2019秋高三数学上学期期末试题汇编:26.直线与圆1
江苏省18市县2019届高三上学期期中期末考试数学试题分类汇编:直线与圆

江苏省18市县2019届高三上学期期中期末考试数学试题分类汇编直线与圆一、填空题1、(常州市2019届高三上学期期末)过原点的直线l 与圆221x y +=交于,P Q 两点,点A 是该圆与x 轴负半轴的交点,以AQ 为直径的圆与直线l 有异于Q 的交点N ,且直线AN 与直线AP 的斜率之积等于1,那么直线l 的方程为________.2、(海安市2019届高三上学期期末)在平面直角坐标系xOy 中,已知点A (-3,0),B (-1,-2),若圆(x -2)2+y 2=r 2(r >0)上有且仅有一对点M ,N ,使得△MAB 的面积是△NAB 的面积的2倍,则r 的值为 .3、(南京市、盐城市2019届高三上学期期末)设A ={(x ,y )|3x +4y ≥7},点P ∈A ,过点P 引圆(x+1)2+y 2=r 2(r >0)的两条切线P A ,PB ,若∠APB 的最大值为π3,则r 的值为 ▲ . 4、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)在平面直角坐标系xoy 中,5、(如皋市2019届高三上学期期末)在平面直角坐标系xOy 中,已知圆C :222430x y x y +---=与x 轴交于A ,B 两点,若动直线l 与圆C 相交于M ,N 两点,且△CMN 的面积为4,若P 为MN 的中点,则△PAB 的面积最大值为 ▲ .6、(苏北三市(徐州、连云港、淮安)2019届高三期末)在平面直角坐标系xOy 中,已知圆C 1:222(46)40()x y mx m y m ++-+-=∈R 与以2(2,3)C -为圆心的圆相交于11(,)A x y ,22(,)B x y 两点,且满足22221221x x y y -=-,则实数m 的值为 .7、(苏州市2019届高三上学期期末)在平面直角坐标系xOy 中,过点A(1,3),B(4,6),且圆心在直线210x y --=上的圆的标准方程为 .8、(泰州市2019届高三上学期期末)在平面直角坐标系xoy 中,过圆C 1:22()(4)x k y k -++-=1上任一点P 作圆C 2:22x y +=1的一条切线,切点为Q ,则当线段PQ 长最小时,k =9、(无锡市2019届高三上学期期末)已知点 P 在圆 M :(x-a )2 +(y -a +2)2 =1 上, A ,B 为圆 C : x 2 +(y-4)2 =4 上两动点,且 AB =23, 则 PA PB 的最小值是 .10、(徐州市2019届高三上学期期中)过点(2,0)P 的直线l 与圆222:()C x y b b +-=交于两点,A B ,若A 是PB 的中点,则实数b 的取值范围是 ▲ .11、(扬州市2019届高三上学期期末)若直线l 1:240x y -+=与l 2:430mx y -+=平行,则两平行直线l 1,l 2间的距离为 .12、(扬州市2019届高三上学期期末)已知直线l :4y x =-+与圆C :22(2)(1)1x y -+-=相交于P ,Q 两点,则CP CQ ⋅= .13、(扬州市2019届高三上学期期中)已知x ,y ∈R ,直线(1)10a x y -+-=与直线20x ay ++=垂直,则实数a 的值为 .14、(镇江市2019届高三上学期期末)已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -2)2=2.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA ⊥PB ,则实数a 的取值范围为________.参考答案一、填空题1、3y x =±2、5263、14、5、66、-67、8、2 9、19-12210、2b 2≤-或2b 2≥ 11、52 12、0 13、12 14、[-2,2]二、解答题1、(扬州市2019届高三上学期期中)在平面直角坐标系xOy 中,已知直线3100x y --=与圆O :222(0)x y r r +=>相切.(1)直线l 过点(2,1)且截圆O 所得的弦长为26,求直线l 的方程;(2)已知直线y =3与圆O 交于A ,B 两点,P 是圆上异于A ,B 的任意一点,且直线AP ,BP 与y 轴相交于M ,N 点.判断点M 、N 的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.参考答案二、解答题1、解:∵直线3100x y --=与圆222:(0)O x y r r +=>相切∴圆心O 到直线3100x y --=的距离为|10|1019r ==+. …2分(1)记圆心到直线l 的距离为d ,所以1062d =-=.当直线l 与x 轴垂直时,直线l 的方程为2x =,满足题意; …3分当直线l 与x 轴不垂直时,设直线l 的方程为1(2)y k x -=-,即(12)0kx y k -+-= 所以2|12|21k d k -==+,解得34k =-,此时直线l 的方程为34100x y +-= …6分 综上,直线l 的方程为2x =或34100x y +-=. …7分(2)设00(,)P x y .∵直线3y =与圆O 交于A 、B 两点,不妨取(1,3),(1,3)A B -,∴直线PA 、PB 的方程分别为0033(1)1y y x x --=--,0033(1)1y y x x --=++ 令0x =,得00000033(0,),(0,)11x y x y M N x x -+-+,则220000002000339111M N x y x y x y y y x x x -+-⋅=⋅=-+-(*)…13分 因为点00(,)P x y 在圆C 上,所以220010x y +=,即220010y x =-,代入(*)式得M N y y ⋅=2200209(10)101x x x --=-为定值. …15分。
2019秋高三数学上学期期末试题汇编:26.直线与圆2(Word版含解析)

(四川省绵阳市2019届高三上学期期末数学(文科)试题)11.已知直线和圆,若是在区间上任意取一个数,那么直线与圆相交且弦长小于的概率为()A. B. C. D.【答案】D【解析】【分析】先据题意求出满足条件的r的范围,利用区间长度之比求出满足条件的概率即可.【详解】由点到直线的距离公式可得因为直线与圆相交,所以相交弦的长度为由题知解得所以弦长小于的概率故选:D.【点睛】本题目考查了直线与圆相交问题和几何概型的综合知识,注意直线与圆相交r的取值,属于中档题.(四川省绵阳市2019届高三上学期期末数学(文科)试题)15.若是直线上的点,直线与圆相交于、两点,若为等边三角形,则过点作圆的切线,切点为,则__________.【答案】【解析】【分析】由为等边三角形,以及圆的圆心坐标和半径,即可求出,再将点坐标代入直线的方程,即可求出,再由两点间距离公式求出的长,根据,即可求出结果.【详解】因为为等边三角形,圆的圆心为,半径为,所以根据点到直线的距离可得:,即,因为,所以,所以直线的方程为,又在直线上,所以,所以,即,所以.故答案为.【点睛】本题主要考查直线与圆的综合问题,结合点到直线的距离公式,以及两点间距离公式,即可求解,属于常考题型.(四川省内江、眉山等六市2019届高三第二次诊断性考试数学(理)试题)9.若直线与圆相交,且两个交点位于坐标平面上不同的象限,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】圆都在轴的正半轴和原点,若要两个交点在不同象限,则在第一、四象限,即两交点的纵坐标符号相反,通过联立得到,令其小于0,可得答案.【详解】圆与直线联立,整理得图像有两个交点方程有两个不同的实数根,即得.圆都在轴的正半轴和原点,若要交点在两个象限,则交点纵坐标的符号相反,即一个交点在第一象限,一个交点在第四象限.,解得,故选D项.【点睛】本题考查直线与圆的交点,数形结合的数学思想来解决问题,属于中档题.(福建省2019届高三毕业班备考关键问题指导适应性练习(四)数学(文)试题)3.在直角坐标系中,以为圆心的圆与直线相切,则圆的方程为( )A. B.C. D.【答案】D【解析】【分析】由直线与圆O相切,可得圆心O到直线的距离等于圆的半径,再由点到直线的距离公式求得O到直线的距离,即圆的半径,然后由圆的标准方程可得答案.【详解】依题设,圆的半径等于原点到直线的距离,即,得圆的方程为,故选D.【点睛】该题主要考查圆的方程的确定,掌握圆的标准方程和点到直线的距离公式是解题的关键.(广东省潮州市2019届高三上学期期末教学质量检测数学(文)试题)15.曲线在点处的切线与圆相切,则______.【答案】【解析】【分析】求切线的斜率和切点,由点斜式方程得切线方程,再由圆心到切线的距离等于半径,计算可得所求值.【详解】的导数为,可得切线的斜率为,切点为,即有在处的切线方程为,即为,由切线与圆相切,可得,可得.故答案为:.【点睛】本题考查导数的运用:求切线的斜率,考查直线和圆相切的条件:,考查方程思想和运算能力,属于基础题.(广东省江门市2019届高三高考模拟(第一次模拟)考试数学(文科)试卷)13.在直角坐标系Oxy中,直线与坐标轴相交于A、B两点,则经过O、A、B三点的圆的标准方程是______.【答案】【解析】【分析】先求出A、B的坐标,根据圆心为直角三角形AOB的斜边AB的中点C,半径为AB的一半,写出圆的标准方程.【详解】在直角坐标系Oxy中,直线与坐标轴相交于A、B两点,、,则经过O、A、B三点的圆的圆心为直角三角形AOB的斜边AB的中点,半径为AB的一半,即,则经过O、A、B三点的圆的标准方程是,故答案为:.【点睛】本题主要考查求圆的标准方程的方法,关键是确定圆心和半径,属于基础题.(吉林省吉林市普通中学2019届高中毕业班第三次调研测试数学(文科)试题)8.已知是圆内过点的最短弦,则等于()A. B. C. D.【答案】D【解析】【分析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可.【详解】圆的标准方程为(x﹣3)2+(y+1)2=10,则圆心坐标为C(3,﹣1),半径为,过E的最短弦满足E恰好为C在弦上垂足,则CE,则|AB|,故选:D.【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.(吉林省吉林市普通中学2019届高三第三次调研测试理科数学试题)7.已知是圆内过点的最短弦,则等于()A. B. C. D.【答案】D【解析】【分析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可.【详解】圆的标准方程为(x﹣3)2+(y+1)2=10,则圆心坐标为C(3,﹣1),半径为,过E的最短弦满足E恰好为C在弦上垂足,则CE,则|AB|,故选:D.【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.(江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题)13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(3, 1),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题(山东省德州市2019届高三期末联考数学(理科)试题)15.在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】【解析】因为在圆上,所以圆心与切点的连线与切线垂直,又知与直线与直线垂直,所以圆心与切点的连线与直线斜率相等,,所以,故填:.(陕西省咸阳市2019届高三高考模拟检测(二)数学(文)试题)15.已知点是直线上的动点,过引圆的切线,则切线长的最小值为____.【答案】【解析】【分析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆的圆心为,半径为1,要使切线长最小,则只需要点P到圆心的距离最小。
2019年高考真题理科数学解析分类汇编9直线与圆

2019年高考真题理科数学解析分类汇编9 直线与圆1.【2019高考重庆理3】任意的实数k ,直线1+=kx y 与圆222=+y x 的位置关系一定是 A .相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心 【答案】C【解析】直线1+=kx y 恒过定点)1,0(,定点到圆心的距离21<=d ,即定点在圆内部,所以直线1+=kx y 与圆相交但直线不过圆心,选C.2.【2019高考浙江理3】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行 的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 【答案】A【解析】当1=a 时,直线1l :02=+y x ,直线2l :042=++y x ,则1l //2l ;若1l //2l ,则有012)1(=⨯-+a a ,即022=-+a a ,解之得,2-=a 或1=a ,所以不能得到1=a 。
故选A.4.【2019高考陕西理4】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A.l 与C 相交 B. l 与C 相切 C.l 与C 相离 D. 以上三个选项均有可能【答案】A.【解析】圆的方程可化为4)2(22=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.5.【2019高考天津理8】设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞ (C )]222,222[+- (D )),222[]222,(+∞+⋃--∞【答案】D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】圆心为)1,1(,半径为 1.直线与圆相切,所以圆心到直线的距离满足1)1()1(|2)1()1|22=+++-+++n m n m (,即2)2(1n m mn n m +≤=++,设z n m =+,即01412≥--z z ,解得,222-≤z 或,222+≥z 6.【2019高考江苏12】(5分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 【答案】43。
高三上学期期末考试数学试题分类汇编:直线与圆.docx

江苏省13市县2016届高三上学期期末考试数学试题分类汇编直线与圆一、填空题1、(常州市2016届高三上期末)在平面直角坐标系xoy 中,已知圆O :222211,:(4)4x y O x y +=-+=,动点P 在直线30x y b +-=上,过P 分别作圆O ,O 1的切线,切点分别为AB ,若满足PB =2PA 的点P 有且只有两个,则实数b 的取值范围是2、(淮安、宿迁、连云港、徐州苏北四市2016届高三上期末)已知)1,0(A ,)0,1(B ,)0,(t C ,点D 是直线AC 上的动点,若BD AD 2≤恒成立,则最小正整数t 的值为3、(南京、盐城市2016届高三上期末)过点(4,0)P -的直线l 与圆22:(1)5C x y -+=相交于,A B两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 ▲4、(南通市海安县2016届高三上期末)在平面直角坐标系 xOy 中,已知点 P (−1,0) ,Q (2 ,1) ,直线 l :0=++c by ax 其中实数 a ,b ,c 成等差数列,若点 P 在直线 l 上的射影为 H ,则线段 QH 的取值范围是 ;5、(苏州市2016届高三上期末)若直线1:l y x a =+和直线2:l y x b =+将圆22(1)(2)8x y -+-=分成长度相等的四段弧,则22a b += ▲6、(泰州市2016届高三第一次模拟)已知直线(0)y kx k =>与圆22:(2)1C x y -+=相交于,A B两点,若255AB =,则k = ▲ 7、(无锡市2016届高三上期末)已知圆22:(2)4C x y -+=,线段EF 在直线:1l y x =+上运动,点P 为线段EF 上任意一点,若圆C 上存在两点A 、B ,使得0PA PB ⋅≤u u u r u u u r ,则线段EF 长度的最大值是8、(扬州市2016届高三上期末)已知圆O :422=+y x ,若不过原点O 的直线l 与圆O 交于P 、Q两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为 ▲ .9、(南通市如东县2016届高三上期末)填空题答案1、20,43⎛⎫ ⎪⎝⎭-2、43、340x y ±+=4、2,32]5、186、12714 8、1± 9、5,25][-二、解答题1、(淮安、宿迁、连云港、徐州苏北四市2016届高三上期末)如图,OA 是南北方向的一条公路,OB 是北偏东045方向的一条公路,某风景区的一段边界为曲线C .为方便游客光,拟过曲线C 上的某点分别修建与公路OA ,OB 垂直的两条道路PN PM ,,且PN PM ,的造价分别为5万元/百米,40万元/百米,建立如图所示的直角坐标系xoy ,则曲线符合函数)91(242≤≤+=x xx y 模型,设x PM =,修建两条道路PN PM ,的总造价为)(x f 万元,题中所涉及的长度单位均为百米.(1)求)(x f 解析式;(2)当x 为多少时,总造价)(x f 最低?并求出最低造价. 2、(南京、盐城市2016届高三上期末)如图所示,,A B 是两个垃圾中转站,B 在A 的正东方向16千米处,AB 的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P . 垃圾发电厂P 的选址拟满足以下两个要求(,,A B P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大). 现估测得,A B 两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?3、(苏州市2016届高三上期末)图1是一段半圆柱形水渠的直观图,其横断面如图2所示,其中C 为半圆弧¼ACB 的中点,渠宽AB 为2米. (1)当渠中水深CD 为0.4米时,求水面的宽度;(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?解答题答案1、(1)在直角坐标系中,因为曲线C 的方程为)242=+19y x x x ≤≤,PM x = M N O P x y BA所以点P坐标为,x x ⎛+ ⎝⎭, 直线OB 的方程为0x y -=, ……………………………………………………2分则点P 到直线0x y -=24x ==,………………4分 又PM 的造价为5万元/百米,PN 的造价为40万元/百米. 则两条道路总造价为()22432()540519f x x x x x x ⎛⎫=+⋅=+ ⎪⎝⎭≤≤. …………8分 (2) 因为22432()5405f x x x x x ⎛⎫=+⋅=+ ⎪⎝⎭, 所以 333645(64)()=51x f x x x -⎛⎫'-= ⎪⎝⎭, ………………………10分 令()0f x '=,得4x =,列表如下:所以当4x =时,函数()f x 有最小值,最小值为()232454304f ⎛⎫=+= ⎪⎝⎭.……13分 答:(1)两条道路PM ,PN 总造价()f x 为232()5f x x x ⎛⎫=+ ⎪⎝⎭()19x ≤≤; (2)当4x =时,总造价最低,最低造价为30万元. ……………………14分(注:利用三次均值不等式223232()5553022x x f x x x x ⎛⎫⎛⎫=+=++⨯= ⎪ ⎪⎝⎭⎝⎭≥, 当且仅当23222x x x ==,即4x =时等号成立,照样给分.) 2、解法一:由条件①,得505303PA PB ==. ..............2分 设5,3PA x PB x ==,则222(5)16(3)8cos 2165105x x x PAB x x+-∠==+⨯⨯, (6)分所以点P 到直线AB的距离sin 5h PA PAB x =∠=== ...............10分 所以当234x =,即x =h 取得最大值15千米.即选址应满足PA =PB =. ...........14分 解法二:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立平面直角坐标系. .......2分则(8,0),(8,0)A B -. 由条件①,得505303PA PB ==. (4)设(,)(0)P x y y >,则=化简得,222(17)15(0)x y y -+=>,即点P 的轨迹是以点(17,0)为圆心、15为半径的圆位于x 轴上方的半圆.则当17x =时,点P 到直线AB 的距离最大,最大值为15千米.所以点P 的选址应满足在上述坐标系中其坐标为(17,15)即可. ............14分3、解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立如图所示的直角坐标系xOy ,因为AB =2米,所以半圆的半径为1米,则半圆的方程为221(11,0)x y x y +=-≤≤≤. ………………………3分因为水深CD =0.4米,所以OD =0.6米,在Rt △ODM 中,0.8DM ==(米). ………………………5分所以MN =2DM =1.6米,故沟中水面宽为1.6米. ………………………6分(2)为使挖掉的土最少,等腰梯形的两腰必须与半圆相切,设切点为(cos ,sin )(0)2P θθθπ-<<是圆弧BC 上的一点,过P 作半圆的切线得如图所示的直角梯形OCFE ,得切线EF 的方程为cos sin 1x y θθ+=. ……………………8分令y =0,得1(,0)cos E θ,令y =-1,得1sin (,1)cos F θθ+-. 设直角梯形OCFE 的面积为S ,则11sin 2sin ()()1cos cos cos S CF OE OC θθθθθ++=+⋅=+⨯= (02θπ-<<). ……………………10分 22cos cos (2sin )(sin )12sin cos cos S θθθθθθθ-+-+'==,令0S '=,解得6θπ=-, 当26θππ-<<-时,0S '<,函数单调递减; 当06θπ-<<时,0S '>,函数单调递增. ………………………12分 所以6θπ=-时,面积S.此时1sin()6cos()6CF π+-==π-……………14分。
北京市2019届高三数学理一轮复习典型题专项训练:直线与圆、极坐标参数方程(精编含解析)

北京市2019届高三数学理一轮复习典型题专项训练直线与圆、极坐标与参数方程一、直线与圆1.在平面直角坐标系中,记为点到直线的距离.当变化时,的最大值为()A. B. 2 C. 3 D. 4【答案】C【解析】【分析】由题意d==,当sin(θ+α)=﹣1时,d max=1+≤3.由此能求出d 的最大值.【详解】由题意d=,tanα=,∴当sin(θ+α)=﹣1时,d max=1+≤3.∴d的最大值为3.故答案为:C【点睛】(1)本题主要考查点到直线的距离的求法和最值,考查辅助角公式,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)注意由于绝对值后面是“-2”,所以当sin(θ+α)=﹣1时d取最大值,不要弄错了.2.直线被圆所截的弦长为,则圆的方程可以为_____________.(写出一个即可)【答案】(答案不唯一)【解析】【分析】根据直线和圆相交的弦长公式进行计算即可.【详解】设圆的标准方程为x2+y2=r2,∵直线x﹣y﹣1=0被圆C所截的弦长为,∴圆心到直线的距离d=,则圆的半径r=,则圆的方程为x2+y2=1,故答案为:x2+y2=1(答案不唯一)【点睛】本题主要考查圆的方程的求解,根据条件结合直线和圆相交的弦长公式是解决本题的关键.3.已知直线与圆相交于两点,且为正三角形,则实数的值为()A. B. C. 或 D. 或【答案】D【解析】由题意得,圆的圆心坐标为,半径.因为为正三角形,则圆心到直线的距离为,即,解得或,故选D.4.已知直线与直线平行,则的值为()A. B. C. D.【答案】A【解析】【分析】由题得3×(-1)-(1-a)×1=0,解之即得a的值.【详解】由题得3×(-1)-(1-a)×1=0,解之得a=4.故答案为:A【点睛】(1)本题主要考查两直线平行的位置关系,意在考查学生对该知识的掌握水平和分析推理能力.(2) 直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.5.圆C:的圆心到直线3x+4y+14=0的距离是.【答案】3【解析】试题分析:由题可知,将化简为,圆心为,因此,圆心到直线的距离公式为;考点:点到直线的距离公式6.已知过点的直线交圆于,两点,,则直线的方程为________________.【答案】或【解析】【分析】由圆的方程找出圆心坐标与半径r,根据题意设出直线AB解析式为y=k(x﹣1),利用点到直线的距离公式表示出圆心到直线的距离d,根据弦长的一半以及半径r,利用勾股定理列出关于k的方程,求出方程的解确定出k的值,即可求出直线l的方程.【详解】由圆的方程得:圆心(0,0),半径r=1,设直线AB的解析式为y=k(x﹣1),即kx﹣y﹣k=0,∵圆心到直线AB的距离d=,弦长|AB|=,∴12=()2+()2,解得:k=±1,则直线l方程为x﹣y﹣1=0或x+y﹣1=0.故答案为:x﹣y﹣1=0或x+y﹣1=0【点睛】此题考查了直线与圆相交的性质,涉及的知识有圆的标准方程、点到直线的距离公式、垂径定理以及勾股定理,熟练掌握公式及定理是解本题的关键.7.已知圆C:,则圆心的坐标为________,圆C截直线的弦长为__________.【答案】(1). (2).【解析】【分析】先配方即得圆的圆心坐标,再解三角形求出弦长.【详解】由题得,所以圆心为(1,0),半径为1.圆心到直线x-y=0的距离为,所以弦长为.故答案为:(1). (2).【点睛】(1)本题主要考查圆的方程和弦长的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)求直线和圆相交的弦长常用公式.8.过点的直线l与圆相交于A,B两点,且,则直线l的方程为()A. B. ,或C. ,或D. ,或【答案】C【解析】【分析】由已知中圆的标准方程可以求出圆心坐标及半径,结合直线l被圆所截弦长,根据半弦长,弦心距,半径构造直角三角形,满足勾股定理,求出弦心距,分直线l的斜率不存在和直线l的斜率存在两种情况分类讨论,最后综合讨论结果,可得答案.【详解】∵圆x2+y2+2x﹣2y﹣2=0,即(x+1)2+(y﹣1)2=4,圆心(﹣1,1),半径为2,若,则圆心(﹣1,1)到直线l距离d=1,若直线l的斜率不存在,即x=2,此时圆心(﹣1,1)到直线l距离为3不满足条件,若直线l的斜率存在,则可设直线l的方程为y﹣2=k(x﹣2),即kx﹣y﹣2k+2=0,则d==1,解得k=0或,此时直线l的方程为3x﹣4y+2=0,或y=2,故答案为:C【点睛】(1)本题考查的知识点是直线与圆的位置关系,其中根据半弦长,弦心距,半径构造直角三角形,满足勾股定理,求出弦心距,是解答的关键.(2)设直线方程时,如果直线的斜率存在不存在不确定,一定要分类讨论,以免漏解. 9.经过圆的圆心且与直线平行的直线方程是( )A. B.C.D.【答案】A 【解析】试题分析:所求直线斜率为2,且过点,所以方程为,即,故选A考点:直线方程. 10.已知圆O :,直线过点(-2,0),若直线上任意一点到圆心距离的最小值等于圆的半径,则直线的斜率为( )A.B.C.D.【答案】A 【解析】 【分析】由题意得到直线l 斜率存在,设为k ,表示出直线l 方程,根据直线l 上任意一点到圆心距离的最小值等于圆的半径,圆心到直线l 的距离d==1,求出方程的解得到直线的斜率.【详解】由题意知所求直线的斜率存在,设为k ,直线l 方程为y=k (x ﹣2),即kx ﹣y ﹣2k=0, ∵直线l 上任意一点到圆心距离的最小值等于圆的半径, ∴圆心到直线l 的距离d==1,解得:k=故答案为:A【点睛】(1)本题主要考查直线和圆的位置关系,考查点到直线的距离公式,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)点P 到直线ax+by+c=0的距离为.11.若圆的半径为1,其圆心与点关于直线对称,则圆C 的标准方程为( )A.B.C. D.【答案】C 【解析】 【分析】先写出圆心的坐标(0,1),再求出圆C 的标准方程. 【详解】由题得圆心坐标为(0,1),所以圆的标准方程为.故答案为:C【点睛】(1)本题主要考查圆的标准方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)求圆的方程一般利用待定系数法,先定位后定量.圆的标准方程为二、极坐标12.在极坐标系中,直线与圆相切,则a =__________.【答案】【解析】分析:根据将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a. 详解:因为,由,得, 由,得,即,即,因为直线与圆相切,所以点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.13.在极坐标系中,点A 在圆上,点P 的坐标为(1,0),则|AP|的最小值为________.【答案】1 【解析】 【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P 的距离的最小值. 【详解】设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C ,将圆C 的极坐标方程化为:x 2+y 2﹣2x ﹣4y +4=0,再化为标准方程:(x﹣1)2+(y﹣2)2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min=|CP|﹣r C=2﹣1=1,故答案为:1【点睛】本题主要考查极坐标和直角坐标的互化,考查圆上的点到圆外的点的距离的最小值,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.14.在极坐标系中,直线与圆交于A,B两点,则______.【答案】2【解析】试题分析:直线过圆的圆心,因此【考点】极坐标方程【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程时,要灵活运用以及,,同时要掌握必要的技巧.视频15.直线的参数方程为(为参数),则直线的倾斜角大小为()A. B. C. D.【答案】C【解析】将直线的参数方程化成普通方程可得,所以直线的斜率,从而得到其倾斜角为,故选C.16.在极坐标系中,如果直线与圆相切,那么____.【答案】【解析】【分析】分别化直线与圆的极坐标方程为直角坐标方程,再由圆心到直线的距离等于半径即可求得a值.【详解】由直线ρcosθ=a,得直角坐标方程为x=a,由圆ρ=2sinθ,得ρ2=2ρsinθ,即x2+y2﹣2y=0,化为标准方程:x2+(y﹣1)2=1.则圆心坐标(0,1),半径为1.由直线x=a与圆x2+(y﹣1)2=1相切,可得a=±1.故答案为:±1【点睛】本题主要考查极坐标和直角坐标方程的互化,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.17.已知圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系,该圆的极坐标方程为()A. B. C. D.【答案】B【解析】【分析】直接把极坐标的公式代入直角坐标方程化简即得.【详解】由题得.故答案为:B【点睛】(1)本题主要考查极坐标和直角坐标的互化,意在考查学生对这些知识的掌握水平和分析推理能力.(2)极坐标和直角坐标互化的公式有:.18.已知为曲线:(为参数)上的动点.设为原点,则的最大值是A. B. C. D.【答案】D【解析】因为为曲线:上的动点,所以可设,则,即最大值为,故选D.19.直线截圆所得的弦长为______。
2014-2019年高考数学真题分类汇编专题11:解析几何1(直线与圆)带详细答案

2014-2019年高考数学真题分类汇编专题11:解析几何(直线与圆)(一)直线与直线选择题1.(2014•四川文)设m R ∈,过定点A 的动直线0x my +=和过定点B 的直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A .B .C .D .,【考点】函数最值的应用;两条直线的交点坐标【分析】可得直线分别过定点(0,0)和(1,3)且垂直,可得22||||10PA PB +=.三角换元后,由三角函数的知识可得.【解答】解:由题意可知,动直线0x my +=经过定点(0,0)A , 动直线30mx y m --+=即(1)30m x y --+=,经过点定点(1,3)B , 动直线0x my +=和动直线30mx y m --+=的斜率之积为1-,始终垂直,P 又是两条直线的交点,PA PB ∴⊥,222||||||10PA PB AB ∴+==.设ABP θ∠=,则||PA θ=,||PB θ=, 由||0PA …且||0PB …,可得[0θ∈,]2π||||cos ))4PA PB πθθθ∴++=+,[0θ∈,]2π,[44ππθ∴+∈,3]4π,sin()4πθ∴+∈1],)4πθ∴+∈,故选:B .【点评】本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.2.(2018•北京理7)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离.当θ、m 变化时,d 的最大值为( ) A .1B .2C .3D .4【考点】点到直线的距离公式【分析】由题意s i n()2| d==,当s i n()θα+=-时,13maxd=+.由此能求出d的最大值.【解答】解:由题意d==1tanym xα==,∴当sin()1θα+=-时,13maxd=+.d∴的最大值为3.故选:C.【点评】本题考查点到直线的距离的最大值的求法,考查点到直线的距离公式、三角函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.填空题1.(2014•四川理)设m R∈,过定点A的动直线0x my+=和过定点B的动直线30mx y m--+=交于点(,)P x y.则||||PA PB的最大值是5.【考点】点到直线的距离公式【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA PB⊥;再利用基本不等式放缩即可得出||||PA PB的最大值.【解答】解:由题意可知,动直线0x my+=经过定点(0,0)A,动直线30mx y m--+=即(1)30m x y--+=,经过点定点(1,3)B,注意到动直线0x my+=和动直线30mx y m--+=始终垂直,P又是两条直线的交点,则有PA PB⊥,222||||||10PA PB AB∴+==.故22||||||||52PA PBPA PB+=…(当且仅当||||PA PB===”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有22||||PA PB+是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.2.(2016•上海文理)设0a >,0b >,若关于x ,y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围为(2,)+∞ .【考点】基本不等式及其应用;两条直线平行与倾斜角、斜率的关系【分析】根据方程组无解,得到两直线平行,建立a ,b 的方程关系,利用转化法,利用基本不等式的性质进行求解即可.【解答】解:关于x ,y 的方程组11ax y x by +=⎧⎨+=⎩无解,∴直线1ax y +=与1x by +=平行,0a >,0b >,∴1111a b =≠, 即1a ≠,1b ≠,且1ab =,则1b a=, 由基本不等式有:12a b a a a a+=+=…,当且仅当1a =时取等,而a 的范围为0a >且1a ≠,不满足取等条件,2a b ∴+>,故答案为:(2,)+∞.【点评】本题主要考查直线平行的应用以基本不等式的应用,考查学生的计算能力.3.(2016•上海文理)已知平行直线1:210l x y +-=,2:210l x y ++=,则1l ,2l 的距离 . 【考点】IU :两条平行直线间的距离【专题】11:计算题;29:规律型;5B :直线与圆 【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线1:210l x y +-=,2:210l x y ++=,则1l ,2l =. 【点评】本题考查平行线之间的距离公式的应用,考查计算能力.(二)圆与圆1.(2014•湖南文)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则(m = )A .21B .19C .9D .11-【考点】圆的切线方程;圆与圆的位置关系及其判定【分析】化两圆的一般式方程为标准方程,求出圆心和半径,由两圆心间的距离等于半径和列式求得m 值. 【解答】解:由221:1C x y +=,得圆心1(0,0)C ,半径为1, 由圆222:680C x y x y m +--+=,得22(3)(4)25x y m -+-=-,∴圆心2(3,4)C .圆1C 与圆2C 外切,∴1=+,解得:9m =. 故选:C .【点评】本题考查两圆的位置关系,考查了两圆外切的条件,是基础题.2.(2015•新课标Ⅱ文)已知三点(1,0)A ,B ,C 则ABC ∆外接圆的圆心到原点的距离为()A .53B .3C D .43【考点】圆的标准方程【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论. 【解答】解:因为ABC ∆外接圆的圆心在直线BC 垂直平分线上,即直线1x =上, 可设圆心(1,)P p ,由PA PB =得||p =得p =圆心坐标为P ,所以圆心到原点的距离||OP == 故选:B .【点评】本题主要考查圆性质及ABC ∆外接圆的性质,了解性质并灵运用是解决本题的关键. 3.(2015•新课标Ⅱ理)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||(MN = )A .B .8C .D .10【考点】圆的方程,两点间的距离公式【分析】设圆的方程为220x y Dx Ey F ++++=,代入点的坐标,求出D ,E ,F ,令0x =,即可得出结论.【解答】解:设圆的方程为220x y Dx Ey F ++++=,则193016442014970D E F D E F D E F ++++=⎧⎪++++=⎨⎪++-+=⎩,2D ∴=-,4E =,20F =-,2224200x y x y ∴+-+-=, 令0x =,可得24200y y +-=,2y ∴=-±||MN ∴=故选:C .【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键. 4.(2015•北京文)圆心为(1,1)且过原点的圆的标准方程是( ) A .22(1)(1)1x y -+-= B .22(1)(1)1x y +++= C .22(1)(1)2x y +++= D .22(1)(1)2x y -+-=【考点】圆的标准方程【分析】利用两点间距离公式求出半径,由此能求出圆的方程. 【解答】解:由题意知圆半径r =∴圆的方程为22(1)(1)2x y -+-=.故选:D .【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.填空题1.(2014•山东文)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x轴所得弦的长为,则圆C 的标准方程为 22(2)(1)4x y -+-= . 【考点】圆的标准方程【分析】由圆心在直线20x y -=上,设出圆心坐标,再根据圆与y 轴相切,得到圆心到y 轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r ,由弦长的一半,圆的半径r 及表示出的d 利用勾股定理列出关于t 的方程,求出方程的解得到t 的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【解答】解:设圆心为(2,)t t ,半径为|2|r t =,圆C 截x 轴所得弦的长为 2234t t ∴+=, 1t ∴=±,圆C 与y 轴的正半轴相切, 1t ∴=-不符合题意,舍去,故1t =,22t =,22(2)(1)4x y ∴-+-=.故答案为:22(2)(1)4x y -+-=.【点评】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.2.(2014•陕西理)若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为22(1)1x y +-= . 【考点】圆的标准方程【分析】利用点(,)a b 关于直线y x k =±的对称点为(,)b a ,求出圆心,再根据半径求得圆的方程. 【解答】解:圆心与点(1,0)关于直线y x =对称,可得圆心为(0,1),再根据半径等于1, 可得所求的圆的方程为22(1)1x y +-=, 故答案为:22(1)1x y +-=.【点评】本题主要考查求圆的标准方程,利用了点(,)a b 关于直线y x k =±的对称点为(,)b a ,属于基础题. 3.(2015•湖北文)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,(B B 在A 的上方),且||2AB =.(1)圆C 的标准方程为 22(1)(2x y -+-= . (2)圆C 在点B 处切线在x 轴上的截距为 .【考点】圆的标准方程;圆的切线方程【分析】(1)确定圆心与半径,即可求出圆C 的标准方程;(2)求出圆C 在点B 处切线方程,令0y =可得圆C 在点B 处切线在x 轴上的截距.【解答】解:(1,∴圆C 的标准方程为22(1)(2x y -+=;(2)由(1)知,(0,1B ,∴圆C 在点B 处切线方程为(01)(1)(12x y --++=,令0y =可得1x =-故答案为:22(1)(2x y -+=;1-【点评】本题考查圆的标准方程,考查圆的切线方程,考查学生的计算能力,属于中档题.4.(2015•湖北理)如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,(B B 在A 的上方),且||2AB =.(1)圆C 的标准方程为 22(1)(2x y -+-= ;(2)过点A 任作一条直线与圆22:1O x y +=相交于M ,N 两点,下列三个结论:①||||||||NA MA NB MB =; ②||||2||||NB MA NA MB -=; ③||||||||NB MA NA MB += 其中正确结论的序号是 .(写出所有正确结论的序号)【考点】命题的真假判断与应用;圆与圆的位置关系及其判定【分析】(1)取AB 的中点E ,通过圆C 与x 轴相切于点T ,利用弦心距、半径与半弦长之间的关系,计算即可;(2)设(cos ,sin )M αα,(cos ,sin )N ββ,计算出||||MA MB 、||||NA NB 、||||NB NA 的值即可. 【解答】解:(1)圆C 与x 轴相切于点(1,0)T ,∴圆心的横坐标1x =,取AB 的中点E ,||2AB =,||1BE ∴=,则||BC =||r BC ==∴圆心C ,则圆的标准方程为22(1)(2x y -+=,故答案为:22(1)(2x y -+=.(2)圆心C ,E ∴, 又||2AB =,且E 为AB 中点,1)A ∴,1)B ,M 、N 在圆22:1O x y +=上,∴可设(cos ,sin )M αα,(cos ,sin )N ββ,||NA ∴=||NB∴||1||NA NB =,同理可得||1||MA MB =, ∴||||||||NA MA NB MB =,①成立,||||1)2||||NB MA NA MB -==,②正确.||||1)||||NB MA NA MB +==③正确. 故答案为:①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.5.(2015•江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线210()mx y m m R ---=∈相切的所有圆中,半径最大的圆的标准方程为 22(1)2x y -+= . 【考点】圆的标准方程;圆的切线方程【分析】求出圆心到直线的距离d 的最大值,即可求出所求圆的标准方程. 【解答】解:圆心到直线的距离d =1m ∴=,∴所求圆的标准方程为22(1)2x y -+=.故答案为:22(1)2x y -+=.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础. 6.(2016•浙江文)已知a R ∈,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是 ,半径是 .【考点】圆的一般方程【分析】由已知可得220a a =+≠,解得1a =-或2a =,把1a =-代入原方程,配方求得圆心坐标和半径,把2a =代入原方程,由2240D E F +-<说明方程不表示圆,则答案可求. 【解答】解:方程222(2)4850a x a y x y a +++++=表示圆, 220a a ∴=+≠,解得1a =-或2a =.当1a =-时,方程化为224850x y x y +++-=,配方得22(2)(4)25x y +++=,所得圆的圆心坐标为(2,4)--,半径为5; 当2a =时,方程化为225202x y x y ++++=, 此时2254144502D E F +-=+-⨯=-<,方程不表示圆, 故答案为:(2,4)--,5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.7.(2016•天津文)已知圆C 的圆心在x轴正半轴上,点M 在圆C 上,且圆心到直线20x y -=的距,则圆C 的方程为 22(2)9x y -+= . 【考点】圆的标准方程【分析】由题意设出圆的方程,把点M 的坐标代入圆的方程,结合圆心到直线的距离列式求解. 【解答】解:由题意设圆的方程为222()(0)x a y r a -+=>,由点M 在圆上,且圆心到直线20x y -=,得225a r ⎧+=⎪=2a =,3r =.∴圆C 的方程为:22(2)9x y -+=.故答案为:22(2)9x y -+=.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.8.(2018•天津文12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 . 【考点】圆的一般方程【分析】【方法一】根据题意画出图形,结合图形求得圆心与半径,写出圆的方程. 【方法二】设圆的一般方程,把点的坐标代入求得圆的方程. 【解答】解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=.【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则042020F D F D E F =⎧⎪++=⎨⎪+++=⎩, 解得2D =-,0E F ==;∴所求圆的方程为2220x y x +-=.故答案为:22(1)1x y -+=(或2220)x y x +-=.【点评】本题考查了圆的方程与应用问题,是基础题.(三)直线与圆选择题1.(2014•新课标Ⅱ文)设点0(M x ,1),若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( ) A .[1-,1]B .1[2-,1]2C.[D.[【考点】直线和圆的方程的应用【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点0(M x ,1),要使圆22:1O x y +=上存在点N ,使得45OMN ∠=︒, 则OMN ∠的最大值大于或等于45︒时一定存在点N ,使得45OMN ∠=︒, 而当MN 与圆相切时OMN ∠取得最大值, 此时1MN =,图中只有M '到M ''之间的区域满足1MN =, 0x ∴的取值范围是[1-,1].故选:A .【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一. 2.(2014•北京文)已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -,(B m ,0)(0)m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .7B .6C .5D .4【考点】直线与圆的位置关系【分析】根据圆心C 到(0,0)O 的距离为5,可得圆C 上的点到点O 的距离的最大值为6.再由90APB ∠=︒,可得12PO AB m ==,可得6m …,从而得到答案. 【解答】解:圆22:(3)(4)1C x y -+-=的圆心(3,4)C ,半径为1, 圆心C 到(0,0)O 的距离为5,∴圆C 上的点到点O 的距离的最大值为6.再由90APB ∠=︒可得,以AB 为直径的圆和圆C 有交点, 可得12PO AB m ==,故有6m …, 故选:B .【点评】本题主要直线和圆的位置关系,求得圆C 上的点到点O 的距离的最大值为6,是解题的关键,属于中档题.3.(2014•安徽文)过点(P ,1)-的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是()A .(0,]6πB .(0,]3πC .[0,]6πD .[0,]3π【考点】直线与圆的位置关系【分析】用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得1,由此求得斜率k 的范围,可得倾斜角的范围.【解答】解:由题意可得点(P 1)-在圆221x y +=的外部,故要求的直线的斜率一定存在,设为k ,则直线方程为1(y k x +=,即10kx y -+-=.1,即22311k k -++…,解得0k 剟,故直线l 的倾斜角的取值范围是[0,]3π,故选:D .【点评】本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.4.(2014•福建文)已知直线l 过圆22(3)4x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是()A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=【考点】直线与圆的位置关系【分析】由题意可得所求直线l 经过点(0,3),斜率为1,再利用点斜式求直线l 的方程. 【解答】解:由题意可得所求直线l 经过点(0,3),斜率为1, 故l 的方程是30y x -=-,即30x y -+=, 故选:D .【点评】本题主要考查用点斜式求直线的方程,两条直线垂直的性质,属于基础题.5.(2014•福建理)直线:1l y kx =+与圆22:1O x y +=相交于A ,B 两点,则“1k =”是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【考点】充分条件、必要条件、充要条件;直线与圆相交的性质【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:若直线:1l y kx =+与圆22:1O x y +=相交于A ,B 两点,则圆心到直线距离d =,||AB ===,若1k =,则||AB ==d =OAB ∆的面积为1122=成立,即充分性成立.若OAB ∆的面积为12,则2211||||1222112k k S k k ==⨯⨯==++, 即212||k k +=,即22||10k k -+=, 则2(||1)0k -=, 即||1k =,解得1k =±,则1k =不成立,即必要性不成立. 故“1k =”是“OAB ∆的面积为12”的充分不必要条件. 故选:A .【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.6.(2014•江西理)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A .45πB .34πC .(6π-D .54π【考点】直线与圆的位置关系【分析】如图,设AB 的中点为C ,坐标原点为O ,圆半径为r ,由已知得||||OC CE r ==,过点O 作直线240x y +-=的垂直线段OF ,交AB 于D ,交直线240x y +-=于F ,则当D 恰为AB 中点时,圆C 的半径最小,即面积最小.【解答】解:如图,设AB 的中点为C ,坐标原点为O ,圆半径为r , 由已知得||||OC CE r ==,过点O 作直线240x y +-=的垂直线段OF , 交AB 于D ,交直线240x y +-=于F ,则当D 恰为OF 中点时,圆C 的半径最小,即面积最小 此时圆的直径为(0,0)O 到直线240x y +-=的距离为:d ==此时12r d ==∴圆C 的面积的最小值为:245min S ππ=⨯=. 故选:A .【点评】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.7.(2014•浙江文)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是() A .2-B .4-C .6-D .8-【考点】直线与圆的位置关系【分析】把圆的方程化为标准形式,求出弦心距,再由条件根据弦长公式求得a 的值. 【解答】解:圆22220x y x y a ++-+= 即22(1)(1)2x y a ++-=-,故弦心距d再由弦长公式可得224a -=+,4a ∴=-, 故选:B .【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题. 8.(2015•广东理)平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A .250x y ++=或250x y +-=B .20x y ++或20x y +C .250x y -+=或250x y --=D .20x y -+或20x y --=【考点】圆的切线方程【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为20x y b ++=,则,5b =±,所以所求直线方程为:250x y ++=或250x y +-= 故选:A .【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.9.(2015•山东理)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( ) A .53-或35-B .32-或23-C .54-或45-D .43-或34-【考点】直线的斜率;圆的切线方程【分析】点(2,3)A --关于y 轴的对称点为(2,3)A '-,可设反射光线所在直线的方程为:3(2)y k x +=-,利用直线与圆相切的性质即可得出.【解答】解:点(2,3)A --关于y 轴的对称点为(2,3)A '-,故可设反射光线所在直线的方程为:3(2)y k x +=-,化为230kx y k ---=. 反射光线与圆22(3)(2)1x y ++-=相切,∴圆心(3,2)-到直线的距离1d ==,化为22450240k k ++=, 43k ∴=-或34-.故选:D .【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(2015•重庆理)已知直线10x ay +-=是圆22:4210C x y x y +--+=的对称轴,过点(4,)A a -作圆C 的一条切线,切点为B ,则||(AB = )A .2B .6C .D .【考点】直线与圆的位置关系【分析】求出圆的标准方程可得圆心和半径,由直线:10l x ay +-=经过圆C 的圆心(2,1),求得a 的值,可得点A 的坐标,再利用直线和圆相切的性质求得||AB 的值. 【解答】解:圆22:4210C x y x y +--+=,即22(2)(1)4x y -+-=, 表示以(2,1)C 为圆心、半径等于2的圆.由题意可得,直线:10l x ay +-=经过圆C 的圆心(2,1), 故有210a +-=,1a ∴=-,点(4,1)A --.(AC ==,2CB R ==,∴切线的长||6AB ==.故选:B .【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.11.(2015•安徽文)直线34x y b +=与圆222210x y x y +--+=相切,则(b = ) A .2-或12 B .2或12- C .2-或12- D .2或12【考点】圆的切线方程【分析】化圆的一般式方程为标准式,求出圆心坐标和半径,由圆心到直线的距离等于圆的半径列式求得b 值.【解答】解:由圆222210x y x y +--+=,化为标准方程为22(1)(1)1x y -+-=,∴圆心坐标为(1,1),半径为1,直线34x y b +=与圆222210x y x y +--+=相切,∴圆心(1,1)到直线340x y b +-=的距离等于圆的半径,|7|15b -==,解得:2b =或12b =. 故选:D .【点评】本题考查圆的切线方程,考查了点到直线的距离公式的应用,是基础题.12.(2016•新课标Ⅱ文理)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则(a =)A .43-B .34-C D .2【考点】点到直线的距离公式;直线与圆的位置关系 【分析】求出圆心坐标,代入点到直线距离方程,解得答案.【解答】解:圆2228130x y x y +--+=的圆心坐标为:(1,4), 故圆心到直线10ax y +-=的距离1d ==,解得:43a =-,故选:A .【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.13.(2016•山东文)已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆22:(1)(1)1N x y -+-=的位置关系是( ) A .内切B .相交C .外切D .相离【考点】直线与圆的位置关系;圆与圆的位置关系及其判定【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可. 【解答】解:圆的标准方程为222:()(0)M x y a a a +-=>, 则圆心为(0,)a ,半径R a =, 圆心到直线0x y +=的距离d =圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴==24a =,2a =, 则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =, 3R r +=,1R r -=, R r MN R r ∴-<<+,即两个圆相交. 故选:B .【点评】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.14.(2016•北京文)圆22(1)2x y ++=的圆心到直线3y x =+的距离为( )A .1B .2CD .【考点】点到直线的距离公式;圆的标准方程【分析】先求出圆22(1)2x y ++=的圆心,再利用点到到直线3y x =+的距离公式求解. 【解答】解:圆22(1)2x y ++=的圆心为(1,0)-,∴圆22(1)2x y ++=的圆心到直线3y x =+的距离为:d ==故选:C .【点评】本题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式和圆的性质的合理运用.15.(2018•新课标Ⅲ文理8)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是( )A .[2,6]B .[4,8]C .D .【考点】直线与圆的位置关系【分析】求出(2,0)A -,(0,2)B -,||AB =,设(2P θ)θ,点P 到直线20x y ++=的距离:|2sin()4|d πθ++==,由此能求出ABP ∆面积的取值范围.【解答】解:直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,∴令0x =,得2y =-,令0y =,得2x =-,(2,0)A ∴-,(0,2)B -,||AB ==点P 在圆22(2)2x y -+=上,∴设(2P θ)θ,∴点P 到直线20x y ++=的距离:|2sin()4|d πθ++==,sin()[14πθ+∈-,1],|2sin()4|d πθ++∴=,ABP ∴∆面积的取值范围是:1[2⨯1[22⨯=,6]. 故选:A .【点评】本题考查三角形面积的取值范围的求法,考查直线方程、点到直线的距离公式、圆的参数方程、三角函数关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.填空题1.(2014•新课标Ⅱ理)设点0(M x ,1),若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是 [1-,1] . 【考点】直线与圆的位置关系【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论. 【解答】解:由题意画出图形如图:点0(M x ,1), 要使圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则OMN ∠的最大值大于或等于45︒时一定存在点N ,使得45OMN ∠=︒, 而当MN 与圆相切时OMN ∠取得最大值, 此时1MN =,图中只有M '到M ''之间的区域满足1MN …, 0x ∴的取值范围是[1-,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一. 2.(2014•大纲版文理)直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于43. 【考点】两直线的夹角与到角问题【分析】设1l 与2l 的夹角为2θ,由于1l 与2l 的交点(1,3)A 在圆的外部,由直角三角形中的边角关系求得sin r OA θ=的值,可得cos θ、tan θ 的值,再根据22tan tan 21tan θθθ=-,计算求得结果. 【解答】解:设1l 与2l 的夹角为2θ,由于1l 与2l 的交点(1,3)A 在圆的外部, 且点A 与圆心O之间的距离为OA =圆的半径为r =sin r OA θ∴==,cos θ∴=,sin 1tan cos 2θθθ==, 22tan 14tan 211tan 314θθθ∴===--,故答案为:43. 【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.3.(2014•上海文理)已知曲线:C x =:6l x =,若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=,则m 的取值范围为 [2,3] . 【考点】直线与圆的位置关系【分析】通过曲线方程判断曲线特征,通过0AP AQ +=,说明A 是PQ 的中点,结合x 的范围,求出m 的范围即可.【解答】解:曲线:C x =,是以原点为圆心,2 为半径的圆,并且[2P x ∈-,0], 对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的横坐标6x =, 6[22Px m +∴=∈,3]. 故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.4.(2014•湖北文)已知圆22:1O x y +=和点(2,0)A -,若定点(B b ,0)(2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则: (Ⅰ)b = 12- ;(Ⅱ)λ= . 【考点】三点共线【分析】(Ⅰ)利用||||MB MA λ=,可得222222()(2)x b y x y λλ-+=++,由题意,取(1,0)、(1,0)-分别代入,即可求得b ;(Ⅱ)取(1,0)、(1,0)-分别代入,即可求得λ.【解答】解:解法一:设点(cos ,sin )M θθ,则由||||MB MA λ=得22222(cos )sin [(cos 2)sin ]b θθλθθ-+=++,即2222cos 14cos 5b b θλθλ-++=+对任意θ都成立,所以2222415b b λλ⎧-=⎨+=⎩.又由||||MB MA λ=得0λ>,且2b ≠-,解得1212b λ⎧=-⎪⎪⎨⎪=⎪⎩. 解法二:(Ⅰ)设(,)M x y ,则 ||||MB MA λ=,222222()(2)x b y x y λλ∴-+=++,由题意,取(1,0)、(1,0)-分别代入可得222(1)(12)b λ-=+,222(1)(12)b λ--=-+, 12b ∴=-,12λ=.(Ⅱ)由(Ⅰ)知12λ=. 故答案为:12-,12.【点评】本题考查圆的方程,考查赋值法的运用,考查学生的计算能力,属于基础题.5.(2014•湖北理)直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += 2 .【考点】直线与圆的位置关系【分析】由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的14,|c o s 45==︒,由此求得22a b +的值.【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的14,∴cos 45==︒=,222a b ∴+=, 故答案为:2.【点评】cos45==︒是解题的关键,属于基础题.6.(2014•江苏)在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为. 【考点】直线与圆的位置关系【分析】求出已知圆的圆心为(2,1)C -,半径2r =.利用点到直线的距离公式,算出点C 到直线直线l 的距离d ,由垂径定理加以计算,可得直线230x y +-=被圆截得的弦长. 【解答】解:圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径2r =, 点C 到直线直线230x y +-=的距离d ,∴根据垂径定理,得直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为==【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.7.(2014•重庆文)已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于A 、B 两点,且AC BC ⊥,则实数a 的值为 0或6 .【考点】直线和圆的方程的应用【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆的标准方程为22(1)(2)9x y ++-=,圆心(1,2)C -,半径3r =, AC BC ⊥,∴圆心C 到直线AB 的距离3d即d ===, 即|3|3a -=, 解得0a =或6a =, 故答案为:0或6.【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.8.(2014•重庆理)已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于A ,B 两点,且ABC ∆为等边三角形,则实数a = 4± 【考点】直线和圆的方程的应用【分析】根据圆的标准方程,求出心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心(1,)C a ,半径2r =, ABC ∆为等边三角形,圆∴圆心C 到直线AB 的距离d =即d ===,平方得2810a a -+=,解得4a =故答案为:4【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.9.(2015•湖南文)若直线3450x y -+=与圆222(0)x y r r +=>相交于A ,B 两点,且120AOB ∠=︒,(O 为坐标原点),则r = 2 . 【考点】直线与圆相交的性质【分析】若直线3450x y -+=与圆222(0)x y r r +=>交于A 、B 两点,120AOB ∠=︒,则AOB ∆为顶角为120︒的等腰三角形,顶点(圆心)到直线3450x y -+=的距离12d r =,代入点到直线距离公式,可构造关于r 的方程,解方程可得答案.【解答】解:若直线3450x y -+=与圆222(0)x y r r +=>交于A 、B 两点,O 为坐标原点, 且120AOB ∠=︒,则圆心(0,0)到直线3450x y -+=的距离1201cos 22d r r ︒==,12r =,解得2r =,故答案为:2.【点评】本题考查的知识点是直线与圆相交的性质,其中分析出圆心(0,0)到直线3450x y -+=的距离12d r =是解答的关键.10.(2015•山东文)过点P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB = 32. 【考点】平面向量数量积的性质及其运算;直线与圆相交的性质【分析】根据直线与圆相切的性质可求PA PB =,及APB ∠,然后代入向量数量积的定义可求PA PB . 【解答】解:连接OA ,OB ,PO则1OA OB ==,PO =,2,OA PA ⊥,OB PB ⊥,Rt PAO ∆中,1OA =,2PO =,PA = 30OPA ∴∠=︒,260BPA OPA ∠=∠=︒∴13||||cos6022PA PB PA PB =︒== 故答案为:32【点评】本题主要考查了圆的切线性质的应用及平面向量的数量积的定义的应用,属于基础试题. 11.(2015•重庆文)若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为250x y +-= .【考点】圆的切线方程;直线与圆的位置关系【分析】由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P 处的切线的方程.。
高三数学《直线与圆》专题测试题含答案

高三数学《直线与圆》专题测试题含答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0 D .x -3y -4=03.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C.3D .24.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条5.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0 6.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0C .x +y +1=0 D .x +y =07.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.438.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=59.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]10.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .26B .4 C.6D .211.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离12.已知两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49第Ⅱ卷(非选择题 共90分)二、填空题:本大题共四小题,每小题5分。
2019届高三上期末数学分类汇编(26)直线与圆(Word版,含答案)

(山东省德州市2019届高三期末联考数学(理科)试题)15.在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】【解析】因为在圆上,所以圆心与切点的连线与切线垂直,又知与直线与直线垂直,所以圆心与切点的连线与直线斜率相等,,所以,故填:.(山东省潍坊市2019届高三上学期期末测试数学(文科)试题)14.若直线与两坐标轴分别交于,两点,为坐标原点,则的内切圆的标准方程为__________.【答案】【解析】【分析】结合三角形面积计算公式,建立等式,计算半径r,得到圆方程,即可。
【详解】设内切圆的半径为r,结合面积公式则因而圆心坐标为,圆的方程为【点睛】本道题考查了圆方程计算方法,难度较小。
(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)13.过圆:的圆心,且斜率为1的直线方程为__________.【答案】【解析】【分析】本道题先计算圆心坐标,结合点斜式,写出方程,即可。
【详解】结合满足圆心坐标为则该圆方程圆心坐标为,而该直线斜率为1,所以方程为,得到【点睛】本道题考查了点斜式直线方程计算方法,较容易。
(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)20.已知动圆C与圆外切,并与直线相切(1)求动圆圆心C的轨迹(2)若从点P(m,-4)作曲线的两条切线,切点分别为A、B,求证:直线AB恒过定点。
【答案】(1);(2)【解析】【分析】(1)由两圆外切,圆心距等于半径和,圆与直线相切,圆心到直线的距离等于半径。
先列出几何关系,建立几何等式,或转化为定义,或代数化。
(2)由(1)知曲线为抛物线,应用导数求过,的切线方程,两式结构一样,且都过P(m,-4)点,可知为方程的两个根,再结合直线的方程为.与抛物线方程组方程组中的韦达定理,得,.所以的方程为.过定点。
【详解】(1)由题意知,圆的圆心,半径为.设动圆圆心,半径为.因为圆与直线相切,所以,即.因为圆与圆外切,所以,即.联立①②,消去,可得.所以点的轨迹是以为焦点,为准线的抛物线.(2)由已知直线的斜率一定存在.不妨设直线的方程为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(山东省德州市2019届高三期末联考数学(理科)试题)
15.在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.
【答案】
因为在圆上,所以圆心与切点的连线与切线垂直,又知与直线与直线垂直,所以圆心与切点的连线与直线斜率相等,,所以,故填:.
(山东省潍坊市2019届高三上学期期末测试数学(文科)试题)
14.若直线与两坐标轴分别交于,两点,为坐标原点,则的内切圆的标准方程为__________.
【答案】
【分析】
结合三角形面积计算公式,建立等式,计算半径r,得到圆方程,即可。
【详解】设内切圆的半径为r,结合面积公式
则因而圆心坐标为,圆的方程为
【点睛】本道题考查了圆方程计算方法,难度较小。
(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)
13.过圆:的圆心,且斜率为1的直线方程为__________.
【答案】
【分析】
本道题先计算圆心坐标,结合点斜式,写出方程,即可。
【详解】结合满足圆心坐标为
则该圆方程圆心坐标为,而该直线斜率为1,所以方程为
,得到
【点睛】本道题考查了点斜式直线方程计算方法,较容易。
(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)
20.已知动圆C与圆外切,并与直线相切
(1)求动圆圆心C的轨迹
(2)若从点P(m,-4)作曲线的两条切线,切点分别为A、B,求证:直线AB恒过定点。
【答案】(1);(2)
【分析】
(1)由两圆外切,圆心距等于半径和,圆与直线相切,圆心到直线的距离等于半径。
先列
出几何关系,建立几何等式,或转化为定义,或代数化。
(2)由(1)知曲线为抛物线,应用导数求过,的切线方程,两式结构一样,且都过P(m,-4)点,可知为方程的两个根,再结合直线的方程为.与抛物线方程组方程组中
的韦达定理,得,.所以的方程为.过定点。
【详解】(1)由题意知,圆的圆心,半径为.设动圆圆心,半径为.
因为圆与直线相切,所以,即.
因为圆与圆外切,所以,即.
联立①②,消去,可得.
所以点的轨迹是以为焦点,为准线的抛物线.
(2)由已知直线的斜率一定存在.不妨设直线的方程为.
联立,整理得,其中
设,则,. ①
由抛物线的方程可得:,.
过的抛物线的切线方程为,
又代入整得:.
切线过,代入整理得:,
同理可得.
为方程的两个根,
,. ②
由①②可得,,
所以,.的方程为.
所以直线恒过定点.
【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.
(四川省绵阳市2019届高三第二次(1月)诊断性考试数学理试题)
8.已知⊙O:与⊙O1:相交于A、B两点,若两圆在A点处的切线互相垂直,且|AB|=4,则⊙O1的方程为()
A. =20
B. =50
C. =20
D. =50
【答案】C
【分析】。