离散数学-第六章的完整
合集下载
离散数学第六章 集合-包含与排斥原理

│A1∪A2│=│A1│+│A2│–│A1∩A2│ = 12+18-5 = 2Ar是r个有限集。则
| A1 A2 Ar | | Ai |
i 1
r
1i j r j
| A A
i
j
|
1i j k r
| A A
例 (p71-72) 求出在1和300之间,不能被2、3、5、7中 任意一个整除的整数的个数。
分析:
A1表示1和300之间能被2整除的整数集合 A2表示1和300之间能被3整除的整数集合 A3表示1和300之间能被5整除的整数集合 A4表示1和300之间能被7整除的整数集合
│A1∪A2∪A3∪A4 │=?
a1表示1和300之间能被2整除的整数集合a2表示1和300之间能被3整除的整数集合a表示1和300之间能被5整除的整数集合a3表示1和300之间能被5整除的整数集合a4表示1和300之间能被7整除的整数集合a1a2a3a4
第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
例 (p71-72)求出在1和300之间,不能被2、3、5、7中
任意一个整除的整数的个数。
解:设A1,A2,A3,A4分别表示1和300之间能被2整除的、能被3整除的 、能被5整除的和能被7整除的整数集合。故有: │A1│=150,│A2│=100,│A3│=60,│A4│=42, │A1∩A2│=50,│A1∩A3│=30,│A1∩A4│=21 │A2∩A3│=20,│A2∩A4│=14,│A3∩A4│=8 │A1∩A2 ∩A3 │=10,│A1∩A2 ∩A4 │=7 │A1∩A3 ∩A4 │=4, │A2∩A3 ∩A4 │=2 │A1∩A2 ∩A3 ∩A4 │=1 于是,我们有: │A1∪A2∪A3∪A4 │ =150+100+60+42– (50+30+21+20+14+8)+(10+7+4+2)–1 =231 因此, 所求个数为 300-231=69.
离散数学第6章 格与布尔代数

设c是a∧b 的任一下界,即c ≤ a,c ≤ b 则 c∧a=c, c∧b=c c∧(a∧b)=(c∧a)∧b=c∧b=c ∴c ≤ a∧b 故 a∧b是a和b的最大下界
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
离散数学第六章 集合-集合的基本运算

第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与 {x 存在一个 i, 1 i k,x Pi }
把P1∩P2∩┅∩Pk简记为
k
i 1
Pi
k
i 1
Pi {x 对于所有的 i, 1 i k,x Pi }
推论 (p67)
设A, Pi (1≤i≤k)是k+1个集合, 则
A Pi ( A Pi ) i 1 i 1
A
B
C
例1
(p66)
(A-B)∪(A-C)=A在何条件下成立?
分析: A的元素a既是B的元素、也是C的元素,则等式不成立。 解: 根据分析当且仅当 A∩(B∩C)=Ø时,等式成立。 首先,假若(A-B)∪(A-C)=A, 要证明A∩(B∩C)=Ø。 用反证法。 若A∩B∩C≠Ø, 则∃x∊A∩B∩C, 所以 x∊A, x∊B , x∊C 。 由x∊A,x∊B, 有 x ∉A-B, 又由x∊A,x∊C, 有x ∉A-C, 所以有 x ∉ (A-B)∪(A-C)=A。 矛盾说明A∩B∩C=Ø。
对称差
定义2:A,B是两个集合,存在一个集合,它的 元素是所有的或者属于A不属于B,或者属 于B不属于A,称它为集合A和集合B的对 称差,记为A⊕B,即:
A⊕B={x│x∊A且x∉B,或x∊B且x∉A}
A⊕B
由定义,不难知: A⊕B = (A–B)∪(B–A) A⊕ A = Ø A⊕ Ø = A
命题
对于任意的x,若x∊ A∪(B∩C),则 x∊ A,或x∊B∩C 。 当x∊ A,则x∊ A∪B 且x∊ A∪C,所以 x∊ (A∪B)∩(A∪C) ; 当x∊B∩C,则x∊B 且x∊C,就有x∊ A∪B, 且x∊ A∪C, 所以 x∊ (A∪B)∩(A∪C) 。 故 A∪(B∩C)⊆(A∪B)∩(A∪C)
《离散数学》课件_第6章

a ≼ b∨d, c ≼ b∨d 这表明b∨d是a和c的一个上界, 而a∨c是a和c的最小上界,
a∨c ≼b∨d 类似地, 可以证明a∧c ≼ b∧d
推论 设〈L, ∨, ∧〉是由偏序格〈L, ≼ 〉诱导的 代数系统, 对于a, b, c∈L, 如果b ≼c, 则a∨b ≼a∨c , a∧b a∧c。≼
第6章 格与布尔代数
6.1 格的概念 6.2 子格和格同态 6.3 特殊的格 6.4 布尔代数 6.5 布尔代数的结构和布尔函数
6.1 格 的 概 念
6.1.1 格的定义
定义6.1.1 设〈 L , ≼ 〉是一个偏序集合, 若对任意 a, b∈L, {a, b} 均存在最小上界和最大下界, 则称〈 L , ≼ 〉为偏序格(lattice)
6.1.2
定理6.1.1 设〈L, ∨, ∧〉是代数格, 则∨和∧满足 等幂律, 即对于任何a∈L,
a∨a=a, a∧a=a 证明 任取a∈L, a∨a=a∨(a∧(a∨a))=a, a∧a=a∧(a∨(a∧a))=a
定义6.1.3 设〈L, ≼ 〉是一个偏序格, 在L上定义两 个二元运算∨和∧, 对于任何a, b∈L, a∨b= lub{a, b}, a∧b=glb{a, b}, 则称∨和∧分别为L上的并和交运算, 称 〈L, ∨, ∧ 是由偏序格〈L, ≼ 〉诱导的代数系统。
证毕
定理6.1.5 设〈L, ∨, ∧〉是代数格, 在L上定义
二元关系 ≼ : 对于任何a, b∈L, a ≼ba∨b=b, 则
〈L, ≼〉是一个偏序格, 并称〈L, ≼〉是由代数格〈L,
∨, ∧〉
证明
≼L
任取a∈L, 根据定理6.1.1可知, 〈L, ∨, ∧〉满足
等幂律, 有a∨a=a, 即a ≼a, 所以,在L
a∨c ≼b∨d 类似地, 可以证明a∧c ≼ b∧d
推论 设〈L, ∨, ∧〉是由偏序格〈L, ≼ 〉诱导的 代数系统, 对于a, b, c∈L, 如果b ≼c, 则a∨b ≼a∨c , a∧b a∧c。≼
第6章 格与布尔代数
6.1 格的概念 6.2 子格和格同态 6.3 特殊的格 6.4 布尔代数 6.5 布尔代数的结构和布尔函数
6.1 格 的 概 念
6.1.1 格的定义
定义6.1.1 设〈 L , ≼ 〉是一个偏序集合, 若对任意 a, b∈L, {a, b} 均存在最小上界和最大下界, 则称〈 L , ≼ 〉为偏序格(lattice)
6.1.2
定理6.1.1 设〈L, ∨, ∧〉是代数格, 则∨和∧满足 等幂律, 即对于任何a∈L,
a∨a=a, a∧a=a 证明 任取a∈L, a∨a=a∨(a∧(a∨a))=a, a∧a=a∧(a∨(a∧a))=a
定义6.1.3 设〈L, ≼ 〉是一个偏序格, 在L上定义两 个二元运算∨和∧, 对于任何a, b∈L, a∨b= lub{a, b}, a∧b=glb{a, b}, 则称∨和∧分别为L上的并和交运算, 称 〈L, ∨, ∧ 是由偏序格〈L, ≼ 〉诱导的代数系统。
证毕
定理6.1.5 设〈L, ∨, ∧〉是代数格, 在L上定义
二元关系 ≼ : 对于任何a, b∈L, a ≼ba∨b=b, 则
〈L, ≼〉是一个偏序格, 并称〈L, ≼〉是由代数格〈L,
∨, ∧〉
证明
≼L
任取a∈L, 根据定理6.1.1可知, 〈L, ∨, ∧〉满足
等幂律, 有a∨a=a, 即a ≼a, 所以,在L
离散数学第六章 集合 自然数与自然数集

学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世
称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。
,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质
(1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
数学归纳法——皮亚诺公设的第5条
离散数学第六章---群论

得Computer仍是字母串。
第6章 群论
定理6.1 一个半群(S,),如果它有一个子代 数 (M, ) ,则此子代数也是一个半群。
定义6.2 一个半群(S,)的子代数 (M, )也是 半群,称为(S,)的子半群。
第6章 群论
一个半群(S,)中的元素a ,可定义它的幂: a1=a , a2=a a , …,an+1=an a
第6章 群论
定理6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群。
定义6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群,称为(S,)的子单位半群 。
Hale Waihona Puke 第6章 群论定义6.5 :一个单位半群(S,)如果由它的一个 元素a 所生成,则称为由 a 所生成的循环单位半 群,元素 a 称为此单位半群的生成元素。
定理6.6 :一个循环单位半群是一个可换单位半 群。
第6章 群论
6.2 群
一、群与群的同构 1、群的有关定义
定义6.7 如果代数系统(G, )满足 (1) (G, )为一半群; (2) (G, )中有单位元e; (3) (G,)中每一元素a∈G都有逆元 a-1 则称代数系统(G, )为群。
第6章 群论
第六章 群论 6.1 半群与单元半群 6.2 群
第6章 群论
群在代码的查错、改错的研究,自动机理论等 方面都有应用。
第6章 群论
6.1 半群与单元半群
半群与群都是具有一个二元运算的代数系 统,群是半群的特殊例子。事实上,群是历史 上最早研究的代数系统,它比半群复杂一些, 而半群概念是在群的理论发展之后才引进的。 逻辑关系见图6.1.1。
第6章 群论
定理6.1 一个半群(S,),如果它有一个子代 数 (M, ) ,则此子代数也是一个半群。
定义6.2 一个半群(S,)的子代数 (M, )也是 半群,称为(S,)的子半群。
第6章 群论
一个半群(S,)中的元素a ,可定义它的幂: a1=a , a2=a a , …,an+1=an a
第6章 群论
定理6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群。
定义6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群,称为(S,)的子单位半群 。
Hale Waihona Puke 第6章 群论定义6.5 :一个单位半群(S,)如果由它的一个 元素a 所生成,则称为由 a 所生成的循环单位半 群,元素 a 称为此单位半群的生成元素。
定理6.6 :一个循环单位半群是一个可换单位半 群。
第6章 群论
6.2 群
一、群与群的同构 1、群的有关定义
定义6.7 如果代数系统(G, )满足 (1) (G, )为一半群; (2) (G, )中有单位元e; (3) (G,)中每一元素a∈G都有逆元 a-1 则称代数系统(G, )为群。
第6章 群论
第六章 群论 6.1 半群与单元半群 6.2 群
第6章 群论
群在代码的查错、改错的研究,自动机理论等 方面都有应用。
第6章 群论
6.1 半群与单元半群
半群与群都是具有一个二元运算的代数系 统,群是半群的特殊例子。事实上,群是历史 上最早研究的代数系统,它比半群复杂一些, 而半群概念是在群的理论发展之后才引进的。 逻辑关系见图6.1.1。
离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。
离散数学第六章集合代数

15
集合算律
6.3 集合恒等式
1.只涉及一个运算的算律:
交换律、结合律、幂等律
交换 结合
幂等
AB=BA (AB)C =A(BC) AA=A
AB=BA (AB)C= A(BC)
AA=A
AB=BA (AB)C =A(BC)
16
2.涉及两个不同运算的算集律合:算 律 分配律、吸收律
与
分配
A(BC)=
(AB)(AC)
A(BC)=
(AB)(AC)
吸收
A(AB)=A
A(AB)=A
与
A(BC) =(AB)(AC)
17
3.涉及补运算的算律: 集合算律 DM律,双重否定律
D.M律
双重否定
A(BC)=(AB)(A C)
A(BC)=(AB)(A C)
(BC)=BC (BC)=BC
A=A
18
4.涉及全集和空集的算律集:合 算 律 补元律、零律、同一律、否定律
解 (1)、(3)、(4)、(5)、(6)、(7)为真,其余为假.
28
(1) 判断元素a与集合A的隶属关系是否成立基本方法:
把 #2022 a 作为整体检查它在A中是否出现,注意这里的 a 可
能是集合表达式.
(2) 判断AB的四种方法
若A,B是用枚举方式定义的,依次检查A的每个元素是否 在B中出现.
(交换律)
八. = A E
(零律)
九. = A
(同一律)
22
例6 证明AB AB=B AB=A AB=
#2022
①
②
③
④
证明思路:
确定问题中含有的命题:本题含有命题 ①, ②, ③, ④
集合算律
6.3 集合恒等式
1.只涉及一个运算的算律:
交换律、结合律、幂等律
交换 结合
幂等
AB=BA (AB)C =A(BC) AA=A
AB=BA (AB)C= A(BC)
AA=A
AB=BA (AB)C =A(BC)
16
2.涉及两个不同运算的算集律合:算 律 分配律、吸收律
与
分配
A(BC)=
(AB)(AC)
A(BC)=
(AB)(AC)
吸收
A(AB)=A
A(AB)=A
与
A(BC) =(AB)(AC)
17
3.涉及补运算的算律: 集合算律 DM律,双重否定律
D.M律
双重否定
A(BC)=(AB)(A C)
A(BC)=(AB)(A C)
(BC)=BC (BC)=BC
A=A
18
4.涉及全集和空集的算律集:合 算 律 补元律、零律、同一律、否定律
解 (1)、(3)、(4)、(5)、(6)、(7)为真,其余为假.
28
(1) 判断元素a与集合A的隶属关系是否成立基本方法:
把 #2022 a 作为整体检查它在A中是否出现,注意这里的 a 可
能是集合表达式.
(2) 判断AB的四种方法
若A,B是用枚举方式定义的,依次检查A的每个元素是否 在B中出现.
(交换律)
八. = A E
(零律)
九. = A
(同一律)
22
例6 证明AB AB=B AB=A AB=
#2022
①
②
③
④
证明思路:
确定问题中含有的命题:本题含有命题 ①, ②, ③, ④
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.元素与集合的关系 隶属关系:或者
3.集合的树型层次结构
例如:集合A={a,{b,c},d,{{d}}} .
规定:A A
3
集合与集合
集合与集合之间的关系:, ⊈, =, , , , 定义6.1 设A,B为集合,如果B中的每个元素都是A中的元素,则称B是A 的子集合,简称子集。这时也称B被A包含,或A包含B,记作B A。如果 B不被A包含,则记作B ⊈ A。
根据集合相等的定义,有1 = 2
所以得出结论:
是惟一的
。 .
5
空集、全集和幂集
含有n个元素的集合简称n元集,它的含有m(m≤n)个元素 的子集叫做它的m元子集。任给一个n元集,怎样求出它的 全部子集呢?
例6.1 A={1,2,3},将A的子集分类: 解:0元子集,也就是空集,只有一个: ; 1元子集,即单元集:{1},{2},{3}; 2元子集:{1,2},{1,3},{2,3}; 3元子集:{1,2,3}。
定义6.3 设A,B为集合,如果B A且B≠A,则称B是A的真子集,记作B A。 如果B不是A的真子集,则记作B A。 符号化表示为: B A B A B A 例如N Z Q R C,但N N。
注意: 和 是不同层次的问题,如. A={a,{a}}和{a}
4
空集、全集和幂集
.
6
空集、全集和幂集
定义6.5 幂集:设A为集合,把A的全部子集构成的集合叫 做A的幂集,记作P(A)(或PA,2A)。 符号化表示为:P(A)={ x | x A } 实例:P()={}, P({})={,{}} 计数:如果 |A|=n,则 |P(A)|=2n.
定义6.6 全集 E:包含了所有集合的集合 全集具有相对性:与问题有关,不存在绝对的全集
广义交 A= { x | z ( zA xz )}
例6.2 设 A={{a,b,c},{a,c,d},{a,e,f}} B={{a}} C={a,{c,d}}
则 ∪A={a,b,c,d,e,f},∪B={a},C=a∪{c,d}
∩A={a},∩B={a},∩C=a. ∩{c,d}
12
广义运算
1. 集合的广义并与广义交
第二部分 集合论
第六章 集合代数 主要内容 集合的基本概念
属于、包含 幂集、空集 文氏图等 集合的运算 有穷集的计数 集合恒等式 集合运算的算律、恒等式的证明方法
.
1
6.1 集合的基本概念
1. 集合定义 集合没有精确的数学定义 理解:由离散个体构成的整体称为集合,称这些个体为集 合的元素 常见的数集:N, Z, Q, R, C 等分别表示自然数、整数、有 理数、实数、复数集合
2. 集合表示法
列元素法----列出集合的所有元素,所有元素之间用逗号隔 开,并把它们用花括号括起来
谓词表示法----用谓词来概括集合中元素的性质
实例:
列元素法 自然数集合 N={0,1,2,3,…}
谓词表示法 S={ x | x . R x21=0}
2
元素与集合
1. 集合的元素具有的性质 无序性:元素列出的顺序无关 相异性:集合的每个元素只计 数一次 确定性:对任何元素和集合都 能确定这个元素是否 为该集合的元素 任意性:集合的元素也可以是 集合
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
符号化表示为:B A x ( xB xA ) B ⊈ A x ( xB xA )
例如N Z Q R C,但Z ⊈ N。显然对任何集合A都有A A。
定义6.2 设A,B为集合,如果A B且B A,则称A与B相等,记作A=B。 如果A与B不相等,则记作A≠B。
符号化表示为: A = B A B B A
A B AB = AB = AB = A
.
11
广义运算
1. 集合的广义并与广义交
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
.
7
6.2 集合的运算
初级运算
集合的基本运算有并,交,相对补和对称差
定义6.7 设A,B为集合,A与B的并集A∪B,交集A∩B,B 对A的相对补集A-B分别定义如下:
并
AB = {x | xA xB}
交
AB = {x | xA xB}
相对补 AB = {x | xA xB}
例如:A={a,b,c},B={a},C={b,d}
AB= {a,b,c},
AB ={a},
AB={b,c} ,
B-A= ,
B C=
若两个集合的交集为 ,则称.这两个集合是不交的
8
6.2 集合的运算
定义6.8 设A,B为集合,A与B的对称差集A B定义为: 对称差 AB = (AB)(BA)
另一种定义是:AB = (AB) (AB) 例如:A={a,b,c},B={b,d},AB ={a,c,d}
定义6.4 空集 :不含有任何元素的集合 符号化表示为: ={x | x ≠ x } 实例: { x | xR x2+1=0 }
定理6.1 空集是任何集合的子集。 证 对于任意集合A,
A x (xxA) 1(恒真命题)
推论 是惟一的
证明:假设存在空集1 和 2 ,由定理6.1有:
1 2 和 2 1
定义6.9 在给定全集E以后,A E,A的绝对补集~A定义如下: 绝对补 A = EA = {x|x∈E∧xA} = {x|x A}
例如:E={a,b,c,d},A={a,b,c},则~A={d}。
.
集合运算的表示
文氏图
A
B
AB
A
B
AB
A
B
AB .
A
B
A–B
E A
~A
10
几点说明
并和交运算可以推广到有穷个集合上,即 A1 A2 … An = { x | xA1 xA2 … xAn} A1 A2 … An = { x | xA1 xA2 … xAn}
3.集合的树型层次结构
例如:集合A={a,{b,c},d,{{d}}} .
规定:A A
3
集合与集合
集合与集合之间的关系:, ⊈, =, , , , 定义6.1 设A,B为集合,如果B中的每个元素都是A中的元素,则称B是A 的子集合,简称子集。这时也称B被A包含,或A包含B,记作B A。如果 B不被A包含,则记作B ⊈ A。
根据集合相等的定义,有1 = 2
所以得出结论:
是惟一的
。 .
5
空集、全集和幂集
含有n个元素的集合简称n元集,它的含有m(m≤n)个元素 的子集叫做它的m元子集。任给一个n元集,怎样求出它的 全部子集呢?
例6.1 A={1,2,3},将A的子集分类: 解:0元子集,也就是空集,只有一个: ; 1元子集,即单元集:{1},{2},{3}; 2元子集:{1,2},{1,3},{2,3}; 3元子集:{1,2,3}。
定义6.3 设A,B为集合,如果B A且B≠A,则称B是A的真子集,记作B A。 如果B不是A的真子集,则记作B A。 符号化表示为: B A B A B A 例如N Z Q R C,但N N。
注意: 和 是不同层次的问题,如. A={a,{a}}和{a}
4
空集、全集和幂集
.
6
空集、全集和幂集
定义6.5 幂集:设A为集合,把A的全部子集构成的集合叫 做A的幂集,记作P(A)(或PA,2A)。 符号化表示为:P(A)={ x | x A } 实例:P()={}, P({})={,{}} 计数:如果 |A|=n,则 |P(A)|=2n.
定义6.6 全集 E:包含了所有集合的集合 全集具有相对性:与问题有关,不存在绝对的全集
广义交 A= { x | z ( zA xz )}
例6.2 设 A={{a,b,c},{a,c,d},{a,e,f}} B={{a}} C={a,{c,d}}
则 ∪A={a,b,c,d,e,f},∪B={a},C=a∪{c,d}
∩A={a},∩B={a},∩C=a. ∩{c,d}
12
广义运算
1. 集合的广义并与广义交
第二部分 集合论
第六章 集合代数 主要内容 集合的基本概念
属于、包含 幂集、空集 文氏图等 集合的运算 有穷集的计数 集合恒等式 集合运算的算律、恒等式的证明方法
.
1
6.1 集合的基本概念
1. 集合定义 集合没有精确的数学定义 理解:由离散个体构成的整体称为集合,称这些个体为集 合的元素 常见的数集:N, Z, Q, R, C 等分别表示自然数、整数、有 理数、实数、复数集合
2. 集合表示法
列元素法----列出集合的所有元素,所有元素之间用逗号隔 开,并把它们用花括号括起来
谓词表示法----用谓词来概括集合中元素的性质
实例:
列元素法 自然数集合 N={0,1,2,3,…}
谓词表示法 S={ x | x . R x21=0}
2
元素与集合
1. 集合的元素具有的性质 无序性:元素列出的顺序无关 相异性:集合的每个元素只计 数一次 确定性:对任何元素和集合都 能确定这个元素是否 为该集合的元素 任意性:集合的元素也可以是 集合
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
符号化表示为:B A x ( xB xA ) B ⊈ A x ( xB xA )
例如N Z Q R C,但Z ⊈ N。显然对任何集合A都有A A。
定义6.2 设A,B为集合,如果A B且B A,则称A与B相等,记作A=B。 如果A与B不相等,则记作A≠B。
符号化表示为: A = B A B B A
A B AB = AB = AB = A
.
11
广义运算
1. 集合的广义并与广义交
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
.
7
6.2 集合的运算
初级运算
集合的基本运算有并,交,相对补和对称差
定义6.7 设A,B为集合,A与B的并集A∪B,交集A∩B,B 对A的相对补集A-B分别定义如下:
并
AB = {x | xA xB}
交
AB = {x | xA xB}
相对补 AB = {x | xA xB}
例如:A={a,b,c},B={a},C={b,d}
AB= {a,b,c},
AB ={a},
AB={b,c} ,
B-A= ,
B C=
若两个集合的交集为 ,则称.这两个集合是不交的
8
6.2 集合的运算
定义6.8 设A,B为集合,A与B的对称差集A B定义为: 对称差 AB = (AB)(BA)
另一种定义是:AB = (AB) (AB) 例如:A={a,b,c},B={b,d},AB ={a,c,d}
定义6.4 空集 :不含有任何元素的集合 符号化表示为: ={x | x ≠ x } 实例: { x | xR x2+1=0 }
定理6.1 空集是任何集合的子集。 证 对于任意集合A,
A x (xxA) 1(恒真命题)
推论 是惟一的
证明:假设存在空集1 和 2 ,由定理6.1有:
1 2 和 2 1
定义6.9 在给定全集E以后,A E,A的绝对补集~A定义如下: 绝对补 A = EA = {x|x∈E∧xA} = {x|x A}
例如:E={a,b,c,d},A={a,b,c},则~A={d}。
.
集合运算的表示
文氏图
A
B
AB
A
B
AB
A
B
AB .
A
B
A–B
E A
~A
10
几点说明
并和交运算可以推广到有穷个集合上,即 A1 A2 … An = { x | xA1 xA2 … xAn} A1 A2 … An = { x | xA1 xA2 … xAn}