是以2首项,公比为2的等比数列,12a ∴=,24a =,38a =,416a =,因为38n b n =−,所以15b =−,22b =−,31b =,44b = 知1a 显然不是数列{}n b 中的项.424a b ==,2a ∴是数列{}n b 中的第4项,设2kk a =是数列{}n b 中的第m 项,则238(k m k =−、*N )m ∈.112222(38)616k k k a m m ++==⨯=−=−, 1k a +∴不是数列{}n b 中的项.222424(38)3(48)8k k k a m m ++==⨯=−=−−,2k a +∴是数列{}n b 中的项.21c a ∴=,42c a =,63c a =,⋯,2n n c a =,∴数列{}n c 的通项公式是224n n n c ==.因为12345520+++++=,所以{}n e 的前20项包括n c 的前5项,以及21n −的前15项,所以 1234520444441329T =++++++++()()5414129151589142−+⨯=+=−故答案为:1589.。
等比数列的前n项和公式专题练习(解析版)

等比数列的前n 项和公式一、单选题 1.(2021·内蒙古宁城·高三月考(文))已知{}n a 是等比数列,若12a =,528a a =,数列{}n a 的前n 项和为n S ,则n S 为( ) A .22n - B .121n +- C .122n +- D .21n -【答案】C 【分析】设公比为q ,根据528a a =求得公比,再利用等比数列前n 项和的公式即可得出答案. 【详解】 解:设公比为q ,因为528a a =,所以3528a q a ==,所以2q ,所以()12122212nn n S +⨯-==--.故选:C.2.(2021·河北·高三月考)已知正项等比数列{}n a 的前n 项和为n S ,42S =,810S =,则{}n a 的公比为( ) A.1 B C .2 D .4【答案】B 【分析】利用等比数列的性质求解即可. 【详解】因为42S =,810S =,{}n a 为正项等比数列,所以4845678412344S S a a a a q S a a a a -+++===+++,解得q 故选:B .3.(2021·西藏·拉萨那曲第二高级中学高三月考(文))记等比数列{}n a 的前n 项和为n S ,若214a =,378S =,则公比q = ( ) A .12-B .12C .2D .12或2【答案】D 【分析】根据等比数列的性质可得2132116a a a ==,再由378S =,可得1358a a +=,分别求出13,a a ,即可得出答案. 【详解】解:在等比数列{}n a 中,若214a =,则2132116a a a ==,312378S a a a =++=,所以1358a a +=, 由13116a a =,1358a a +=,解得131218a a ⎧=⎪⎪⎨⎪=⎪⎩,或131812a a ⎧=⎪⎪⎨⎪=⎪⎩,当131218a a ⎧=⎪⎪⎨⎪=⎪⎩时,2112a a q ==, 当131812a a ⎧=⎪⎪⎨⎪=⎪⎩时,212a q a ==, 所以q =12或2.故选:D.4.(2021·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3 B .13C .2D .12【答案】B 【分析】 由已知得()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭.再求得13a =,从而有数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,由等比数列的通项公式求得n a ,再利用分组求和的方法,以及等比数列求和公式求得n S ,从而求得n T 得答案. 【详解】解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=,∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n na --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn n n n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n nn n a S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13.故选:B.5.(2021·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2 B .()1213n- C .4n ﹣1 D .()1413n- 【答案】D 【分析】根据等比数列定义,求出214n n n b a -==,可证明{}n b 是以1为首项,4为公比的等比数列,利用等比数列的求和公式,可得解 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --=== 由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列 a 12+a 22+⋯+a n 2=1(14)41143n n ⋅--=- 故选:D6.(2021·河南郑州·高二期中(理))设n A ,n B 分别为等比数列{}n a ,{}n b 的前n 项和.若23n n n n A aB b+=+(a ,b 为常数),则74a b =( )A .12881B .12780C .3227D .2726【答案】C 【分析】设(2),(3)n nn n A a m B b m =+=+,项和转换776a A A =-,443b B B =-求解即可【详解】由题意,23n n n n A a B b+=+ 设(2),(3)n nn n A a m B b m =+=+则76776[(2)(2)]64a A A a a m m =-=+-+=()()434433354b B B b b m m ⎡⎤=-=+-+=⎣⎦7464325427a mb m ∴== 故选:C7.(2021·河南郑州·高二期中(理))设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【答案】A 【分析】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,然后利用分求出,n n A B ,再利用n n n S A B =+列方程,由对应项的系数相等可求出结果 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则 ()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n nn n d d S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221b d da q q-====--, 解得111,2,5,4a d q b ====, 所以3d q -=-.8.(2021·福建·泉州科技中学高三月考)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列233464510105,,,,,,,,,,,则此数列的前35项和为( )A .994B .995C .1003D .1004【答案】B 【分析】没有去掉“1”之前,可得每一行数字和为首项为1,公比为2的等比数列,可求出其前n 项和为21n n S =-,每一行的个数构成一个首项为1,公差为1的等差数列,从而可求出前n 项总个数为(1)2n n n T +=,由此可计算出第10行去掉“1”后的最后一个数为第36个数,从而可求出前35项和。
高三数学等比数列及其前n项和

考点三
例 2
等比数列的性质及应用
(1)在各项不为零的等差数列{an}中,2a2 019-
b2 020=a2 020,则 log2(b2 019·b2 021)的值为(
+2a2
)
A.1 B.2 C.4 D.8
解析:(1)因为在等差数列{an}中,a2 019+a2 021=2a2 020,
an+2k,an+3k,…为等比数列,公比为qk.
(5)在等比数列{an}中,若Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n也成等比数列(n为偶数且
q≠-1).
释疑
(1)任意两个实数不一定都有等比中项,只有同号的两个非零实数才有等比中项.
n
n
(2)an= ·q ,当 q>0 且 q≠1 时,可以看成函数 y=cq ,其是一个不为 0 的常数与指数
(- ) -
na1;当 q≠1 时,{an}的前 n 项和 Sn=
-
=
-
.
考点二
等比数列的判定与证明
例1 设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a2,a3的值;
(1)解:因为a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),
第3节
等比数列及其前n项和
课程标准要求
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解
答
.
4.了解等比数列与指数函数的关系.
【全套】2021届新课改地区高三数学一轮专题复习——第35讲 等比数列(解析版)

为( )
A.-2+ 2 2
B.- 2
C. 2
D.- 2或 2
(2)等比数列{an}的各项均为正数,且 a1a5=4,则 log2a1+log2a2+log2a3+log2a4+log2a5=________. 【答案】 (1)B (2)5 【解析】 (1)设等比数列{an}的公比为 q,因为 a3,a15 是方程 x2+6x+2=0 的两根,所以 a3·a15=a29=2,
1 (q4)3 1 (q4)2
1 23 1 22
7. 3
1 q
(2):(基本量法) 设数列 an 的首项是 a1 ,公比为 q ,则由 a3 a2 4 , a4 16 ,得
a1q a1q
2 3
a1q 16
4
解得
aq122 , S3 a1 a2 a3 a1 a1q a1q2 2 4 8 14 .
项 a1>0,公比 0<q<1 或首项 a1<0,公比 q>1,则数列为递减数列;若公比 q=1,则数列为常数列;公比
q<0,则数列为摆动数列.
1
an
(5)若{an}和{bn}均为等比数列,则{λan}(λ≠0)、{|an|}、an 、{a2n}、bn 、{manbn}(m≠0)仍为等比数列.
1 / 14
变式 2、 (1)[2018·如东中学]在等比数列{an}中,各项均为正值,且 a6a10+a3a5=41,a4a8=5,则 a4+a8=
____; (2)[2016·常熟中学]等比数列{an}的首项 a1=-1,前 n 项和为 Sn,若SS150=3312,则公比 q=___.
【答案】(1) 51(2)-1 2
解得
q=1,代入①得 2
a1=2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学等比数列试题答案及解析1.设等不数列{an }的前n项和为Sn,若S2=3,S4=15,则S6=( )A. 31B.32C.63D. 64【答案】C【解析】由已知条件可得解得,所以,故选C. 【考点】等比数列的性质.2.公比为的等比数列的各项都是正数,且,则= ()A.B.C.D.【答案】(B)【解析】由等比数列的各项都是正数,且.所以.又公比为即.故选(B)【考点】1.等比数列的性质.2.等比数列的通项公式.3.已知等比数列{an }满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【答案】A【解析】由a2+a3=q(a1+a2)=3q=6,∴q=2∴a1(1+q)=3,∴a1=1,∴a7=26=64故选A4.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】设等比数列的通项公式为故答案为1【考点】等比数列的通项公式;等比数列的乘积运算.5.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】正项等比数列的首项为与公比,由【考点】等比数列的通项公式;等比数列的乘积运算.6.函数图像上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是()A.B.C.D.【答案】B【解析】函数图象上的点到原点的距离的最小值为1,最大值为3,故,即,而,因此选B.【考点】等比数列的性质.7.已知数列满足,,定义:使乘积为正整数的k叫做“简易数”.则在[3,2013]内所有“简易数”的和为 .【答案】2035【解析】∵,∴,则“简易数”为使为整数的整数,即满足,∴,则在区间内所有“简易数”的和为.【考点】1.新定义题;2.等比数列的前n项和公式.8.已知等比数列的前项和为,若,,则的值是 .【答案】-2【解析】由得,∴,∴,.【考点】等比数列的通项公式与前项和.9.已知等比数列中,=1,=2,则等于( ).A.2B.2C.4D.4【答案】C【解析】,,,可见,,依旧成等比数列,所以,解得.【考点】等比数列的性质10.已知正项数列,其前项和满足且是和的等比中项.(1)求数列的通项公式;(2) 符号表示不超过实数的最大整数,记,求.【答案】(1) 所以;(2) .【解析】(1) 由①知②通过①②得整理得,根据得到所以为公差为的等差数列,由求得或.验证舍去.(2) 由得,利用符号表示不超过实数的最大整数知,当时,,将转化成应用“错位相减法”求和.试题解析:(1) 由①知② 1分由①②得整理得 2分∵为正项数列∴,∴ 3分所以为公差为的等差数列,由得或 4分当时,,不满足是和的等比中项.当时,,满足是和的等比中项.所以. 6分(2) 由得, 7分由符号表示不超过实数的最大整数知,当时,, 8分所以令∴① 9分② 10分①②得即. 12分【考点】等差数列的通项公式,对数运算,“错位相减法”.11.在各项均为正数的等比数列{an }中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(1)求数列{an}的通项公式;(2)设bn =log3an,求数列{anbn}的前n项和Sn.【答案】(1)3n,n∈N(2)Sn=【解析】(1)设{an}公比为q,由题意得q>0,且解得 (舍),所以数列{an }的通项公式为an=3·3n-1=3n,n∈N.(2)由(1)可得bn =log3an=n,所以anbn=n·3n.所以Sn=1·3+2·32+3·33+…+n·3n,所以3Sn=1·32+2·33+3·34+…+n·3n+1,两式相减得,2Sn=-3-(32+33+…+3n)+n·3n+1=-(3+32+33+…+3n)+n·3n+1=-+n·3n+1=,所以数列{an bn}的前n项和Sn=.12.已知两个数k+9和6-k的等比中项是2k,则k=________.【答案】3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.13.已知等比数列{an }是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】因为等比数列{an }是递增数列,所以a1=1,a3=4,则q=2,故S6==63.14.已知数列{an }为等比数列,且a1a13+2=4π,则tan(a2a12)的值为()A.±B.-C.D.-【答案】C【解析】∵a1a13=,a2a12=,∴=,∴tan(a2a12)=tan=tan=,故选C.15.已知数列{an }是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.(1)求数列{an}的通项公式.(2)求证:数列{bn}是等比数列.(3)记cn =,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.【答案】(1) an=2n+2 (2)见解析 (3) 2012【解析】(1)设{an }的公差为d,则a2=a1+d,a5=a1+4d.∵a2=6,a5=12,∴解得:a1=4,d=2.∴an=4+2(n-1)=2n+2.(2)当n=1时,b1=S1,由S1+b1=1,得b1=.当n≥2时,∵Sn =1-bn,Sn-1=1-bn-1,∴Sn -Sn-1=(bn-1-bn),即bn=(bn-1-bn).∴bn =bn-1.∴{bn}是以为首项,为公比的等比数列.(3)由(2)可知:bn=·()n-1=2·()n.∴cn====-,∴Tn=(1-)+(-)+(-)+…+(-)=1-<1,由已知得≥1,∴m≥2012,∴最小正整数m=2012.16.一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为()A.1B.2C.3D.4【答案】B【解析】设此数列的公比为q,根据题意得q>0且q≠1,由,解得q=2.17.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.【答案】6【解析】设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.18.在等比数列{an }中,a1+a2=20,a3+a4=40,则a5+a6等于________.【答案】80【解析】q2==2,a5+a6=(a3+a4)q2=40×2=80.19.Sn 是等比数列{an}的前n项和,a1=,9S3=S6,设Tn=a1a2a3…an,则使Tn取最小值的n值为________.【答案】5【解析】设等比数列的公比为q,故由9S3=S6,得9×,解得q=2,故=a n =×2n-1,易得当n≤5时,<1,即Tn<Tn-1;当n≥6时,Tn>Tn-1,据此数列单调性可得T5为最小值.20.已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】∵a1,a3是方程x2-5x+4=0的两根,且q>1,∴a1=1,a3=4,则公比q=2,因此S6==63.21.已知公比为的等比数列的前项和为,则下列结论中:(1)成等比数列;(2);(3)正确的结论为()A.(1)(2).B.(1)(3).C.(2)(3).D.(1)(2)(3).【答案】C【解析】根据等比数列的性质,,则,,(2)(3)是正确的,但当时,(1)不正确,故选C.【考点】等比数列的前项和与等比数列的定义.22.在等比数列{an }中,a4=4,则a2·a6等于()A.4B.8C.16D.32【答案】C【解析】23.在等比数列{an }中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().A.2n+1-2B.3n C.2n D.3n-1【答案】C【解析】∵数列{an }为等比数列,设公比为q,∴an=2q n-1,又∵{an+1}也是等比数列,则(an+1+1)2=(a n+1)·(a n+2+1)⇒+2a n+1=a n a n+2+a n+a n+2⇒a n+a n+2=2a n+1⇒a n(1+q2-2q)=0⇒q=1.即an =2,所以Sn=2n.24.在等比数列{an }中,2a3-a2a4=0,则a3=________;{bn}为等差数列,且b3=a3,则数列{bn}的前5项和等于________.【答案】210【解析】在等比数列中2a3-a2a4=2a3-=0,解得a3=2.在等差数列中b3=a3=2,所以S5==5b3=5×2=10.25.设等比数列{an }的公比q=2,前n项和为Sn,若S4=1,则S8= ().A.17B.C.5D.【答案】A【解析】由于S4=a1+a2+a3+a4=1,S8=S4+a5+a6+a7+a8=S4+S4·q4,又q=2.所以S8=1+24=17.故选A26.已知数列为等比数列,,,,则的取值范围是( ) A.B.C.D.【答案】D【解析】①,②,③,由①②③得,,故选D.【考点】1.等比数列的定义;2.不等式求范围.27.数列{}的前n项和为,.(Ⅰ)设,证明:数列是等比数列;(Ⅱ)求数列的前项和;(Ⅲ)若,.求不超过的最大整数的值.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由,令可求,时,利用可得与之间的递推关系,构造等可证等比数列;(Ⅱ)由(Ⅰ)可求,利用错位相减法可求数列的和;(Ⅲ)由(Ⅰ)可求,进而可求,代入P中利用裂项求和即可求解试题解析:解:(Ⅰ) 因为,所以①当时,,则, .(1分)②当时,, .(2分)所以,即,所以,而, .(3分)所以数列是首项为,公比为的等比数列,所以. .(4分)(Ⅱ)由(Ⅰ)得.所以①② .(6分)②-①得: .(7分)(8分)(Ⅲ)由(Ⅰ)知(9分)而,(11分)所以,故不超过的最大整数为.(14分) .【考点】1.递推关系;2.等比数列的概念;3.数列求和.28.正项递增等比数列{}中,,则该数列的通项公式为()A.B.C.D.【答案】B【解析】由得,或(舍).【考点】等比数列的运算性质.29.若等比数列的第项是二项式展开式的常数项,则 .【答案】【解析】展开式的通项公式为,其常数项为,所以.【考点】1、二项式定理;2、等比数列.30.设Sn 为等比数列{an}的前n项和,若,则()A.B.C.D.【答案】B【解析】∵,∴,∴,∴.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式.31.在等比数列中,若,则 .【答案】.【解析】由于数列为公比数列,所以,由于,所以.【考点】等比数列的性质32.已知,数列是首项为,公比也为的等比数列,令(Ⅰ)求数列的前项和;(Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.【答案】(1);(2).【解析】本题考查数列的通项公式和数列求和问题,考查学生的计算能力和分析问题解决问题的能力,考查分类讨论思想和转化思想.第一问,利用等比数列的通项公式先写出数列的通项公式,利用对数的性质得到的通项公式,从而列出,它符合错位相减法,利用错位相减法求和;第二问,有题意得,讨论的正负,转化为恒成立问题,求出.试题解析:(Ⅰ)由题意知,.∴..以上两式相减得.∵,∴.(Ⅱ)由.由题意知,而,∴. ①(1)若,则,,故时,不等式①成立;(2)若,则,不等式①成立恒成立.综合(1)、(2)得的取值范围为.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式;3.错位相减法;4.恒成立问题.33.已知等比数列前项和为()A.10B.20C.30D.40【答案】C【解析】等比数列中,依次3项和依然成等比数列,即,,,成等比数列,其值分别为2,4,8,16,故.【考点】等比数列的性质.34.设等比数列满足公比,,且{}中的任意两项之积也是该数列中的一项,若,则的所有可能取值的集合为.【答案】【解析】任取数列中两项和,则也是数列中的项,又,,所以可能为,即的值可能为.【考点】等比数列的通项公式和性质.35.已知公差不为零的等差数列与公比为的等比数列有相同的首项,同时满足,,成等比,,,成等差,则( )A.B.C.D.【答案】C【解析】设数列的首项为,等差数列的公差为,,将,,代入得,化简得,解得,代入(1)式得.【考点】1、等差数列的通项公式;2、等比数列的性质.36.等比数列{}的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上.(1)求r的值;(2)当b=2时,记求数列的前项和.【答案】(1);(2).【解析】(1)利用的关系求解;(2)由(1)和b=2求得,进而求得,利用错位相减法可得.试题解析:∵对任意的,点,均在函数且均为常数)的图像上. ∴得,当时,,当时,,又∵{}为等比数列,∴, 公比为, ∴.(2)当b=2时,,则相减,得=∴【考点】1.等比数列通项公式;2.数列求和;3.数列中的关系.37.在正项等比数列中,,则的值是( )A.10000B.1000C. 100D.10【答案】A【解析】因为,所以,所以,.【考点】1.对数的性质;2.等比数列的性质.38.若等比数列满足,,则公比__________;前项_____.【答案】2,【解析】,由,解得,故.考点定位:本题考查了等比数列的通项公式、前n项公式和数列的性质.39.已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式(Ⅲ)令,,求数列的前n项和.【答案】(Ⅰ);(Ⅱ) ;(Ⅲ).【解析】(Ⅰ)由①得② 1分由②—①,得即: 2分由于数列各项均为正数,3分即数列是首项为,公差为的等差数列,数列的通项公式是 4分(Ⅱ)由知,所以, 5分有,即, 6分而,故是以为首项,公比为2的等比数列. 7分所以 8分(Ⅲ), 9分所以数列的前n项和错位相减可得 12分【考点】等差数列、等比数列的通项公式,“错位相减法”。