2020年部编人教版中考数学试题分类汇编:圆

合集下载

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。

考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。

2020年部编人教版中考数学100份试题分类汇编:圆周角

2020年部编人教版中考数学100份试题分类汇编:圆周角

2020中考全国100份试卷分类汇编圆周角1、(德阳市2020年)如图,在圆O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:圆O半径为52,tan∠ABC=34,则CQ的最大值是A、5B、15 4C、253D、203答案:D解析:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△PCQ中,∠PCQ=∠ACB=90°,∵∠CPQ=∠CAB,∴△ABC∽△PQC;因为点P在⊙O上运动过程中,始终有△ABC∽△PQC,∴BCCQ=ACPC,AC、BC为定值,所以PC最大时,CQ取到最大值.∵AB=5,tan∠ABC=34,即BC:CA=4:3,所以,∴BC=4,AC=3.PC的最大值为直线5,所以,435CQ,所以,CQ的最大值为2032、(2020济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B. C.6 D.考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.专题:计算题.分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC 为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.解答:解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选B点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.3、(2020年临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.答案:B解析:连结OC,则∠OCB=45°,∠OCA=15°,所以,∠ACB=30°,根据同弧所对圆周角等于圆心角的一半,知∠AOB=60°4、(2020•自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3B.4C.5D.8考点:圆周角定理;坐标与图形性质;勾股定理.专题:计算题.分析:连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.解答:解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5.故选C点评:此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.5、(2020成都市)如图,点A,B,C 在O e 上,A 50∠=o ,则BOC ∠的度数为( )A.40oB.50oC.80oD.100o答案:D解析:因为同弧所对的圆周角等于它所对圆心角的一半,所以,∠BOC =2∠BAC =100°,选D 。

2020年部编人教版湖南省各市中考数学分类精析专题11圆

2020年部编人教版湖南省各市中考数学分类精析专题11圆

江苏泰州锦元数学工作室编辑一、选择题1. (2020年湖南长沙3分)已知⊙O1的半径为1cm,⊙O2的半径为3cm,两圆的圆心距O1O2为4cm,则两圆的位置关系是【】A.外离 B.外切 C.相交 D.内切2. (2020年湖南常德3分)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是【】A. B. C. D.∵OB=OC,∴∠BOM=12∠BOC=60°,BM=CM。

∴3BM OB sin6023 =⋅︒==∴BC=2BM=23。

B .如图,连接AC 、BD ,则BD 为这个图形的直径,∵四边形ABCD 是菱形,∴AC⊥BD,BD 平分∠ABC,BO=OD 。

∵∠ABC=60°,∴∠ABO=30°。

∴3BO AB cos3023=⋅︒=⨯=。

∴BD=2BO=23。

C .如图,连接AC ,则AC 为这个图形的直径,由勾股定理得:22AC 2222=+=。

D .如图,连接BD ,则BD 为这个图形的直径,由勾股定理得:22BD 1310=+=。

∵2312,228,8<10<12== ,∴22<10<23。

∴图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是直角梯形。

故选C 。

3. (2020年湖南衡阳3分)如图,在⊙O 中,∠ABC=50°,则∠AOC 等于【 】A .50° B.80° C.90° D.100°【答案】D 。

【考点】圆周角定理。

【分析】因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°。

故选D 。

4. (2020年湖南衡阳3分)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为【 】A .B .C .8D .5. (2020年湖南娄底3分)如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,两圆的连心线O1O2的长为10cm,则弦AB的长为【】A.4.8cm B.9.6cm C.5.6cm D.9.4cm∴O1O2⊥AB。

(统编版)2020年中考数学试题分项版解析汇编第期专题圆含解析3

(统编版)2020年中考数学试题分项版解析汇编第期专题圆含解析3

专题11 圆一、选择题1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32 B .65 C .1 D .67 【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DH BD =45,BD =5,∴DH =4,∴BH 22BD DH ,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C . 【解析】试题分析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2,故选C .考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A .2 B .3C . 2D .3 【答案】A .考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A .2217r <<B 1732r <<C 175r <<D .529r <<【答案】B .【解析】试题分析:给各点标上字母,如图所示.AB =2222+=22,AC =AD =2241+=17,AE =2233+=32,AF =2252+=29,AG =AM =AN =2243+=5,∴1732r <<时,以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A .6π B . 3πC .122π-D . 12 【答案】A . 【解析】试题分析:∵∠ACB =90°,AC =BC =1,∴AB =2,∴S 扇形ABD =230(2)π⨯ =6π.又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD ﹣S △ABC =S扇形ABD=6π.故选A . 考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.8.(2017广东省)如图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为( )A .130°B .100°C .65°D .50° 【答案】C .考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧»BC的长等于( )A .32π B .3πC . 332πD .33π【答案】A . 【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧»BC的长为:602180π⨯ =32π.故选A .考点:1.弧长的计算;2.圆周角定理.二、填空题10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P .若AB =6,BC =33,则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE =92CE ;④3S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC =33DF 22AF AD -=3,∴F 是CD 中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴AO OPAF DF=,设OP=OF=x,则636x x-=,解得:x=2,∴②正确;③∵RT△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③错误;④连接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边△;同理△OPG为等边△;∴∠POG=∠FOG=60°,OH=32OG=3,S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣32S△OFG=3123(23)22⨯-⨯⨯⨯=32.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则»FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【答案】3 18.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.【答案】(1)证明见解析;(2)6.【解析】试题分析:(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2)5219. 【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB =90°,则∠ADC+∠CDB =90°,所以∠EAC +∠BAC =90°,则直线AE 是⊙O 的切线;(2)分别计算AC 和BD 的长,证明△DFB ∽△AFC ,列比例式得:BF BDFC AC=,得出结论. 试题解析:(1)连接BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADC +∠CDB =90°,∵∠EAC =∠ADC ,∠CDB =∠BAC ,∴∠EAC +∠BAC =90°,即∠BAE =90°,∴直线AE 是⊙O 的切线;(2)∵AB 是⊙O 的直径,∴∠ACB =90°,Rt △ACB 中,∠BAC =30°,∴AB =2BC =2×4=8,由勾股定理得:AC =2284-=43,Rt △ADB 中,cos ∠BAD =34=AD AB ,∴34=8AD,∴AD =6,∴BD =2286- =27,∵∠BDC =∠BAC ,∠DFB =∠AFC ,∴△DFB ∽△AFC ,∴BF BDFC AC =,∴2710433BF =,∴BF =521.考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ; (2)连接DF ,若cos ∠DFA =45,AN =10,求圆O 的直径的长度.【答案】(1)证明见解析;(2)503. 【解析】试题分析:(1)连接OF ,根据切线的性质结合四边形内角和为360°,即可得出∠M +∠FOH =180°,由三角形外角结合平行线的性质即可得出∠M =∠C =2∠OAF ,再通过互余利用角的计算即可得出∠CAN =90°﹣∠OAF =∠ANC ,由此即可证出CA =CN ;(2)连接OC ,如图2所示. ∵cos ∠DFA =45,∠DFA =∠ACH ,∴CH AC =45.设CH =4a ,则AC =5a ,AH =3a ,∵CA =CN ,∴NH =a ,∴AN 22AH NH +22(3)a a +10a =10a =2,AH =3a =6,CH =4a =8.设圆的半径为r ,则OH =r ﹣6,在Rt △OCH 中,OC =r ,CH =8,OH =r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r =253,∴圆O 的直径的长度为2r =503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3)210.【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE2+(3DE)2=BD2=4,∴DE=2105,∴BE=6105,设OB=OD=R,∴OE=R﹣2105,∵OB2=OE2+BE2,∴R2=(R﹣2105)2+(6105)2,解得:R=210,∴⊙O的半径为210.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).【答案】(1)BC与⊙O相切;(2)2233π.【解析】试题分析:(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=12OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB=604360π⨯=23π,则阴影部分的面积为S△ODB﹣S扇形DOF=12×2×23﹣23π=2233π-.故阴影部分的面积为2233π-.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O的直径AB=12,弦AC=10,D是»BC的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【答案】(1)证明见解析;(2)11.【解析】试题分析:(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=12AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=12AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB是⊙O的直径,AB=43,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当34CFCP=时,求劣弧»BC的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(323.【解析】试题分析:(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;试题解析:(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴BM CM PM BM=,∴BM2=CM•PM=3a2,∴BM=3a,∴tan∠BCM=33BMCM=,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴»BC的长=6023π⨯=23π.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【答案】(1)作图见解析;(2)153+. 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案.试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC中,∠ACB =90°、∠A =30°,∴AC =tan 30BCo =3=93,AB =2BC =18,∠ABC =60°,∴C △ABC=9+9393O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD =30°,在Rt △O 1BD 中,∠O 1DB =90°,∠O 1BD =30°,∴BD =1tan 30O D o=3=23,∴OO 1=9﹣2﹣23=7﹣23,∵O 1D =OE =2,O 1D ⊥BC ,OE ⊥BC ,∴O 1D ∥OE ,且O1D =OE ,∴四边形OEDO 1为平行四边形,∵∠OED =90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形,又OE =OF ,∴四边形OECF 为正方形,∵∠O 1GH =∠CDO 1=90°,∠ABC =60°,∴∠GO 1D =120°,又∵∠FO 1D =∠O 2O 1G =90°,∴∠OO 1O 2=360°﹣90°﹣90°=60°=∠ABC ,同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA ,∴1212OO O ABCC O O C BC ∆∆=,即1272392793C -=+,∴12OO O C ∆ =153+,即圆心O 运动的路径长为153+.考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.22.(2017江苏省连云港市)如图,在平面直角坐标系xOy 中,过点A (﹣2,0)的直线交y 轴正半轴于点B ,将直线AB 绕着点顺时针旋转90°后,分别与x 轴、y 轴交于点D .C .(1)若OB =4,求直线AB 的函数关系式;(2)连接BD ,若△ABD 的面积是5,求点B 的运动路径长.【答案】(1)y =2x +4;(2)1112-.【解析】试题分析:(1)依题意求出点B 坐标,然后用待定系数法求解析式;(2)设OB =m ,则AD =m +2,根据三角形面积公式得到关于m 的方程,解方程求得m 的值,然后根据弧长公式即可求得.试题解析:(1)∵OB =4,∴B (0,4).∵A (﹣2,0),设直线AB 的解析式为y =kx +b ,则420b k b ì=ïí-+=ïî,解得24k b ì=ïí=ïî,∴直线AB 的解析式为y =2x +4;(2)设OB =m ,则AD =m +2,∵△ABD 的面积是5,∴12AD •OB =5,∴12(m +2)•m =5,即22100m m +-= ,解得111m =-+或111m =--(舍去),∵∠BOD =90°,∴点B 的运动路径长为:()111121114p p -+创-+=. 考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.23.(2017河北省)如图,AB =16,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270°后得到扇形COD ,AP ,BQ 分别切优弧»CD于点P ,Q ,且点P ,Q 在AB 异侧,连接OP . (1)求证:AP =BQ ;(2)当BQ =43时,求»QD 的长(结果保留π);(3)若△APO 的外心在扇形COD 的内部,求OC 的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC <8.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三点共线,∵在Rt△BOQ中,cos B=43382 QBOB==,∴∠B=30°,∠BOQ=60°,∴OQ=12OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴优弧»QD的长=2104180π⨯=143π;(3)∵△APO的外心是OA的中点,OA=8,∴△APO的外心在扇形COD的内部时,OC的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在Y ABCD中,AB=10,AD=15,tan A=43.点P为AD边上任意一点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q 恰好落在Y ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)410;(3)16π或20π或32π. 【解析】试题分析:(1)根据点Q 与点B 和PD 的位置关系分类讨论;(2)因为△PBQ 是等腰直角三角形,所以求BQ 的长,只需求PB ,过点P 作PH ⊥AB 于点H ,确定BH ,求得AH 和BH ,解直角△APH 求PH ,由勾股定理求PB ;(2)如图2,过点P 作PH ⊥AB 于点H ,连接BQ .∵tan∠A tan A =:3:2PH PH HB AH=,∴HB =3:2. 而AB =10,∴AH =6,HB =4.在Rt△PHA 中,PH =AH ·tan A =8,∴PQ =PB =22228445PH HB +=+=,∴在Rt△PQB 中,QB =2PB =410.(3)①点Q 在AD 上时,如图3,由tan A =43得,PB =AB ·sin A =8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt△HPB ≌Rt△KQP .∴KP =HB =10-x ,∴AP =53x ,PD =()5104x -,AD =15=()551034x x +-,解得x =6. ∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =82,∴扇形面积为32π.所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15.【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC =222016-=12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC =22129+ =15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径.(1)求证:△APE 是等腰直角三角形;(2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠PAB =90°即可解决问题;(2)作PM ⊥AC 于M ,PN ⊥AB 于N ,则四边形PMAN 是矩形,∴PM =AN ,∵△PCM ,△PNB 都是等腰直角三角形,∴PC 2PM ,PB 2PN ,∴22PC PB +=222()PM PN + =222()AN PN +=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF ⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧»BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602 180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.。

专题22与圆的有关解答题(共50题)-2020年中考数学真题分项汇编【全国通用】

专题22与圆的有关解答题(共50题)-2020年中考数学真题分项汇编【全国通用】

2020年中考数学真题分项汇编(全国通用)专题22与圆的有关解答题(共50题)一.解答题(共50小题)1.(2020•铜仁市)如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC ,CE ⊥AB 于点E ,D 是直径AB 延长线上一点,且∠BCE =∠BCD . (1)求证:CD 是⊙O 的切线; (2)若AD =8,BE CE=12,求CD 的长.2.(2020•温州)如图,C ,D 为⊙O 上两点,且在直径AB 两侧,连结CD 交AB 于点E ,G 是AC ̂上一点,∠ADC =∠G . (1)求证:∠1=∠2.(2)点C 关于DG 的对称点为F ,连结CF .当点F 落在直径AB 上时,CF =10,tan ∠1=25,求⊙O 的半径.3.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD 分别交OC ,BC 于点E ,F ,其中点E 是AD 的中点. (1)求证:∠CAD =∠CBA . (2)求OE 的长.4.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.5.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;̂的长.(2)若AD=6,求CD6.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BĈ于点D,过点D 作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.7.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.8.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6√10,求此时DE的长.9.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.10.(2020•金华)如图,AB(1)求弦AB的长.̂的长.(2)求AB11.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,AĈ=CD̂=DB̂,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.12.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.13.(2020•河南)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.14.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD 相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.15.(2020•河南)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长如图,点D是BC线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组(1)根据点D在BC对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).16.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.17.(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.18.(2020•襄阳)如图,AB是⊙O的直径,E,C是⊙O上两点,且EĈ=BĈ,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=√3,求图中阴影部分的面积.19.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.20.(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.21.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.22.(2020•辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.23.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.24.(2020•天津)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.25.(2020•凉山州)如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c.(1)求证:asin∠A =bsin∠B=csin∠C=2R;(2)若∠A=60°,∠C=45°,BC=4√3,利用(1)的结论求AB的长和sin∠B的值.26.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.27.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.28.(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).29.(2020•内江)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4√3,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.30.(2020•武威)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.31.(2020•福建)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是BCD̂上不与B,D重合的点,sin A=1 2.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3√3,求证:DF与⊙O相切.32.(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.33.(2020•临沂)已知⊙O 1的半径为r 1,⊙O 2的半径为r 2.以O 1为圆心,以r 1+r 2的长为半径画弧,再以线段O 1O 2的中点P 为圆心,以12O 1O 2的长为半径画弧,两弧交于点A ,连接O 1A ,O 2A ,O 1A 交⊙O 1于点B ,过点B 作O 2A 的平行线BC 交O 1O 2于点C .(1)求证:BC 是⊙O 2的切线;(2)若r 1=2,r 2=1,O 1O 2=6,求阴影部分的面积.34.(2020•山西)如图,四边形OABC 是平行四边形,以点O 为圆心,OC 为半径的⊙O 与AB 相切于点B ,与AO 相交于点D ,AO 的延长线交⊙O 于点E ,连接EB 交OC 于点F .求∠C 和∠E 的度数.35.(2020•广元)在Rt △ABC 中,∠ACB =90°,OA 平分∠BAC 交BC 于点O ,以O 为圆心,OC 长为半径作圆交BC 于点D .(1)如图1,求证:AB为⊙O的切线;(2)如图2,AB与⊙O相切于点E,连接CE交OA于点F.①试判断线段OA与CE的关系,并说明理由.②若OF:FC=1:2,OC=3,求tan B的值.36.(2020•湘潭)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.37.(2020•武汉)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D 的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.38.(2020•随州)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,与BC交于点M,与AB的另一个交点为E,过M作MN⊥AB,垂足为N.(1)求证:MN是⊙O的切线;(2)若⊙O的直径为5,sin B=35,求ED的长.39.(2020•江西)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).40.(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.41.(2020•哈尔滨)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为9√25,求线段CG的长.42.(2020•咸宁)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有有怎样的数量关系?写出猜想,并说明理由.43.(2020•陕西)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究̂上一点,且PB̂=2PÂ,连接AP,BP.∠APB的平(2)如图2,AB是半圆O的直径,AB=8.P是AB分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.44.(2020•北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=13,BD=8,求EF的长.45.(2020•凉山州)如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分∠BAC交半圆于点D,过点D作DH⊥AC与AC的延长线交于点H.(1)求证:DH是半圆的切线;(2)若DH=2√5,sin∠BAC=√53,求半圆的直径.46.(2020•枣庄)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.47.(2020•苏州)如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s 的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.48.(2020•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是AĈ上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分AĈ;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O 的切线.49.(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=43,求⊙O的半径;(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.50.(2020•甘孜州)如图,AB 是⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D .(1)求证:∠CAD =∠CAB ;(2)若AD AB =23,AC =2√6,求CD 的长.。

(部编版)2020年中考数学试题分项版解析汇编第期专题圆含解析9

(部编版)2020年中考数学试题分项版解析汇编第期专题圆含解析9

专题11 圆一、选择题1. (2017贵州遵义第8题)已知圆锥的底面积为9πcm 2,母线长为6cm ,则圆锥的侧面积是( ) A .18πcm 2B .27πcm 2C .18cm 2D .27cm 2【答案】A.考点:圆锥的计算.2. (2017湖南株洲第6题)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A .正三角形 B .正方形 C .正五边形 D .正六边形 【答案】A. 【解析】试题分析:∵正三角形一条边所对的圆心角是360°÷3=120°, 正方形一条边所对的圆心角是360°÷4=90°, 正五边形一条边所对的圆心角是360°÷5=72°, 正六边形一条边所对的圆心角是360°÷6=60°, ∴一条边所对的圆心角最大的图形是正三角形, 故选A .3. (2017内蒙古通辽第9题)下列命题中,假命题有( ) ①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行; ⑤若⊙O 的弦CD AB ,交于点P ,则PD PC PB PA ⋅=⋅. A .4个 B .3个 C. 2个 D .1个 【答案】C考点:命题与定理4. (2017湖北咸宁第7题)如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OD OB ,,若BCD BOD ∠=∠,则⋂BD 的长为()A .πB .π23C. π2 D .π3 【答案】C .试题分析:已知四边形ABCD 内接于⊙O ,根据圆内接四边形对角互补可得∠BCD+∠A=180°,由圆周角定理可得∠BOD=2∠A ,再由∠BOD=∠BCD 可得2∠A+∠A=180°,所以∠A=60°,即可得∠BOD=120°,所以BD 的长=1203180π⨯=2π;故选C .考点:弧长的计算;圆内接四边形的性质.5. (2017广西百色第11题)以坐标原点O 为圆心,作半径为2的圆,若直线y x b =-+与O 相交,则b 的取值范围是( )A .0b ≤<.b -≤≤b -<< D .b -<<【答案】D考点:1.直线与圆的位置关系;2.一次函数图象与系数的关系.6. (2017哈尔滨第7题)如图,O ⊙中,弦AB ,CD 相交于点P ,42A =∠°,77APD =∠°,则B ∠的大小是( )A.43°B.35°C.34°D.44°【答案】B 【解析】试题分析:∵∠D=∠A=42°,∴∠B=∠APD ﹣∠D=35°,故选B . 考点:圆周角定理.7. (2017黑龙江齐齐哈尔第9题)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( )A .120︒B .180︒C .240︒D .300︒【答案】A考点:1.圆锥的计算;2.几何体的展开图. 8. (2017内蒙古呼和浩特第7题)如图,CD 是O 的直径,弦AB CD ⊥,垂足为M ,若12AB =,:5:8OM MD =,则O 的周长为( )A .26πB .13πC .965πD 【答案】B考点:垂径定理.9. (2017青海西宁第8题)如图,AB 是O 的直径,弦CD 交AB 于点P ,2,6AP BP ==,030APC ∠=.则CD 的长为 ( )A ..8 【答案】C 【解析】试题分析:作OH ⊥CD 于H ,连结OC ,如图,∵OH ⊥CD ,∴HC=HD ,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA ﹣AP=2, 在Rt △OPH 中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt △OHC 中,∵OC=4,OH=1,∴,∴.故选C .10. (2017湖南张家界第3题)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30°B.45°C.55°D.60°【答案】D.考点:圆周角定理.11. (2017海南第12题)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25° B.50° C.60° D.80°【答案】B.【解析】试题分析:先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B.考点:圆周角定理及推论,平行线的性质.12. (2017河池第8题)如图,⊙O 的直径AB 垂直于弦36,=∠CAB CD ,则BCD ∠的大小是()A .18 B .36 C.54 D .72 【答案】B.考点:圆周角定理;垂径定理.13. (2017新疆乌鲁木齐第8题)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A .πB .2π C.4π D .5π 【答案】B. 【解析】试题解析:由三视图可知,原几何体为圆锥,∵2=,∴S 侧=12•2πr•l=12×2π×22×2=2π. 故选B .考点:由三视图判断几何体;圆锥的计算. 二、填空题1. (2017贵州遵义第17题)如图,AB 是⊙O 的直径,AB=4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA=45°,则弦CD 的长为 .考点:垂径定理;勾股定理;等腰直角三角形.2. (2017湖南株洲第15题)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB 和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM= .【答案】80°.考点:圆周角定理.3. (2017郴州第14题)已知圆锥的母线长为5cm,高为4cm,则该圆锥的侧面积为2cm(结果保留π).【答案】15π.【解析】试题分析:由图可知,圆锥的高是4cm,母线长5cm,根据勾股定理得圆锥的底面半径为3cm,所以圆锥的侧面积=π×3×5=15π2cm.考点:圆锥的计算.4. (2017哈尔滨第18题)已知扇形的弧长为4p,半径为8,则此扇形的圆心角为.【答案】90°【解析】试题分析:设扇形的圆心角为n°,则8180nπ⨯=4π,解得,n=90,故圆心角为90°.考点:弧长的计算.5. (2017黑龙江齐齐哈尔第15题)如图,AC 是O 的切线,切点为C ,BC 是O 的直径,AB 交O 于点D ,连接OD ,若50A ∠=︒,则COD ∠的度数为 .【答案】80° 【解析】试题分析:∵AC 是⊙O 的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD ,∴∠B=∠ODB=40°, ∴∠COD=2×40°=80° 考点:切线的性质.6. (2017黑龙江绥化第16题)一个扇形的半径为3cm ,弧长为2cm π,则此扇形的面积为 2cm .(用含π的式子表示) 【答案】3π.考点:1.扇形面积的计算;2.弧长的计算.7. (2017黑龙江绥化第18题)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为 .【答案】1【解析】试题分析:由题意可得,正三角形的边心距是:2×sin30°=2×12=1,正四边形的边心距是:2×sin45°=2,正六边形的边心距是:2×sin60°=2×2∴半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为:1考点:正多边形和圆.8. (2017湖北孝感第15题)已知半径为2的O 中,弦2AC =,弦AD =COD ∠的度数为.【答案】150°或30°考点:1.垂径定理;2.解直角三角形;3.等边三角形的判定与性质;4.圆周角定理.9. (2017青海西宁第16题)圆锥的主视图是边长为4cm 的等边三角形,则该圆锥侧面展开图的面积是2cm .【答案】8π 【解析】试题分析:根据题意得:圆锥的底面半径为2cm ,母线长为4cm , 则该圆锥侧面展开图的面积是8πcm 2. 考点: 1.三视图;2..圆锥的计算.10. (2017青海西宁第17题)如图,四边形ABCD 内接于O ,点E 在BC 的延长线上,若0120BOD ∠=,则DCE ∠=______.【答案】60° 【解析】试题分析:∵∠BOD=120°,∴∠A=12∠BOD=60°.∵四边形ABCD是圆内接四边形,∴∠DCE=∠A=60°.考点: 1.圆内接四边形的性质;2.圆周角定理.11. (2017上海第17题)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.【答案】8<r<10如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理.12. (2017上海第18题)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .考点:1.正多边形与圆;2.等边三角形的性质;3.锐角三角函数13. (2017辽宁大连第12题)如图,在⊙O 中,弦cm AB 8=,AB OC ⊥,垂足为C ,cm OC 3=,则⊙O 的半径为 cm .【答案】5. 【解析】试题分析:先根据垂径定理得出AC 的长,再由勾股定理即可得出结论. 连接OA ,∵OC ⊥AB ,AB=8,∴AC=4,∵OC=3,∴.故答案为5.考点:垂径定理;勾股定理.14. (2017海南第18题)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是 .【答案】2.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′=sin 45AB∴MN 最大.考点:三角形的中位线定理,等腰直角三角形的性质,圆周角定理,解直角三角形.15. (2017河池第17题)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是 . 【答案】10.考点:圆锥的计算.16. (2017新疆乌鲁木齐第14题)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为 .【答案】π 【解析】试题解析:如图,设AB 的中点我P ,连接OA ,OP ,AP ,△OAP 的面积是:4×12=4, 扇形OAP 的面积是:S 扇形=6π,AP 直线和AP 弧面积:S 弓形=6π阴影面积:3×2S 弓形=π故答案为:π﹣2.考点:扇形面积的计算. 三、解答题1. (2017贵州遵义第24题)如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC ,BC .(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【答案】(1).证明见解析;(2)菱形ACBP的面积=.2考点:切线的性质;菱形的判定与性质.2. (2017湖南株洲第25题)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE 的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【答案】①证明见解析;②△BCD的面积为:2.【解析】试题分析:①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=12∠AEB,由圆周角定理得②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴AD AECB CE=,即ADCB=∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴BD BECB CE=,即2CB=∴,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC ⊥AB ,AG=BG=12AB=4,∴=2, ∴△BCD 的面积=12BD•CG=12×2×2=2.考点:相似三角形的判定与性质;垂径定理;圆周角定理;三角形的外角性质;勾股定理.3. (2017内蒙古通辽第24题)如图,AB 为⊙O 的直径,D 为AC 的中点,连接OD 交弦AC 于点F .过点D 作AC DE //,交BA 的延长线于点E .(1)求证:DE 是⊙O 的切线;(2)连接CD ,若4==AE OA ,求四边形ACDE 的面积.【答案】(1)证明见解析(2)考点:切线的判定与性质4. (2017郴州第23题)如图,AB 是O 的弦,BC 切O 于点,B AD BC ⊥垂足为,D OA 是O 的半径,且3OA =.(1)求证:AB 平分OAD ∠;(2)若点E 是优弧AEB 上一点,且060AEB ∠=,求扇形OAB 的面积(计算结果保留π)【答案】(1)详见解析;(2)3π.考点:圆的综合题.5. (2017湖北咸宁第21题)如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线; ⑵若52cos ,4==A AE ,求DF 的长【答案】(1)详见解析;(2考点:圆的综合题.6. (2017湖北咸宁第23题)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图1,已知B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使A B C 为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【答案】(1)详见解析;(2)详见解析;(3)P 的坐标(﹣3,13),(3,13).考点:圆的综合题.7. (2017湖南常德第22题)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.【答案】(1)证明见解析;(2)4.8.考点:切线的性质.8. (2017广西百色第25题)已知ABC 的内切圆O 与,,AB BC AC 分别相切于点,,D E F ,若EF DE =,如图1.(1)判断ABC 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.【答案】(1)△ABC 为等腰三角形,证明见解析;(2)AM=3. 【解析】试题分析:(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE ,即可解题; (2)连接OB 、OC 、OD 、OF ,易证AD=AF ,BD=CF 可得DF ∥BC ,再根据AE 长度即可解题.考点:三角形的内切圆与内心.9. (2017黑龙江绥化第26题)如图,梯形ABCD 中,//AD BC ,AE BC ⊥于E ,ADC ∠的平分线交AE 于点O ,以点O 为圆心, OA 为半径的圆经过点B ,交BC 于另一点F .(1)求证:CD 与O e 相切;(2)若24,5BF OE ==,求tan ABC ∠的值. 【答案】(1)证明见解析;(2)tan ∠ABC=32. 【解析】(2)如图所示:连接OF .∵OA ⊥BC ,∴BE=EF=12BF=12.在Rt △OEF 中,OE=5,EF=12,∴.∴AE=OA+OE=13+5=18.∴tan ∠ABC=AE BE =32. 考点:1.切线的判定与性质;2.梯形;3.解直角三角形. 10. (2017湖北孝感第23题) 如图,O 的直径10,AB = 弦6,AC ACB =∠的平分线交O 于,D 过点D 作DE AB 交CA 延长线于点E ,连接,.AD BD(1)由AB,BD,AD围成的曲边三角形的面积是;(2)求证:DE是O的切线;(3)求线段DE的长.【答案】(1)252524π+;(2)证明见解析;(3)354.(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , ∴EF AC AF BC =,即658EF =,∴EF=154,∴DE=DF+EF=154+5=354. 考点:1.切线的判定;2.圆周角定理;3.正方形的判定与性质;4.正切函数的定义. 11. (2017内蒙古呼和浩特第24题)如图,点A ,B ,C ,D 是直径为AB 的O 上的四个点,C 是劣弧BD 的中点,AC 与BD 交于点E .(1)求证:2DC CE AC =⋅;(2)若2AE =,1EC =,求证:AOD ∆是正三角形; (3)在(2)的条件下,过点C 作O 的切线,交AB 的延长线于点H ,求ACH ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)△ACH .考点:圆的综合题.12. (2017青海西宁第26题)如图,在ABC ∆中,AB AC =,以AB 为直径作O 交BC 于点D ,过点D 作O的切线DE 交AC 于点E ,交AB 延长线于点F .(1)求证:DE AC ⊥;(2)若10,8AB AE ==,求BF 的长. 【答案】(1)证明见解析;(2)BF=103. 【解析】试题分析:(1)连接OD 、AD ,由AB=AC 且∠ADB=90°知D 是BC 的中点,由O 是AB 中点知OD ∥AC ,根据OD考点: 1.切线的性质;2.等腰三角形的性质;3.相似三角形的判定与性质.13. (2017上海第25题)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【答案】(1)证明见解析;(2).(3).【解析】试题分析:(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠AD O=∠ADB,即可证(2)如图2中,∵BD ⊥AC ,OA=OC ,∴AD=DC ,∴BA=BC=AC ,∴△ABC 是等边三角形,在Rt △OAD 中,∵OA=1,∠OAD=30°,∴OD=12OA=12,∴,∴ . (3)如图3中,作OH ⊥AC 于H ,设OD=x .圆综合题;2.全等三角形的判定和性质;3.相似三角形的判定和性质;4.比例中项.14. (2017湖南张家界第21题)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.【答案】(1)证明见解析;(2)6π.考点:切线的判定与性质;等腰三角形的性质;扇形面积的计算.∠,BD是⊙O的切线,15. (2017辽宁大连第23题)如图,AB是⊙O的直径,点C在⊙O上,AD平分CABAD与BC相交于点E.BD=;(1)求证:BE(2)若5,2==BD DE ,求CE 的长.【答案】(1)见解析;(2.考点:切线的性质;勾股定理;解直角三角形.16. (2017河池第25题)如图,AB 为⊙O 的直径,CD CB ,分别切⊙O 于点CD D B ,,交BA 的延长线于点E ,CO 的延长线交⊙O 于点OG EF G ⊥,于点F .⑴求证ECF FEB ∠=∠;⑵若46==DE BC ,,求EF 的长.【答案】(1);(2).考点:切线的性质;勾股定理;垂径定理,相似三角形的判定与性质.17. (2017贵州六盘水第22题)如图,在边长为1的正方形网格中,ABC △的顶点均在格点上. (1)画出ABC △关于原点成中心对称的'''A B C △,并直接写出'''A B C △各顶点的坐标. (2)求点B 旋转到点'B 的路径(结果保留p ).【答案】(1) )31()33()04(,,,,,C B A ''' ;(2) . 试题分析:(1)利用中心对称画出图形并写出坐标;(2)利用弧线长计算公式计算点B 旋转到点'B 的路径. 试题解析:(1)图形如图所示,)31()33()04(,,,,,C B A '''(2)由图可知,=,∴180'180BB π⨯⨯==.考点:坐标与图形变化-旋转(中心对称);弧线长计算公式.18. (2017贵州六盘水第25题)如图,MN 是O ⊙的直径,4MN =,点A 在O ⊙上,30AMN =∠°,B 为AN 的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA PB +最小时P 点的位置(不写作法,但要保留作图痕迹). (2)求PA PB +的最小值.【答案】(1)详见解析;又∵MN=4∴11'4222OA OB MN===⨯=在Rt△'A OB中,'A B==即PA PB+的最小值为考点:圆,最短路线问题.19. (2017新疆乌鲁木齐第23题)如图,AB是O的直径,CD与O相切于点C,与AB的延长线交于D.(1)求证:ADC CDB∆∆;(2)若32,2AC AB CD==,求O半径.【答案】(1)证明见解析;(2)⊙O半径是2.考点:切线的性质.。

部编版2020年中考数学真题汇编 圆(填空+选择46题)

部编版2020年中考数学真题汇编 圆(填空+选择46题)

2018年中考数学真题汇编:圆(填空+选择46题)一、选择题1.已知的半径为,的半径为,圆心距,则与的位置关系是()A. 外离B. 外切 C. 相交 D. 内切【答案】C2.如图,为的直径,是的弦,,则的度数为()A. B.C.D.【答案】C3.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B.C.D.【答案】C4.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B.C.D.【答案】C5.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【答案】D6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.B.40πm2C.D.55πm2【答案】A7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B.C.D.【答案】A8.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上 C. 点在圆心上 D. 点在圆上或圆内【答案】D9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则sin∠ABC的值为()A.B.C.D.【答案】C10.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()。

A.27°B.32°C.36°D.54°【答案】A11.如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B.C.D.【答案】B12.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF 的长度是()A. 3cmB. cmC. 2.5cmD. cm【答案】D13.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.B.C.D.【答案】C14.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A. 75°B. 70°C. 65°D. 35°【答案】B15.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D16.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C.3 D. 2 .5【答案】A17.在中,若为边的中点,则必有成立.依据以上结论,解决如下问题:如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小值为()A. B.C. 34D. 10【答案】D18.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC= AB∴2CB2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A二、填空题19.已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.【答案】620.一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长为________cm.【答案】21.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。

2020年部编人教版江苏省各市中考数学分类精析专题11圆

2020年部编人教版江苏省各市中考数学分类精析专题11圆

专题11:圆江苏泰州锦元数学工作室编辑一、选择题1. (2020年江苏常州2分)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是【】A.相离 B.相切 C.相交 D.无法判断2. (2020年江苏淮安3分)若扇形的半径为6,圆心角为120°,则此扇形的弧长是【】A.3π B.4π C.5π D.6π3. (2020年江苏淮安3分)如图,点A、B、C是⊙O上的三点,若∠OBC=50°,则∠A的度数是【】A.40° B.50° C.80° D.100°【答案】A。

【考点】等腰三角形的性质,三角形内角和定理,圆周角定理。

4. (2020年江苏南京2分)如图,圆O1、圆O2的圆心O1、O2在直线l上,圆O1的半径为2 cm,圆O2的半径为3 cm,O1O2=8 cm。

圆O1以1 cm/s的速度沿直线l向右运动,7s后停止运动,在此过程中,圆O1与圆O2没有出现的位置关系是【】(A) 外切 (B) 相交 (C) 内切 (D) 内含5. (2020年江苏南通3分)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为【】A.3cm B.5cm C.6cm D.8cm6. (2020年江苏南通3分)如图,R t△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是»AB的中点,CD与AB的交点为E,则CEDE等于【】A.4 B.3.5 C.3 D.2.57. (2020年江苏苏州3分)如图,AB是半圆的直径,点D是AC的中点,∠ABC=500,则∠DAB等于【】A.55° B.60° C.65° D.70°8. (2020年江苏无锡3分)如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是【】A.35° B.140° C.70° D.70°或140°9. (2020年江苏徐州3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为【】A.10 B.8 C.5D.3二、填空题1. (2020年江苏常州2分)已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是▲ cm,扇形的面积是▲ cm2(结果保留π).2. (2020年江苏常州2分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= ▲ .3. (2020年江苏连云港3分)如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=▲ º.4. (2020年江苏苏州3分)如图,AB切⊙O于点B,OA=2,∠OAB=300,弦BC∥OA,劣弧»BC的弧长为▲.(结果保留π)计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考分类圆一.选择题(2020•嘉兴)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )(A )1个 (B )2个 (C )3个 (D )4个 考点:中心对称图形.分析:根据中心对称的概念对各图形分析判断即可得解. 解答:解:第一个图形是中心对称图形, 第二个图形不是中心对称图形, 第三个图形是中心对称图形, 第四个图形不是中心对称图形, 所以,中心对称图有2个. 故选:B .点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.1.(菏泽)如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO绕点B 逆时针旋转60°得到⊿CBD ,若点B 的坐标为(2,0),则点C 的坐标为A)2,3.(D )1,3.(C )3,2.(B )3,1.(A ----1.(福建龙岩)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了( )A .2周B .3周C .4周D .5周2.(兰州)如图,经过原点O 的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧上一点,则∠ACB=A. 80°B. 90°C. 100°D. 无法确定3.(兰州)如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为 A.4π B. 2π C. 6π D. 3π4.(广东) 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S =⨯⨯=扇形. 5.(广东梅州)如图,AB 是⊙O 的弦,AC 是⊙Or 切线,A 为切点,BC 经过圆心.若∠B=20°,则∠C 的大小等于( )A .20°B .25°C . 40°D .50°考点:切线的性质..分析:连接OA ,根据切线的性质,即可求得∠C 的度数.解答:解:如图,连接OA ,∵AC 是⊙O 的切线, ∴∠OAC=90°, ∵OA=OB ,∴∠B=∠OAB=20°, ∴∠AOC=40°, ∴∠C=50°. 故选:D .点评:本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.6.(汕尾)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心。

若∠B=20°,则∠C 的大小等于A.20°B.25°C.40°D.50°7.(贵州安顺)如上图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )[来源:学科网]A .22B .4C .24D .88.(河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2020秒时,点P 的坐标是( )A .(2020,0)B .(2020,-1)C . (2020,1)D . (2020,0)A B C D E O PO第8题O 1xy O 2O 39.(湖南常德)如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为:A 、50°B 、80°C 、100°D 、130° 【解答与分析】圆周角与圆心角的关系,及圆内接四边形的对角互补 :答案为D10.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB 与扇形1110A B 是相似扇形,且半径11:OA O A k =(k 为不等于0的常数)。

那么下面四个结论:①∠AOB =∠1110A B ;②△AOB ∽△1110A B ;③11ABk A B =; ④扇形AOB 与扇形1110A B 的面积之比为2k 。

成立的个数为: A 、1个 B 、2个 C 、3个 D 、4个 【解答与分析】这是一个阅读,扇形相似的意义理解,由弧长公式=2360nr π⋅可以得到: ① ②③正确,由扇形面积公式2360nr π⋅可得到④正确 ②11.(湖南株洲)如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是A 、22°B 、26°C 、32°D 、68° 【试题分析】本题考点为:通过圆心角∠BOC =2∠A =136°,再利用等腰三角形AOC 求出∠OBC 的度数 答案为:A第6题图B1第6题图OCBA12(黔西南州)如图2,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB 等于 A .150°B .130°C .155°D .135°13.(青岛)如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB =( ) A .30°B .35°C .45°D .60°14.(临沂)如图A ,B ,C 是O 上的三个点,若100AOC ∠=,则ABC ∠等于(A) 50°. (B) 80°. (C) 100°.(D) 130°.O ABC(第8题图)D CBAO 15(上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( ) A 、AD =BD ; B 、OD =CD ; C 、∠CAD =∠CBD ; D 、∠OCA =∠OCB .【答案】B【解析】因OC ⊥AB ,由垂径定理,知AD =BD ,若OD =CD ,则对角线互相垂直且平分,所以,OACB 为菱形。

16(深圳)如图,AB 为⊙O 直径,已知为∠DCB=20o ,则∠DBA 为( )A 、o 50B 、o 20C 、o 60D 、o 70 【答案】D【解析】AB 为⊙O 直径,所以,∠ACB=90o ,∠DBA =∠DCA =o 7017(成都)如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为(A )2、3π(B )32、π(C )3、23π (D )32、43π【答案】:D【解析】在正六边形中,我们连接OB 、OC 可以得到OBC ∆为等边三角形,边长等于半径4。

因为OM 为边心距,所以OM BC ⊥,所以,在边长为4的等边三角形中,边上的高OM BC 所对的圆心角为60︒,由弧长计算公式:604243603BC ππ︒=⨯⨯= ,选D 。

18(泸州)如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若∠C=65°,则∠P 的度数为 A. 65° B. 130° C. 50° D. 100°第8题图考点:切线的性质.分析:由PA 与PB 都为圆O 的切线,利用切线的性质得到OA 垂直于AP ,OB 垂直于BP ,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB 的度数,在四边形PABO 中,根据四边形的内角和定理即可求出∠P 的度数.解答:解:∵PA 、PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , ∴∠OAP=∠OBP=90°, 又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°. 故选C .点评:本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.19(四川自贡) 如图,AB 是⊙O的直径,弦,CD AB CDB 30CD ⊥∠==,,则阴影部分的面积为 ( )A.2πB.πC.3πD.23π考点:圆的基本性质、垂径定理,勾股定理、扇形的面积公式、轴对称的性质等.分析:本题抓住圆的相关性质切入把阴影部分的面积转化到一个扇形中来求.根据圆是轴对称图形和垂径定理,利用题中条件可知E 是弦CD 的中点,B 是弧CD 的中点;此时解法有三:解法一,在弓形CBD 中,被EB 分开的上面空白部分和下面的阴影部分的面积是相等的,所以阴影部分的面积之和转化到扇形COB 来求;解法二,连接OD,易证△ODE ≌△OCE ,所以阴影部分的面积之和转化到扇形BOD 来求;解法三,阴影部分的面积之和是扇形COD 的面积的一半. 略解:∵AB 是⊙O 的直径, AB CD ⊥∴E 是弦CD 的中点,B 是弧CD 的中点(垂径定理)∴在弓形CBD 中,被EB 分开的上下两部分的面积是相等的(轴对称的性质) ∴阴影部分的面积之和等于扇形COB 的面积.∵E 是弦CD的中点,CD =∴11CE CD 22==⨯ ∵AB CD ⊥ ∴OEC 90∠=AA∴COE 60∠= ,1OE OC 2= . 在Rt △OEC 中,根据勾股定理可知:222OC OE CE =+即()2221OC OC 32⎛⎫=+ ⎪⎝⎭.解得:OC 2=;S 扇形COB = 2260OC 60223360360πππ⨯⨯⨯⨯==.即 阴影部分的面积之和为23π.故选D .20.(云南)如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不成立...的是( )A .∠A ﹦∠DB .CE ﹦DEC .∠ACB ﹦90°D .CE ﹦BD21(杭州)圆内接四边形ABCD 中,已知∠A =70°,则∠C =( )A. 20°B. 30°C. 70°D. 110°【答案】D .【考点】圆内接四边形的性质.【分析】∵圆内接四边形ABCD 中,已知∠A =70°,∴根据圆内接四边形互补的性质,得∠C =110°. 故选D .22(嘉兴).如图,中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则☉C的半径为(▲)(A )2.3 (B )2.4 (C )2.5 (D )2.6考点:切线的性质;勾股定理的逆定理.分析:首先根据题意作图,由AB 是⊙C 的切线,即可得CD⊥AB,又由在直角△ABC 中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB 的长,然后由S △ABC =AC•BC=AB•CD,即可求得以C 为圆心与AB 相切的圆的半径的长. 解答:解:在△ABC 中, ∵AB=5,BC=3,AC=4,∴AC 2+BC 2=32+42=52=AB 2, ∴∠C=90°,EC D O如图:设切点为D ,连接CD , ∵AB 是⊙C 的切线, ∴CD⊥AB,∵S △ABC =AC•BC=AB•CD, ∴AC•BC=AB•CD, 即CD===,∴⊙C 的半径为, 故选B .点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.二.填空题1.(安顺)如图,在□ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是_________(结果保留π).3﹣31π2.(孝感)已知圆锥的侧面积等于π60cm 2,母线长10cm ,则圆锥的高是 cm .83.(常德)一个圆锥的底面半径为1厘米,母线长为2厘米,则该圆锥的侧面积是2厘米(结果保留π)。

相关文档
最新文档