气溶胶的卫星测量
分光光度计测量气溶胶

* / 32
ASTPWin操作界面 NSU:8个通道3次SUN测量数据 一次数据有25个, 其中一个是温度 8个通道,分别是: 1020 nm ,870nm,670 nm , 440 nm , 500nm ,940 nm , 380nm,340nm。
3
个例应用——利用太阳光度计反演大气气溶胶光学厚度
1 大气气溶胶及其光学厚度
1.1 大气气溶胶的效应 1.2 气溶胶光学厚度
2 CE318太阳光度计应用简介
2.1 太阳光度计应用现状 2.2 CE318型太阳光度计观测原理
3 应用个例——利用太阳光度计反演大气气溶胶光学厚度
3.1 数据转换与处理 3.2 气溶胶厚度反演方法(包括程序编写) 3.3 结果与分析
3
个例应用——利用太阳光度计反演大气气溶胶光学厚度
* / 32
对于无水汽吸收的波段,大气垂直总光学厚度τλ 可表示为: τλ =τrλ +τaλ +τO3λ +τNO2λ (3) 其中: τrλ为分子散射(Rayleigh) 光学厚度 τaλ为气溶胶光学厚度 τO3λ为吸收气体O3的光学厚度 τNO2λ为吸收气体NO2 的光学厚度
大气气溶胶的效应
* / 32
1-2
大气气溶胶光学厚度是表征大气浑浊度的一个重要物理量。 它对评价大气环境污染、研究气溶胶的辐射气候效应等具有重要意义。 大气气溶胶的浓度、化学成分、粒子粒径等物理化学特性的变化可直接反应在气溶胶光学厚度的变化上。
气溶胶光学厚度
* / 32
2 CE318太阳光度计应用简介 2.1 太阳光度计应用现状 2.2 CE318型太阳光度计观测原理
* / 32
大气气溶胶卫星遥感反演研究综述

大气气溶胶卫星遥感反演研究综述【摘要】本文主要围绕大气气溶胶卫星遥感反演研究展开综述。
首先介绍了大气气溶胶卫星遥感技术的原理,包括传感器、数据处理和遥感算法等方面。
然后详细探讨了大气气溶胶卫星遥感反演方法,包括单光谱反演、多光谱反演和激光雷达反演等。
接着总结了大气气溶胶卫星遥感反演结果,并详细介绍了反演结果在气象学、环境监测和气候变化研究中的应用。
最后对大气气溶胶卫星遥感反演研究的进展进行了概述,指出了当前研究存在的问题和未来发展方向。
展望了大气气溶胶卫星遥感反演的未来发展,包括技术创新、应用拓展和国际合作等方面。
通过本文的综述,有望促进大气气溶胶卫星遥感反演研究的深入发展并为相关领域的应用提供支撑。
【关键词】大气气溶胶、卫星遥感、反演、研究综述、技术原理、方法、结果、应用、进展、展望1. 引言1.1 大气气溶胶卫星遥感反演研究综述概述大气气溶胶是指在大气中悬浮的微小颗粒物质,是空气污染的主要成分之一。
气溶胶的数量、大小、成分和分布对大气环境和气候变化具有重要影响。
卫星遥感技术能够全面、连续地监测大气气溶胶,为研究气溶胶的来源、形成机制和影响提供了重要手段。
本文将综述大气气溶胶卫星遥感反演研究的相关内容,包括技术原理、反演方法、反演结果、应用和进展。
通过对卫星遥感数据的获取、处理和分析,可以获取大气气溶胶的空间分布、垂直分布和时空变化规律,为大气环境监测和气候研究提供重要参考。
本文将系统介绍大气气溶胶卫星遥感技术的基本原理,包括遥感器的设计原理、数据获取方式以及数据处理方法。
将探讨不同反演方法在大气气溶胶遥感中的应用,比较各种方法的优缺点,为研究者和决策者提供参考。
通过对大气气溶胶卫星遥感反演结果的分析,可以揭示大气气溶胶的空间分布和变化趋势,为环境保护和气候变化研究提供重要支撑。
结合遥感数据和模型模拟的研究,可以更准确地评估大气气溶胶对气候变化的影响。
本文还将探讨大气气溶胶卫星遥感在大气污染监测、气候变化研究、灾害预警等方面的应用,并展望未来大气气溶胶卫星遥感反演研究的发展方向,为相关研究和应用提供参考和借鉴。
大气气溶胶卫星遥感反演研究综述

大气气溶胶卫星遥感反演研究综述【摘要】大气气溶胶对气候变化和空气质量具有重要影响,因此大气气溶胶的遥感监测变得至关重要。
本文首先介绍了大气气溶胶的来源和影响,然后详细解析了大气气溶胶卫星遥感技术原理和反演算法,以及反演结果验证的重要性。
接着探讨了大气气溶胶卫星遥感在环境监测中的应用,展示了其在改善空气质量和监测气溶胶分布方面的潜力。
对大气气溶胶卫星遥感的发展前景、研究挑战和意义进行了总结和展望。
本文旨在全面了解大气气溶胶卫星遥感的研究现状和未来发展方向,为相关领域的研究和应用提供参考和借鉴。
【关键词】大气气溶胶、卫星遥感、反演研究、来源、影响、技术原理、算法、结果验证、环境监测、发展前景、挑战、意义1. 引言1.1 大气气溶胶卫星遥感反演研究综述大气气溶胶是指悬浮在大气中的固体或液体微粒,是大气污染的主要成分之一。
它源自于自然和人为活动,如火山喷发、森林火灾、工业排放等。
大气气溶胶对气候变化、大气光学、空气质量等方面产生重要影响,因此对其进行监测和研究具有重要意义。
随着遥感技术的发展,大气气溶胶卫星遥感成为研究气溶胶的重要手段之一。
通过卫星遥感技术,可以获取全球范围内的大气气溶胶分布情况,为气溶胶研究提供了丰富的数据资源。
大气气溶胶卫星遥感反演研究致力于利用卫星观测数据推导大气气溶胶的物理和化学特性,探索其在大气环境中的变化规律。
本综述将从大气气溶胶的来源和影响、卫星遥感技术原理、反演算法、反演结果验证以及在环境监测中的应用等方面进行综合阐述,同时探讨大气气溶胶卫星遥感的发展前景、研究面临的挑战以及其在环境保护、气候变化研究等方面的意义。
通过对大气气溶胶卫星遥感进行全面总结,旨在推动相关研究的进展,促进大气环境监测和管理水平的提升。
2. 正文2.1 大气气溶胶的来源和影响大气气溶胶是指悬浮在大气中的微小固体或液体颗粒物质,来源主要包括自然源和人为活动。
自然源方面,火山爆发、森林火灾、沙尘暴等自然现象会释放大量气溶胶物质;人为活动包括工业生产、汽车尾气、生物质燃烧等,都会产生大气气溶胶。
基于CALIPSO卫星的区域气溶胶特性研究

基于CALIPSO卫星的区域气溶胶特性研究基于CALIPSO卫星的区域气溶胶特性研究气溶胶是指悬浮在大气中的固体或液体微粒,它们对大气的辐射传输、云的形成和降水过程等有着重要的影响。
随着经济的发展和工业化进程的推进,大气污染问题日益突出,气溶胶的来源、成分和变化越来越受到人们的关注。
作为一种全球环境监测卫星,CALIPSO(云与大气激光探测与观测卫星)具有高垂直分辨率、高精度和高时空分辨率等特点,它可以提供有关气溶胶垂直分布、光学特性和性质的详细信息,因此被广泛应用于区域气溶胶特性的研究。
首先,CALIPSO卫星通过搭载的激光雷达系统可以测量出气溶胶的垂直分布。
激光雷达发射垂直向下的激光束,当激光束穿过大气中的气溶胶时,会被散射回来,通过测量散射回来的激光强度,可以获得气溶胶的垂直分布信息。
这项技术不仅可以提供气溶胶在不同高度上的浓度分布,还可以揭示气溶胶的分层结构,为进一步研究气溶胶在大气中的传输和输送提供了基础数据。
其次,CALIPSO卫星能够获取气溶胶的光学特性。
气溶胶的光学特性主要包括散射特性和吸收特性。
CALIPSO卫星通过测量激光雷达发射的激光束在大气中被散射的强度,可以得到气溶胶的散射光学厚度,从而可以推测出气溶胶的粒径分布和浓度。
此外,CALIPSO卫星还可以通过测量大气中的辐射场,研究气溶胶的吸收特性,例如黑碳等吸热性气溶胶的浓度。
最后,CALIPSO卫星还能提供有关气溶胶的化学成分和来源的线索。
通过分析气溶胶的化学成分,可以深入了解气溶胶的来源和演化过程。
CALIPSO卫星尤其可以配合与地面观测站点的数据进行对比,并结合气象分析结果,可以更好地揭示气溶胶的地理分布特征和季节变化趋势。
利用CALIPSO卫星的数据,研究人员对全球范围的气溶胶特性进行了广泛的研究。
通过对区域气溶胶的特性研究,我们可以更好地了解气溶胶的时空分布和演变规律,为气象预报、空气质量监测和大气环境管理等提供科学依据。
大气气溶胶卫星遥感反演研究综述

大气气溶胶卫星遥感反演研究综述近年来,大气气溶胶成为了全球关注的焦点之一。
大气气溶胶是指大气中悬浮的微小颗粒,它们对大气的辐射传输和化学反应产生影响,对人类健康、能源利用、气候变化等方面造成严重影响。
因此,对大气气溶胶进行遥感反演研究有着重要意义。
本文对大气气溶胶卫星遥感反演研究进行综述。
大气气溶胶卫星遥感反演是指通过对于卫星遥感数据进行处理和分析,以获取大气中气溶胶的分布、浓度、粒径等信息的方法。
目前普遍采用的是基于光学遥感的技术,通过卫星传感器测量大气中的太阳辐射、反射辐射和散射辐射等,利用大气辐射传输模型和气溶胶反射率模型将测量数据反演成大气气溶胶特征参数。
大气气溶胶卫星遥感反演的常用传感器有:国际气象卫星-3 (MTSAT-3) / 日本气象厅(JMA) 的宽频分辨率成像光谱仪 (ARS),美国国家航空航天局 (NASA) 的地球观测系统(EOS) 的云和地球之间气体卫星 (CALIPSO),中国科学院南京空气净化研究所气溶胶观测与模拟实验站 (CAREBeijing-Flux) 的主动式气溶胶光学探测仪 (APS)等。
各个卫星传感器的测量精度和遥感反演能力各有差异,需结合目标研究问题来选择合适的卫星和传感器。
大气气溶胶卫星遥感反演研究的主要内容包括气溶胶反射率、气溶胶透过率、气溶胶比温差、气溶胶光学厚度、气溶胶粒径等。
其中,气溶胶反射率是指气溶胶对于太阳辐射和陆地反照率的反射,是气溶胶遥感反演的重点参数。
气溶胶透过率是指气溶胶向地面和大气下方的透过,是气溶胶浓度反演的重要参量。
气溶胶比温差是指气溶胶和大气之间的温度差,是考虑气溶胶光学性质的关键因素。
气溶胶光学厚度是指在垂直于地面方向上,大气中存在的气溶胶颗粒对于入射太阳辐射所产生的响应,可以推导出气溶胶浓度、尺寸和化学组成等重要参数。
气溶胶粒径是指气溶胶颗粒的大小,是气溶胶反演的重要参考指标。
大气气溶胶卫星遥感反演研究可以应用于气溶胶污染监测、气溶胶辐射强迫和云辐射生长等方面。
大气气溶胶监测与分析方法概述

大气气溶胶监测与分析方法概述气溶胶是指分散在大气中的固体或液体微粒,包括尘埃、烟雾、雾霾中的颗粒物等。
它们对大气环境、气候变化和人类健康等方面产生重要影响。
因此,了解和监测气溶胶的分布和组成成为环境科学研究的一项重要任务。
本文将对大气气溶胶的监测与分析方法进行概述。
一、大气气溶胶的监测方法目前常用的大气气溶胶监测方法主要包括主动式监测和被动式监测。
主动式监测是指通过主动采集样品并进行实验室分析的方式。
常用的主动式监测方法包括高体积采样、大气颗粒物降落采样、气溶胶冷却捕集等。
高体积采样是一种常用的监测方法,可以获取大量样品进行后续分析。
它通常利用体积流量控制器将大气中的气溶胶引入收集器,收集器上有一滤膜用于过滤气溶胶颗粒,然后对滤膜进行分析。
大气颗粒物降落采样可以通过在适宜的位置设置采样器,利用大气中颗粒物的沉降速度收集样品。
这种方法适用于长期监测颗粒物的时空分布。
气溶胶冷却捕集方法是通过降低气溶胶颗粒的温度,使其凝结成为冷凝物,然后进行采样。
这种方法可以得到不同粒径的气溶胶样品,对于研究气溶胶的成分分布具有重要意义。
被动式监测是指利用传感器或监测站点记录环境中的气溶胶数据的方法。
常用的被动式监测方法包括激光雷达、遥感技术等。
激光雷达是一种使用激光束扫描大气中的气溶胶,并通过接收散射返回信号来获得气溶胶分布信息的方法。
它可以实时高效地获取气溶胶的垂直分布和粒径分布等信息。
遥感技术是通过卫星或无人机等遥感平台获取大范围气溶胶数据的方法。
它可以提供大气气溶胶的时空分布,但对于气溶胶的组成分析相对有限。
二、大气气溶胶的分析方法大气气溶胶的分析方法主要包括化学分析、物理分析和光学分析等。
化学分析是通过实验室分析方法对气溶胶样品进行成分分析。
常用的化学分析方法包括元素分析、离子分析、有机物分析等。
元素分析是指对气溶胶样品中的元素进行定量或定性分析的方法。
常用的元素分析方法包括X射线荧光光谱分析、电感耦合等离子体质谱分析等。
大气气溶胶卫星遥感反演研究综述
大气气溶胶卫星遥感反演研究综述大气气溶胶是大气环境中的重要组成部分,对大气辐射传输、气候变化、风沙输送等过程产生着重要的影响。
目前,全球大气气溶胶监测手段多样,包括地面监测、飞机监测和遥感卫星监测。
大气气溶胶卫星遥感成为研究大气气溶胶的重要手段。
一、大气气溶胶卫星遥感技术概述大气气溶胶卫星遥感技术是通过利用遥感卫星搭载的传感器获取大气气溶胶的遥感信息,通过数据处理和分析得到大气气溶胶的时空分布和特性参数。
目前在大气气溶胶卫星遥感方面已经有了多项成熟的遥感手段和技术,如光学遥感、微波遥感、红外遥感等。
光学遥感是目前应用最为广泛的大气气溶胶遥感手段之一,其主要原理是通过监测大气气溶胶颗粒对太阳辐射和地表反射光的吸收、散射和透射特性来获取大气气溶胶的光学性质,包括光学厚度、粒径分布、复合折射率等。
而微波遥感则是通过监测大气气溶胶颗粒对微波辐射的散射和吸收特性来获取大气气溶胶的物理和化学特性参数,如水平能见度、气溶胶组分、气溶胶质量浓度等。
红外遥感则是通过监测大气气溶胶发射和吸收红外辐射的能力来获取大气气溶胶的温度、湿度、颗粒浓度等信息。
1. 光学厚度是指大气气溶胶对太阳辐射和地表反射光的吸收、散射和透射能力的综合表征,是衡量大气气溶胶浓度的重要参数。
光学厚度越大,表示大气中的气溶胶浓度越高。
3. 复合折射率是指大气气溶胶颗粒对不同波长光的折射和散射能力的综合表征。
复合折射率的大小和变化对大气气溶胶的光学性质和光学特性有着重要的影响。
4. 水平能见度是指大气中气溶胶颗粒对水平能见度的影响程度。
水平能见度越小,说明大气中的气溶胶颗粒浓度越高,大气浑浊程度越高。
5. 气溶胶组分是指大气中气溶胶颗粒的化学成分和组成结构。
不同的气溶胶组分对大气环境和生态系统产生着不同的影响。
6. 气溶胶质量浓度是指单位体积大气中的气溶胶颗粒的质量。
气溶胶质量浓度的大小和变化对大气环境和人类健康有着重要的影响。
7. 温度、湿度、颗粒浓度是指大气中的气溶胶颗粒的温度、湿度和颗粒浓度的分布情况。
气溶胶卫星遥感的辐射传输方程
气溶胶卫星遥感的辐射传输方程1、概述气溶胶是大气中的颗粒物质,对大气光学特性和气候变化有着重要的影响。
对于气溶胶的监测和遥感研究成为了大气科学领域中的一个热门话题。
在现代卫星遥感技术的支持下,气溶胶的遥感研究迎来了一个全新的发展阶段。
本文将重点介绍气溶胶卫星遥感的辐射传输方程。
2、气溶胶的光学特性气溶胶颗粒对太阳光的散射和吸收是其光学特性的重要表现。
光学特性决定了气溶胶颗粒对光的影响程度,进而影响了遥感观测的准确性和精度。
了解气溶胶的光学特性对于遥感研究至关重要。
3、辐射传输方程辐射传输方程描述了光在大气和气溶胶中传播的规律。
它是理解气溶胶遥感的基础,也是研究气溶胶影响的重要工具。
辐射传输方程的基本形式包括辐射传输方程、辐射传输方程、辐射传输方程和辐射传输方程。
在对气溶胶进行遥感观测时,需要根据具体的情况选择合适的辐射传输方程进行分析和计算,以获得准确的遥感结果。
4、气溶胶卫星遥感气溶胶卫星遥感是利用卫星载荷对地面上的气溶胶分布进行遥感观测的一种技术手段。
通过对大气中光谱的遥感观测,可以获取气溶胶的光学厚度、粒径分布、组成成分等信息,为大气和气候研究提供了重要的数据支持。
气溶胶卫星遥感在监测大气污染、预测天气变化、研究气候变化等方面具有重要的意义,受到了广泛关注和应用。
5、结论气溶胶卫星遥感的辐射传输方程是气溶胶遥感研究的重要基础,对于理解气溶胶在大气中的分布和变化规律具有重要意义。
通过深入研究和探讨气溶胶的光学特性和辐射传输方程,能够更好地促进气溶胶遥感技术的发展和应用,为大气环境保护和气候变化研究提供有力支持。
在气溶胶卫星遥感的发展过程中,我们需要不断完善和改进辐射传输方程的理论和方法,加强对气溶胶光学特性的研究和观测,提高遥感观测数据的准确性和可靠性,促进气溶胶遥感技术的广泛应用和推广,为人类社会的可持续发展贡献力量。
参考资料:[1] 李海平, 刘路, 肖志恒. 气溶胶遥感大气辐射传输研究资料(xxx[2] 唐祥麟, 罗钟發. 大氣环境科学(xxx[3] 刘培一, 戴世勇, 於根宏. 气溶胶光学特性及其应用(xxx、气溶胶光学特性的观测与研究气溶胶光学特性的观测和研究是气溶胶遥感技术的重要组成部分。
大气气溶胶卫星遥感反演研究综述
大气气溶胶卫星遥感反演研究综述1. 引言1.1 研究背景大气气溶胶是指大气中的固体或液体微粒,包括尘埃、烟雾、颗粒物等。
大气气溶胶的来源包括自然过程和人为活动,如火山喷发、森林火灾、工业污染等。
大气气溶胶对大气成分和气候变化有着重要影响,包括对太阳辐射的散射和吸收、云的形成和性质,以及地表辐射平衡等。
随着卫星遥感技术的发展,大气气溶胶的监测和研究进入了一个新的阶段。
卫星遥感可以提供大范围、全天候、高分辨率的观测数据,能够有效监测大气气溶胶的空间分布和时空变化。
通过利用卫星遥感数据,可以对大气气溶胶的来源、输送、沉降等过程进行研究,为环境保护、气候变化等问题提供重要参考。
本文将综述大气气溶胶卫星遥感反演研究的最新进展,探讨大气气溶胶的形成和影响、卫星遥感技术、反演方法及其在环境监测中的应用。
希望通过本文的分析,能够更深入地了解大气气溶胶的特性和作用,为相关研究和应用提供支持和参考。
1.2 研究目的研究的目的是通过对大气气溶胶卫星遥感反演研究的综述,系统地总结该领域的最新进展和成果,探讨大气气溶胶在环境监测中的应用前景。
通过深入了解大气气溶胶的形成机制和对环境和气候的影响,以及卫星遥感技术的原理和方法,为进一步深入研究大气气溶胶的遥感反演提供理论和方法支持。
希望能够促进大气气溶胶的监测和预警能力的提升,为改善人类生存环境和应对气候变化提供科学依据和技术支持。
通过本文的撰写和总结,旨在为相关领域的研究者和决策者提供参考和借鉴,推动大气气溶胶遥感反演技术的发展,促进环境保护和气候变化应对的进步。
2. 正文2.1 大气气溶胶的形成和影响大气气溶胶是大气中固态或液态微粒子的悬浮物,主要由硫酸盐、硝酸盐、有机物质和尘埃等组成。
这些微粒子的形成来源于自然和人为活动,如火山喷发、森林火灾、工业排放、交通尾气等。
大气气溶胶对气候、生态系统和人类健康都有重要的影响。
大气气溶胶可以直接影响气候系统。
气溶胶反射和吸收太阳辐射,导致地表和大气温度分布不均匀,影响大气环流格局,进而影响全球气候变化。
205-应用专题:基于MODIS数据的气溶胶遥感监测
基于遥感的气溶胶监测
• MODIS 传感器观测具有免费获取、范围大、重访周期高等特点。它拥有36 个光谱通道, 覆盖可见光、近红外和热红外谱段, 在大气监测和气溶胶反演方 面具有广泛的应用。
应用专题五:基于MODIS数据的气溶胶遥感监测
几个概念
• 气溶胶是液态或固态微粒在空气中的悬浮体系,它们参与大气中各种化学循环, 是大气的重要组成部分。同时,气溶胶还具有显著的环境效应,直径<2.5um (PM2.5)的气溶胶颗粒对可见光有消光作用;直径<10um(PM10)的气溶胶 严重危害人类健康。
• 气溶胶反演算法采用经典的暗像元法(DDV)也叫浓密植被法,因此对于冬季反 演的气溶胶效果不理想。
• 气溶胶反演的查找表是利用IDL调用6S辐射模型得到的,采用的是一般的参数, 因此3-9月期间都可以用这一个查找表进行气溶胶反演,也可以自己制定查找表。
查找表构建
• /Extensions/Modis Aerosel Retrieval/Build Modis Aerosol Lookup Table
反射率数据集 波段裁剪
反射率数据几何校正 矢量 裁剪
气溶胶反演 反演结果
几何定位数据 构建GLT
查找表构建工具 查找表源自气溶胶反演• /Extensions/Modis Aerosol Retrieval/Modis Aerosol Retrieval Using Lookup Table
气溶胶反演结果
气溶胶反演流程
角度数据集 角度数据合成
量纲转换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气溶胶的卫星测量
1. 气溶胶遥感基本原理
卫星垂直对地观测时,其接收到的大气顶辐射是众多影响因子的函数。
)
),,,,(),,,,(),(),(),,(),,(),(),(),(),(),((00Surf Obs Sun Sun Surf Obs Obs Sun Sun Sun Obs Rayleigh Aer Gas Rayleigh Aer TOA h z z z z z M z M p p E f L αλρααθθλθλλωλδλδλδλ= 这些影响因素包括:
● 大气的光学参数(大气透过率、大气顶反射率、气溶胶光学厚度、瑞利光学厚度、气体成份的光学厚度、气溶胶的相函数、瑞利散射的相函数等等)
● 大气辐射和观测卫星之间的几何位置因素(卫星天顶角、太阳天顶角等等)
● 地表特性(地表的反射率、地表的海拔高度及照射的几何学因素等等)
因为大气气溶胶效应比较微弱。
并且大气顶辐射与气溶胶光学厚度二者之间的并非简单的函数关系,很多其他因素也会对大气顶辐射产生重要影响。
所以进行气溶胶反演的条件是:干扰效应很少,或者干扰效应已知并可以排除。
这就要求:
● 选择没有气体吸收(或已知的微弱吸收)的波段,这样的波段也称为:气溶胶窗口
大气的光学特性
大气辐射和观测卫星之
间的几何位置因素
地表特性
●瑞利散射已知
●较低的表面反射率
2.星载气溶胶探测的现状
●在海洋表面,气溶胶反演较容易,因为在近红外波段海洋表面
反射率很低,如上图。
●最早的气溶胶反演产品:利用A VHRR反演的0.63±0.07微米
波段的气溶胶光学厚度
●其他的海洋水色卫星气溶胶反演产品还有:OCTS (ADEOS),
MOS (IRS-P3), Sea-WiFS (OrbViev), MERIS
(ENVISAT),MODIS
利用A VHRR数据反演的的全球海洋上空气溶胶光学厚度遥感(0.63微米)
3.陆地表面星载气溶胶探测的新方法
陆地表面反演较困难,因为:
●表面反射率高
●受地形、植被、土壤等影响较大
因此需要采用把气溶胶效应与地表贡献分离的技术
分离技术依赖于:
●二者不同的偏振特性
●对同一目标的多角度观测●对地表反射率进行估计。