2017高考试题分类汇编-集合与简易逻辑
2011-2017年新课标全国卷2理科数学试题分类汇编——1.集合与简易逻辑

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑一、选择题(2017·2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5(2016·2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}(2014·1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则M N =( )A .{1}B .{2}C .{0,1}D .{1,2} (2013·1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b 3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a b A . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 42011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑(逐题解析)(2017·2)C 【解析】∵ {}1AB =, ∴ 1是方程240x x m -+=的一个根,即3m =,∴ {}2430B x x x =-+=,故{}1,3B =,选C. (2016·2)C 解析:()(){}120Z B x x x x =+-<∈,,∴{}01B =,,∴{}0123A B =,,,,故选C .(2015·1)A 解析:由已知得{}21B x x =-<<,故,故选A.(2014·1)D 解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}M N =.(2013·1)A 解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩N ={0, 1, 2},故选A.(2012·1)D 解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2011·10)A 解析:由||1+==>a b 得1cos 2θ>-2[0,)3πθ⇒∈.由||1-=a b 得1cos 2θ<(,]3πθπ⇒∈,故选A.。
2017-2021年山东省高考数学真题分类汇编:集合与常用逻辑用语(附答案解析)

语
参考答案与试题解析
一.选择题(共 10 小题)
1.(2021•新高考Ⅰ)设集合 A={x|﹣2<x<4},B={2,3,4,5},则 A∩B=( )
A.{2}
B.{2,3}
C.{3,4}
D.{2,3,4}
【考点】交集及其运算.
【专题】集合思想;定义法;集合;数学运算.
【分析】直接利用交集运算得答案.
6.(2018•新课标Ⅰ)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
第 4页(共 7页)
【考点】交集及其运算. 【专题】计算题;综合法;集合. 【分析】直接利用集合的交集的运算法则求解即可. 【解答】解:集合 A={0,2},B={﹣2,﹣1,0,1,2}, 则 A∩B={0,2}. 故选:A. 【点评】本题考查集合的基本运算,交集的求法,是基本知识的考查.
∴∁UA={1,6,7}, 则 B∩(∁UA)={6,7} 故选:C.
【点评】本题主要考查集合的交集与补集的求解,属于基础试题.
5.(2018•新课标Ⅰ)已知集合 A={x|x2﹣x﹣2>0},则∁RA=( ) A.{x|﹣1<x<2} B.{x|﹣1≤x≤2} C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪
【解答】解:∵A={x|﹣2<x<4},B={2,3,4,5},
∴A∩B={x|﹣2<x<4}∩{2,3,4,5}={2,3}.
故选:B.
【点评】本题考查交集及其运算,是基础题.
2.(2020•山东)设集合 A={x|1≤x≤3},B={x|2<x<4},则 A∪B=( )
2017年北京市各区高三文科数学分类汇编----集合与简易逻辑

(2017 年丰台期末 ) 1.已知集合 A { x Z ( x 2)(x 1) 0} , B { 2, 1} ,那么 A U B 等于 ( B )
( A) { 2, 1,0,1} ( B) { 2, 1,0}
( C) { 2, 1}
( D) { 1}
(2017 年石景山期末 ) 1.已知集合 A { 1,1, 2, 3} , B { x | x≥2} , 那么 A B 等于( B )
(2017 年丰台一模 ) 1. 如果集合 A x Z 2 x 1 , B 1,0,1 ,那么 A B =( D )
( A) 2, 1,0,1
( B) 1,0,1
( C) 0,1
( D) 1,0
(2017 年石景山一模 )
1.已知集合 A { x | 2x 1 0} , B { x | 0≤ x≤1} ,那么 A B 等于( D )
A.(﹣∞, 1] B. [1 , +∞) C. R D.( 1, +∞)
( 2017 年朝阳一模) ( 1)已知集合 A
{x|
1
x
3} , B
{x
2
Z|x
4} ,则 A B ( C
)
( A) {0,1}
(B) { 1,0,1,2}1/ 6( CFra bibliotek { 1,0,1}
(D) { 2, 1,0,1,2}
{2,5}
(D)
{1,6}
(2017 年通州期末 ) 1.已知集合 M x x 1或 x 2 , N x 1 x 3 ,则 M N 等于 ( B )
A. x x 1或 x 1
B. x 2 x 3
C. x 1 x 3
D. x x 1或 x 3
福建省各地2017届高三数学最新考试试题分类汇编集合与经常使用逻辑用语理

福建省各地2017届高三最新考试数学理试题分类汇编集合与经常使用逻辑用语一、集合1、(福建省2017年一般高中毕业班单科质量检查模拟)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R二、(福州市2017届高三3月质量检测)已知集合{}4A x x =,{}24210B y y y =+-<,则AB =(A )∅(B )(]7,4--(C )(]7,4-(D )[)4,3-3、(莆田市2017届高三3月教学质量检查)已知集合22{|650},{|log (2)}A x x x B x y x =-+≤==-,则A B =A .(1,2)B .[1,2)C .(2,5]D .[2,5]4、(泉州市2017届高三3月质量检测)已知集合11|<22,|ln 022x A x B x x ⎧⎫⎧⎫⎛⎫=≤=-≤⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭,则()R A C B =( )A . ∅B .11,2⎛⎤- ⎥⎝⎦ C .1,12⎡⎫⎪⎢⎣⎭D .(]1,1-5、(漳州市八校2017届高三下学期2月联考)已知{}2,R y y x x M ==∈,{}221,R,R y x y x y N =+=∈∈,则M⋂N =( )A .[]2,2-B .[]0,2C .[]0,1D .[]1,1- 6、(漳州市第二片区2017届高三上学期第一次联考)已知集合A ={ x |1x -1≥1}, 集合B ={ x | log 2x <1},则 A B = ······················ ( )A .(-∞,2)B .(0,1)C .(0,2)D .(1,2)7、(福建省“永安、连城、华安、漳平一中等”四地六校2017届高三第二次(12月)月考)设集合{}(){}()20,ln 10,M x x x N x x MN =-==-<=则[]A 0,1 (]0,1B [)01C , (],1∞D8、(福建省八县(市)一中联考2017届高三上学期期中)设集合2{3,log }P a =,{,}Q a b =,若{0}P Q =,则PQ =学科网( )A.{3,0}B.{3,0,1}C.{3,0,2}D.{3,0,1,2}9、(福州市第八中学2017届高三第六次质量检查)已知全集U R =,集合{}220A x x x =--≥,{}3log 1B x x =<,则()U C A B =A .[)2,3B .[)1,2-C .()0,1D .()0,210、(福州外国语学校2017届高三适应性考试(九))已知集合{}21A x R x =∈-<<,{}220B x R x x =∈-<,那么AB =( )A .()2 0-,B .()2 1-,C .()0 2,D .()0 1, 11、(晋江市季延中学等四校2017届高三第二次联考)已知集合}20{<<=x x A |,}01|{2>-=x x B ,则=)(B C A R ( )(A )}10|{≤≤x x (B )}21|{<≤x x (C )}01|{≤<-x x (D )}10|{<≤x x 12、(厦家世一中学2017届高三上学期期中考试)知集合{}{}2|20,|2,x A x x x B y y x R =+-≤==∈,则A B 等于( )A .∅B .[)1,+∞C .(]0,2D .(]0,113、(福建省师大附中2017届高三上学期期中考试)若集合{}|23M x x =-<<,{}2|1,N y y x x R ==+∈,则集合M N =(A )[)1,3(B )(-2,3)(C )(-2,+∞)(D )R14、(福建省霞浦第一中学2017届高三上学期期中考试)设集合A={x | y =lg (x ﹣1)},集合2{|2}B y y x ==-+,则A∩B 等于A .(1,2)B .(1,2]C .[1,2)D .[1,2]15、(漳州市八校2017届高三上学期期末联考)若{}m A ,1,0=,02B x x {|}=<<,且{}m B A ,1=⋂,则m 的取值范围是( )A .01(,)B .12(,)C .0112(,)(,) D .02(,)参考答案一、B 二、D 3、C 4、B 五、C 六、D 7、A 八、B 九、D 10、D 1一、B 1二、D 13、A 14、B 1五、C 二、经常使用逻辑用语1、(莆田市2017届高三3月教学质量检查)设a 为实数,直线12:1,:2l ax y l x ay a +=+=,则“1a =-”是“12//l l ”的A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也必要条件2、(漳州市第二片区2017届高三上学期第一次联考).已知a <0,则“ax 0=b ”的充要条件是 ( )A .∃x ∈R ,12ax 2-bx ≥12ax 02-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 02-bx 0C .∀x ∈R ,12ax 2-bx ≤12ax 02-bx 0D .∀x ∈R ,12ax 2-bx ≥12ax 02-bx 03、(福建省“永安、连城、华安、漳平一中等”四地六校2017届高三第二次(12月)月考)设{}n a 是公比为q 的等比数列,则“01q <<”是“{}n a 为递减数列”的( )A . 充分而没必要要条件 B.必要而不充分条件 C. 既不充分也没必要要条件 D.充要条件4、(福建省八县(市)一中联考2017届高三上学期期中)下列命题中正确的是( )A.命题p :“0x R ∃∈,200210x x -+<”,则命题p ⌝:x R ∀∈,2210x x -+>B .“ln ln a b >”是“22a b >”的充要条件C.命题“若22x =,则x =x =x ≠x ≠22x ≠”D.命题p :0x R ∃∈,001ln x x -<;命题q :对x R ∀∈,总有20x>;则p q ∧是真命题5、(福建省八县(市)一中联考2017届高三上学期期中)设命题p :函数2()lg(2)f x mx x m =-+-的概念域为R ;命题q :函数21()4ln (1)2g x x x m x =+--的图象上任意一点处的切线斜率恒大于2, 若“p q ∨”为真命题,“p q ∧”为假命题,求实数m 的取值范围.六、(福州外国语学校2017届高三适应性考试(九))命题p :实数 a b c ,,,若2b a c =+,则 a b c ,,成等差数列.命题q :实数 a b c ,,,若2b ac =,则 a b c ,,成等比数列,下列选项正确的是( ) A .q ⌝为假命题 B .p q ∧为真命题 C .p q ⌝∨为真命题 D .p q ∨为真命题7、(厦家世一中学2017届高三上学期期中考试)陈老师常说“不学习就没有前程”,这句话的意思是:“学习”是“有前程”的( )A .必要条件B .充分条件C .充要条件D .既不充分也没必要要条件8、(福建省师大附中2017届高三上学期期中考试)等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分没必要要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也没必要要条件9、(福建省霞浦第一中学2017届高三上学期期中考试)下列四个结论中:正确结论的个数是①若x R ∈,则tan x =3x π=的充分没必要要条件;②命题“若x ﹣sin x =0,则x=0”的逆命题为“若x ≠0,则x ﹣sin x ≠0”; ③若向量,a b 知足||||||a b a b ⋅=,则//a b 恒成立;A .1个B .2个C .3个D .0个10、(福建省霞浦第一中学2017届高三上学期期中考试)设p :关于x 的不等式a x>1的解集是{ x |x <0 };q:函数y =R .若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.参考答案一、A 二、C 3、C 4、D五、解:若p 为真命题,则220mx x m -+->恒成立,即220mx x m -+<恒成立.……1分当0m =时,不等式为20x -<,解得0x >,显然不成立;当0m ≠时,2(2)40m m m <⎧⎨∆=--⨯<⎩,解得1m <-. ∴若p 为真命题,则1m <-.…………4分若q 为真命题,则当1x >-时,4()12g x x m x '=+-+>,41m x x<+-,∵4113x x+-≥=,当且仅当1x =时取等号,∴3m <.…………6分 ∵“p q ∨”为真命题,“p q ∧”为假命题,∴p 真q 假或p 假q 真. ………8分若p 真q 假,则13m m <-⎧⎨≥⎩,∴m ∈∅;若p 假q 真,则13m m ≥-⎧⎨<⎩,∴13m -≤<.综上所述,实数m 得取值范围为[1,3)m ∈-.………10分 六、D7、A 八、B 九、A10、解:∵关于x 的不等式a x >1的解集是{ x |x <0 },∴0<a <1;故命题p 为真时,0<a <1;∵函数y =R , ∴20140a a >⎧⎨∆=-≤⎩⇒ 12a ≥, 由复合命题真值表知:若p ∨q 是真命题,p ∧q 是假命题,则命题p 、q 一真一假, 当p 真q 假时,则0112a a <<⎧⎪⎨<⎪⎩⇒ 102a <<;当p 假q 真时,则1012a a a ≥≤⎧⎪⎨≥⎪⎩或⇒ 1a ≥, 综上实数a 的取值范围是[)1(0,)1,2+∞.。
2013-2017高考数学(文)真题分类汇编第1章集合与常用逻辑用语.docx

第一章集合与常用逻辑用语第 1 节集合题型 1集合的基本概念——暂无题型 2集合间的基本关系——暂无题型 3集合的运算1.( 2013 山东文 2)已知集合 A , B 均为全集U1,2,3,4的子集,且e A B 4 ,U B1,2 ,则A e U B() .A. 3B. 4C.3,4D.分析利用所给条件计算出A 和 e B,进而求交集.1.U解析:因为 U1,2,3,4,饀A B4,所以A B1,2,3.又因为B1,2,U所以 3A1,2,3 .又饀B 3,4 ,所以A饀B故选A.U U 3 .2.(2013 安徽文 2)已知A x x1>0 ,B2, 101,,,则 C R A B() .A.2,1B.2C.2,01,D.01,2.分析解不等式求出集合 A ,进而得e R A,再由集合交集的定义求解.解析因为集合 A x x >1,所以 e R A x x ≤1,则 e R A B x x ≤1 2, 1,02, 1 .故选A.3.( 2013江西文2)若集合A x R | ax2ax10 其中只有一个元素,则a() .A .4 B. 2 C. 0 D. 0或43.解析当a0时,方程化为 10,无解,集合 A 为空集,不符合题意;当a0时,由a2 4a 0 ,解得a 4.故选A.4.( 2013 广东文1)设集合S x | x22x 0, x R,T x | x22x 0, x R,则 S T().A .0B .0,2C.2,0D.2,0,24.分析先确定两个集合的元素,再进行交集运算.解析集合 S0, 2 ,T0,2,故 S T0 ,故选 A.5(.2013 湖北文 1)已知全集U1,2,3,4,5 ,集合 A1,2 ,B2,3,4 ,则B e U A() .A .2B.3,4C.1,4,5D.2,3,4,55.分析先求e A,再找公共元素.U解析因为 U1,2,3,4,5 , A1,2,所以 e A3,4,5,U所以 B e A2,3,43,4,53,4.故选 B.U6.( 2013四川文1)设集合A1,2,3 ,集合B2,2,则 A B ().A. B.2C.2,2D.21,,2,36.分析直接根据交集的概念求解.解析 A B1,2,32,22,故选 B.7. (2013 福建文3)若集合A=1,2,3 ,B= 1,3,4 ,则 A B 的子集个数为().A .2 B.3C.4 D.167.分析先求出A B ,再列出子集.解析 A B1,3 ,其中子集有, 1 ,3, 1,3 共 4 个.故选C.8. (2013 天津文 1)已知集合A x R x , 2 , B x R x? 1,则 A B ().A.(,2]B. 1,2C.2,2D.2,1分析先化简集合 A ,再借助数轴进行集合的交集运算.8.解析 A x R x ≤ 2x R - 2≤x≤2,所以 A B x R 2 ≤ x ≤ 2x R x ≤ 1x R 2≤x≤1 .故选D.9.( 2013 辽宁文 1)已知集合 A 1,2,3,4 ,B x x<2 ,则 A B().A.0B.01,C.0,2D.01,,29.解析B x x2x 2 x 2, A B0,1 .故选B.10. (2013 陕西文1)设全集为R,函数f ( x)1x 的定义域为M,则 e R M 为().A.,1B.1,C.,1D. 1,10.解析函数f x 的定义域 M,1 ,则 e R M1,.故选 B.11.(2013 浙江文1)设集合S x | x2, T x | 4剟x1,则 S T() .A. 4,B(.2,) C.4,1 D.2,111.分析直接求两个集合的交集即可.解析: S T x x > 2x 4 ≤ x ≤ 1x 2 < x≤ 1.故选 D .12. (2013 重庆文1)已知全集U1,2,3,4 ,集合 A1,2 , B2,3,则 e U A B ().A.13,,4B.3,4C. 3D.412.分析先求出两个集合的并集,再结合补集概念求解.解析因为 A1,2 , B2,3 ,所以 A B1,2,3,所以 e A B4.故选 D.U13.( 2013 江苏 4)集合1,0,1共有个子集13.分析根据计算集合子集个数的公式求出或直接写出.解析由于集合中有 3 个元素,故该集合有23=8(个)子集 .14.已知集合U2,3,6,8, A2,3 , B2,6,8,则 C A B.15(.2014 新课标Ⅰ文1)已知集合 M{ x | 1 x3} ,N{ x |2x1} ,则M N ()A. (2,1)B. (1,1)C. (1,3)D.( 2 ,3)16(.2014 新课标Ⅱ文1)已知集合A2,0,2 ,B x | x2x20 ,则A B ()A. B.2 C. 0 D. 217.( 2014 浙江文1)设集合Sx x厔2 ,T x x 5,则 S T = () .A .,5B .2,+C.2,5 D .2,518.( 2014 江西文2)设全集为R,集合A{ x | x290}, B{ x |1x≤5} ,则A(e R B)() .A. (3,0)B. ( 3,1)C. (3,1]D. ( 3,3)19.( 2014 辽宁文1)已知全集U R ,A{ x | x≤ 0} , B{ x | x≥1} ,则集合e U(A B)()A . { x | x≥0}B . { x | x≤1}C. { x | 0≤ x≤1}D. { x | 0 x 1}20.( 2014 山东文2)设集合A x x 22x0, B x 1剟x4,则 A B() .A.0,2B.1,2C.1,2D.1,421.( 2014陕西文 1)设集合M x | x≥0,x R ,N x | x21,x R ,则M N().A.0,10,1C.0,1D.0,1B.22(. 2014 四川文 1)已知集合A x x1x 2 ,0 ,集合B为整数集,则 A B().A.1,0B.0,1C.2, 1,0,1D.1,0,1,223.( 2014 北京文1)若集合A0,1,2,4, B1,2,3,则 A B ()A.0,1,2,3,4B.0,4C.1,2D.323.解析因为A0,1,2,4, B1,2,3,所以 A B1,2 .故选C.24.( 2014 大纲文1)设集合 M{ 1,2,4,6,8}, N{ 1,2,3,5,6,7} ,则M N 中元素的个数为() .A . 2B. 3C. 5D. 725.( 2014 福建文1)若集合P x 2≤ x 4 , Q x x≥ 3, 则P Q等于()A. x 3≤x 4B. x 3 x 4C. x 2≤x 3D. x 2≤x≤326.( 2014 广东文1)已知集合M2,3,4 , N0,2,3,5 ,则M N() .A.0,22,3C.3,4D.3,5 B.27.( 2014 湖北文1)已知全集U1,2,3,4,5,6,7,集合A1,3,5,6,则U() .e AA .13,,5,6B.2,3,7C.2,4,7D.2,5,728.( 2014 湖南文 2)已知集合 A{ x | x2} , B{ x |1x 3} ,则A B() .A. { x | x2}B. { x | x1}C. { x | 2 x3}D. { x |1x 3}29.( 2014 江苏 1)已知集合A2, 1,3,4,B1,2,3,则 A B.30.( 2014 重庆文 11)已知集合A{3 ,4,512,,13} , B{2 ,3,5,813, },则 A B.31.( 2015重庆文1)已知集合A1,2,3, B1,3 ,则 A B () .A. {2}B.{1,2}C.{1,3}D.{1,2,3}31.解析根据集合的运算法则,交集表示两集合的公共部分,所以 A B1,3.故选 C.32.( 2015广东文1)若集合M1,1 , N2,1,0,则 M N() .A.0, 1B. 0C. 1D.1,132.解析由题意可得 M N 1 .故选 C.33.( 2015 天津文 1)已知全集U1,2,3,4,5,6,集合 A2,3,4,集合 B 1,3,4,6,则集合 A e U B() .A.3B.2,5C.1,4,6D.2,3,533. 解析由题意可得 A 2,3,5,e B ={2,5},则A ()2,5. 故选 B.Ue U B34.(2015 安徽文 2)设全集U1,2,3,4,5,6 , A 1,2,B2,3,4 ,则 A e U B () .A.1,2,5,6B.1C.2D.1,2,3,434.解析因为e B1,5,6,所以A e B 1 .故选B.U U35. ( 2015 全国 I 文 1)已知集合A{ x x 3n2,n N}, B{6,8,10,12,14},则集合A B 中元素的个数为() .A. 5B. 4C. 3D. 235.解析当3n2? 14,得 n? 4 .由x3n 2 ,当 n0 时, x 2 ;当 n 1 时, x 5 ;当 n 2 时, x 8 ;当 n 3 时, x 11 ;当 n 4 时, x 14 .所以A B8,14 ,则集合 A B 中含元素个数为 2 .故选 D .36. ( 2015北京文 1)若集合A x5x2, B x 3 x 3 ,则 A B().A.x 3 x 2B.x 5 x 2C.x 3 x 3D.x 5 x 336.解析依题意,A B x3x2.故选 A.37. ( 2015福建文 2)若集合M x 2 ,x2, N0,1,2,则 M N 等于().A.0B. 1C.0,1,2 D.0,1[来源 :Zxxm] 37.解析由交集的定义得M N0,1.故选 D.评注考查集合的运算.38(. 2015 全国 II 文 1)已知集合A{ x |1x2} ,B x 0x3,则 A B().A.1, 3B.1,0C.0, 2D. 2 ,338.解析因为对于A有A x1x2,对于 B 有 B x 0x3.可得 A B x1x 3 .故选A.39. ( 2015 山东文1)已知集合A x | 2x4, B x | ( x1)( x3)0,则A B () .A.(1,3)B. (1,4)C.(2 ,3)D.(2 ,4)39.解析由题意可得B x 1x3,又 A x 2x4,所以 A B x 2x 3 .故选 C.40. ( 2015陕西文1)设集合M x x2x ,N lg x,0 ,则 M N().A.01,B.70C.01,D.,140.解析M x x2x M0,1 ,N x lg x 剟 0N0x 1 ,所以M N01,.故选A.41.( 2015 四川文1)设集合A x1x 2 ,集合 B x 1x 3 ,则A B ().A.x 1 x 3B.x 1 x 1C.x 1 x 2D.x 2 x 341.解析由题意并集合数轴可得A B x1x 3 .故选A.42.( 2015 浙江文1)已知集合P x x22x ⋯3 ,Q x 2x4,则 P Q ().A.3,4B.2,3C.1,2D.13,42.解析P x x,1或 x⋯3,所以 P Q3,4.故选 A.43. ( 2015湖南文 11)已知集合U1,2,3,4, A1,3, B1,3,4 ,则 A e U B .43.解析因为e U B2,所以A? B1,2,3.U44. ( 2015 江苏 1)已知集合A1,2,3, B2,4,5 ,则集合A B 中元素的个数为.44.解析由并集的运算知识知 A B1,2,3,4,5,故集合 A B中元素的个数为 5 .45(.2016 北京文1)已知集合A x 2x4,B x x3或 x5,则 AI B ().A.x 2 x 5B.x x 4或 x 5C.x 2 x 3D.x x 2或 x 545.C 解析由A I B的含义可得 A I B x 2x 3 .故选C.46. ( 2016全国丙文1)设集合A{0,2,4,6,8,10}, B{4,8} ,则 e A B () .A. 4,8B.0,2,6C.0,2,6,10D.0,2,4,6,8,1046.C 解析依据补集的定义,从集合A{0,2,4,6,8,10} 中去掉集合 B{4,8} ,剩下的四个元素为 0,2,6,10 ,故e A B {0,2,6,10} 故选C..47. ( 2016全国甲文1)已知集合A1,2,3, B x | x29 ,则A I B() .A.2, 1,0,1,2,3B.2,1,0,1,2C.1,2,3D.1,247.D 解析B3,3, A I B1,2 .故选D.48. ( 2016山东文 1)设集合U{1,2,3,4,5,6}, A{13,,5}, B{3,4,5} ,则 e U ( A U B)=() .A. {2,6}B.{3,6}C.{1,3,4,5}D. {1,2,4,6}48.A解析由已知, A U B1,3,5U 3,4,51,3,4,5,所以痧U A UB U 1,3,4,52,6.故选 A.49. ( 2016四川文 2)设集合A x 1 剟 x5, Z 为整数集,则集合 A I Z中元素的个数是().A. 6B.5C.4D.349.B解析由题意, A I Z1,2,3,4,5 ,故其中的元素个数为 5.故选 B.50.( 2016 天津文 1)已知集合A{1,2,3} ,B{ y | y2x 1,x A} ,则A I B =().A. {1,3}B.{1,2}C.{2,3}D. {1,2,3}50.A解析由题意可得 B{1,3,5},则 A I B{1,3} .故选A.51.( 2016全国乙文 1)设集合A1,3,5,7 ,B x 2 剟 x5,则 A I B() .A.1,3B.3,5C.5,7D.1,751.B解析把问题切换成离散集运算,A1,3,5,7, 2,3,4,5 B ,所以 A I B3,5 .故选 B.52. ( 2016浙江文1)已知全集U12,3 ,4,5,6,集合 P13,5, Q12, ,4,则e U P U Q() .A.1B. 3,5C. 1,2,4,6D.1,2,3,4,552.C解析由P13,5,U12,3 ,4,5,6,得e U P 2 , 4,所以, 6e U P U Q2,4,6 U 1,2,41,2,4,6.故选 C.53.( 2016江苏卷1)已知集合A1,2,3,6, B x 2x 3 ,则A I B .53.1,2 解析由交集的运算法则可得 A I B1,2.54.(2016上海文)设x R,则不等式x31的解集为.154. 2,4解析由题意 1 x 3 1 ,即 2 x 4 ,则解集为2,4 .55.( 2017 全国 1 文 1)已知集合A x x 2 , B x 3 2x 0 ,则().A.C.3A B x x B .A B23A B x x D.A B R255.解析由3 2x0 得x 3,所以 A B x x 2x x3x x3222.故选 A.56.(2017 全国 2 文 1)设集合A1,2,3 , B2,3,4 ,则A B= ().A.12,,3,4B.1,2,3C. 2,3,4D.13,,456.解析由题意,A B{1, 2,3, 4} .故选A.57.(2017 全国 3文 1)已知集合A12,,3,4 , B2,4,6,8 ,则A B 中元素的个数为() .A . 1B. 2C. 3D. 457.解析集合A与B的交集为两者共有的元素所构成,即为集合2,4 ,所以该集合的元素个数为 2.故选 B.评注集合的交集运算,属于基础题型,唯一的变化在于常规问题一般要求出交集即可,该题需要先求出集合,再计算元素个数.58.( 2017 北京文1)已知U R,集合A { x | x 2 x 2}U或,则 e A ().A. (2, 2)B. (,2)(2,)C. [2, 2]D. (,2][2,)58.解析由A { x | x 2 或x2}( ,2)(2,) ,所以 e U A[ 2,2].故选 C.59.( 2017 山东文1)设集合M x x1 1 ,N x x 2 ,则M N ().A.1,1B.1,2C.0,2D.1,259.解析由| x 1|10x 2 ,得 M N (0,2).故选 C.60.( 2017 天津文 1)设集合 A 1,2,6,B2,4 , C 1,2,3,4,则 A B C() .A. 2B.1,2,4C. 1,2,4,6D. 1,2,3,4,660.解析因为A{1,2,6}, B{2,4} ,所以 A B {1,2,6}{2,4}{1,2,4,6},所以 (A B) C {1,2,4,6}{1,2,3,4}{1,2,4} .故选B.61.( 2017 浙江 1)已知集合P x 1 x 1 , Q x 0x2,那么 P Q() .A.1,2B. 01,C.1,0D. 1,261.解析P Q 是取 P,Q 集合的所有元素,即 1 x 2 .故选A.62.( 2017 江苏 1)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400 ,300 , 100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行检验,则应从丙种型号的产品中抽取件.62. 解析按照分层抽样的概念应从丙种型号的产品中抽取30060( 件 ) .故填18.181000第 2 节命题及其关系、充分条件与必要条件题型 4四种命题及关系1. ( 2013 山东文 8)给定两个命题p , q ,若p 是 q 的必要而不充分条件,则p 是q 的() .A. 充分而不必要条件B. 必要而不充分条件C.充要条件D.既不充分也不必要条件1.分析借助原命题与逆否命题等价判断.解析:若p 是 q 的必要不充分条件,则q p 但p /q ,其逆否命题为 p q 但q / p ,所以 p 是q 的充分不必要条件.故选 A.2(. 2014 陕西文8)原命题为“若anan 1an,n N+,则a n为递减数列”,关于其逆命题,2否命题,逆否命题真假性的判断依次如下,正确的是().A. 真,假,真B.假,假,真C.真,真,假D. 假,假,假3.( 2014 四川文 15)以A表示值域为R的函数组成的集合, B 表示具有如下性质的函数x 组成的集合:对于函数x ,存在一个正数 M ,使得函数x 的值域包含于区间M,M .例如,当1x x3,2x sinx 时, 1 xA ,2xB .现有如下命题:①设函数 f x的定义域为 D ,则“f x A ”的充要条件是“b R,a D ,f a b ”;②若函数 f x B ,则 f x 有最大值和最小值;③若函数 f x , g x 的定义域相同,且 f x A , g x B ,则 f x g x B ;④若函数f x a ln x2x x2,a R 有最大值,则f x B .x 21其中的真命题有 ____________ (写出所有真命题的序号) .4.( 2015山东文5)设m N ,命题“若m0 ,则方程x2x m0 有实根”的逆否命题是() .A. 若方程x2x m0有实根,则 m0B. 若方程x2x m0有实根,则 m,0C. 若方程x2x m0没有实根,则 m0D. 若方程x2x m0没有实根,则 m,04.解析将原命题的条件和结论调换位置,并分别进行否定,即得原命题的逆否命题.故选 D.5.( 2017 山东文 5)已知命题p :x R ,x2x1⋯0 .命题 q :若 a2b2,则a b .下列命题为真命题的是() .A. p qB. p qC.p qD. p q解析取 x0 ,可知p为真命题;取 a 1,b2,可知 q 为假命题,故 pq为真命题. 5.故选 B.题型 5充分条件、必要条件、充要条件的判断与证明1. (2013 安徽文 4)“2x 1 x0 ”是“x0 ”的().A. 充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件1. 分析先解一元二次方程2x 1 x 0 ,再利用充分条件、必要条件的定义判断.解析当 x0 时,显然 2 x 1 x0;当 2x 1 x0时, x0 或 x1,所以2“ 2x 1 x0 ”是“ x 0 ”的必要不充分条件.故选B.2 (20132P x, y ,“ x2且 y1”P 在直线l : x y 10 上”.福建文)设点则是“点的() .A .充分而不必要条件B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件2.分析利用命题的真假,判断充要条件.解析当 x 2 且 y 1时,满足方程x y 1 0,即点 P2, 1 在直线 l 上.点 P0,1在直线 l 上,但不满足 x 2 且 y1,所以“ x 2 且 y1”是“点 P x, y在直线 l 上”的充分而不必要条件.故选 A.3. (2013 天津文 4)设a,b R ,则“( a b) a20 ”是“a b ”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.分析分别判断由( a b) a20 是否能得出 a b成立和由a b是否能得出( a b) a20成立 .解析由不等式的性质知(a b) a20 成立,则a b 成立;而当 a 0,a b 成立时,( a b) a20不成立,所以(a b) a 20 是a b 的充分而不必要条件.故选 A.4.(2013 湖南文2)“1x2”是“ x 2 ”成立的().A. 充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件4.分析利用集合间的关系转化.解析设A x1x 2 , B x x2,所以 A üB ,即当x0 A 时,有x0 B ,反之不一定成立.因此“1x 2 ”是“x 2 ”成立的充分不必要条件.故选 A.5.( 2014北京文5)设a,b是实数,则“a b ”是“ a 2 b 2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.解析a b 不能推出a2b2,例如a 1 , b 2 ; a2b2也不能推出a b ,例如a 2 ,b 1 .故“a b ”是“a 2b2”的既不充分也不必要条件.6.( 2014 浙江文2)设四边形ABCD的两条对角线AC , BD,则“四边形ABCD为菱形”是“AC BD”的() .A .充分不必要条件B.必要不充分条件C.充要条件 D .既不充分又不必要条件7(. 2014 广东文 7)在△ABC中,角 A, B, C 所对应的边分别为a, b, c 则“a, b”是“sin A, sin B”的() .A. 充分必要条件B. 充分非必要条件C.必要非充分条件D. 非充分非必要条件8(. 2014 新课标Ⅱ文3)函数 f ( x ) 在x x0处导数存在,若p: f (x0)0;q: x x0是f ( x )的极值点,则()A.p 是q的充分必要条件B.p 是q的充分条件,但不是q的必要条件C.p 是q的必要条件,但不是q的充分条件D.p 既不是q的充分条件,也不是q的必要条件9.( 2014 江西文 6)下列叙述中正确的是()A.若 a , b , cax2bx c≥ 0b24ac≤0”;R ,则“”的充分条件是“B.若 a , b , c R ,则“ab2cb 2”的充要条件是“a c”;C.命题“对任意 x R ,有x2≥0”的否定是“存在x R ,有x2≥0”;D.l 是一条直线,, 是两个不同的平面,若l, l,则∥ .10.( 2015 湖南文3)设x R ,则“x 1”是“x21”的().A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10.解析因为由x1可推出 x3 1 ,而由 x31可推出 x 1 ,所以“ x 1 ”是“ x2 1 ”的充要条件.故选C.11.(2015陕西文6)“sin cos”是“ cos20 ”的().A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件11.解析当sin cos时,cos2cos2sin2cos sin cos sin0 ,即 sin cos cos 20 .当 cos2cos sin cos sin0 时,cos sin0 或cossin0,即 cos20 ?sin cos.故选 A.12.( 2015 四川文a b 1log2 a log2 b 0”的() . 4)设a,b为正实数,则“”是“A. 充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件12.解析由函数y log2 x 在定义域 0,上单调递增,且log 2 10 ,可知“ a b 1”是“ log 2 a log2 b0 ”充要条件.故选A.13.( 2015 天津文4)设x R 1 < x < 2”是“| x2| 1 ”的().,则“A. 充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件13.解析由x211x 21 1 x 3 ,可知“1 < x < 2 ”是“2|1”的充分而不必要条件.故选 A.| x14.( 2015 浙江文3)设a,b是实数,则“a b0 ”是“ ab0 ”的().A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件14.解析取 a3, b 2 ,所以 a b0 ?ab0 ;反之取 a 1 , b 2 ,所以 ab 0 ?a b0 故选D..15.( 2015 重庆文2)“x1”是“x22x10 ”的().A. 充要条件B.充分不必要条件C.必要不充分条件D. 既不充分也不必要条件15.解析 由题意知, x22x 1 0 x1. 故选 A .16.( 2015 安徽文 3)设 p : x 3, q : 1 x 3,则 p 是 q 成立的() .A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.解析 因为1,3,3,即 p q ,但是 qq ,所以 p 是 q 的必要不充分条件 .故选 C.评注 充分必要条件的判断 .17.( 2015 北京文6)设 aa b = a b”是 “a // b ”的() ., b 是非零向量, “A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件17.解析 由 ab a b cos a , b ,若 a b a b ,则 cos a ,b1,即 a ,b 0 ,因此 a //b .反之,若 a // b ,并不一定推出 a ba b ,而是 a b a b ,原因在于:若 a //b ,则a ,ba b a b”是 “a //b ”的充分而不必要条件 .故选 A.或 π.所以 “18.( 2015 福建文 12) “对任意 x0, π, k sin x cos x x ”是 “k 1 ”的() .2A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件18.解析 当 k 1 时, k sin x cos xksin 2x ,构造函数 f xksin 2x x ,22则 fx k cos2 x 10 ,故 f x 在 x0, π上单调递减,2故 fxf ππ0 ,则 k sin x cos xx ;2 2当 k1 时,不等式 k sin x cos x x 等价于 1sin 2x x ,1sin 2x 2构造函数 g x x ,则 g x cos2 x 1 0 ,2。
2011—2017年新课标全国卷1理科数学分类汇编——1.集合与常用逻辑用语

2011—2017年新课标高考全国Ⅰ卷理科数学分类汇编1.集合与常用逻辑用语(含解析)一、选择题【2017,1】已知集合{}1A x x =<,{}31x B x =<,则( ) A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =∅【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23( 【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)【2013,1】已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .101.集合与常用逻辑用语(解析版)一、选择题【2017,1】已知集合{}1A x x =<,{}31x B x =<,则( ) A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =∅ 【解析】{}1A x x =<,{}{}310x B x x x =<=<,∴{}0A B x x =< ,{}1A B x x =< ,故选A【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23( 【解析】{}13A x x =<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭I .故选D . 【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n = 解析:命题p 含有存在性量词(特称命题),是真命题(如3n =时),则其否定(p ⌝)含有全称量词(全称命题),是假命题,故选C ..【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)【解析】∵{|13}A x x x =≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.【2013,1】已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B解析:∵x (x -2)>0,∴x <0或x >2,∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B. 【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10【解析】由集合B 可知,x y >,因此B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1)},B 的元素10个,所以选择D .。
2017-2021年浙江省高考数学真题分类汇编:集合与常用逻辑用语(附答案解析)

2017-2021年浙江省高考数学真题分类汇编:集合与常用逻辑用语一.选择题(共8小题)1.(2021•浙江)设集合A={x|x≥1},B={x|﹣1<x<2},则A∩B=()A.{x|x>﹣1}B.{x|x≥1}C.{x|﹣1<x<1}D.{x|1≤x<2} 2.(2020•浙江)已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4} 3.(2019•浙江)已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3} 4.(2018•浙江)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5} 5.(2017•浙江)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)6.(2020•浙江)设集合S,T,S⊆N*,T⊆N*,S,T中至少有2个元素,且S,T满足:①对于任意的x,y∈S,若x≠y,则xy∈T;②对于任意的x,y∈T,若x<y ,则∈S.下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素7.(2020•浙江)已知空间中不过同一点的三条直线l,m,n.则“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2019•浙江)若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件第1页(共6页)。
2017-2019高考数学(文)真题分类汇编01集合与常用逻辑用语文含解析

专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合1,2,3,4,5,6,72,3,4,52,3,6,7U A B ,,,则U BAe A .1,6B .1,7C .6,7D .1,6,7【答案】C 【解析】由已知得1,6,7U Ae ,所以U B A e {6,7}.故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x ,{|2}B x x ,则A ∩B =A .(-1,+∞)B .(-∞,2)C .(-1,2)D .【答案】C 【解析】由题知,(1,2)A B .故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A Bx x,则A BA .1,0,1B .0,1C .1,1D .0,1,2【答案】A 【解析】∵21,x ∴11x ,∴11B x x ,又{1,0,1,2}A,∴1,0,1AB.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A .(–1,1)B .(1,2)C .(–1,+∞)D .(1,+∞)【答案】C 【解析】∵{|12},{|1}A x x B x ,∴(1,)A B .故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集1,0,1,2,3U ,集合0,1,2A,1,0,1B,则()U AB e =A .1B .0,1C .1,2,3D .1,0,1,3【答案】A 【解析】∵{1,3}U A e ,∴{1}U AB e .故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}AB Cx x R ,则()A C BA .2B .2,3C .1,2,3D .1,2,3,4【答案】D 【解析】因为{1,2}A C ,所以(){1,2,3,4}A C B .故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设x R ,则“05x ”是“|1|1x ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】由|1|1x 可得02x ,易知由05x 推不出02x,由02x 能推出05x,故05x是02x的必要而不充分条件,即“5x”是“|1|1x ”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围.8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,2a bab ,则当4a b 时,有24aba b,解得4ab ,充分性成立;当=1, =4a b 时,满足4ab ,但此时=5>4a+b ,必要性不成立,综上所述,“4a b ”是“4ab ”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内有两条相交直线都与平行是∥的充分条件;由面面平行的性质定理知,若∥,则内任意一条直线都与平行,所以内有两条相交直线都与平行是∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】当0b时,()cos sin cos f x x b x x ,()f x 为偶函数;当()f x 为偶函数时,()()f x f x 对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x ,得cos sin cos sin xb x x b x ,则sin 0b x 对任意的x 恒成立,从而0b .故“0b ”是“()f x 为偶函数”的充分必要条件.故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A e A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C 【解析】因为全集,,所以根据补集的定义得.故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合02A,,21012B,,,,,则ABA .02,B .12,C .0D .21012,,,,【答案】A【解析】根据集合的交集中元素的特征,可以求得.故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合1,3,5,7A,2,3,4,5B,则ABA .3B .5C .3,5D .1,2,3,4,5,7【答案】C 【解析】,.故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x ,{0,1,2}B ,则A BA .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C 【解析】易得集合{|1}Ax x ,所以1,2A B .故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A 【解析】,,因此A B =.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A ,{1,0,2,3}B ,{|12}C x x R ,则()AB CA .{1,1}B .{0,1}C .{1,0,1}D .{2,3,4}【答案】C【解析】由并集的定义可得:,结合交集的定义可知:.故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.17.【2018年高考浙江】已知平面α,直线m ,n 满足m α,nα,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】 A 【解析】因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件.故选 A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“?”为真,则是的充分条件.(2)等价法:利用?与非?非,?与非?非,?与非?非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若?,则是的充分条件或是的必要条件;若=,则是的充要条件.18.【2018年高考天津文数】设x R,则“38x”是“||2x ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“ ” 的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件.故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“?”以及“?”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A =|2xx ,B =|320x x ,则A .AB =3|2x xB .A BC .A B 3|2x x D .A B=R【答案】A 【解析】由320x 得32x ,所以33{|2}{|}{|}22AB x xx xx x.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B,则A BA .123,4,,B .123,,C .234,,D .134,,【答案】A 【解析】由题意{1,2,3,4}A B .故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.22.【2017年高考北京文数】已知全集UR ,集合{|22}A x xx或,则U Ae A .(2,2)B .(,2)(2,)C .[2,2]D .(,2][2,)【答案】C 【解析】因为{2A x x 或2}x,所以22U Axxe .故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则A B 中元素的个数为A .1B .2C .3D .4【答案】B 【解析】由题意可得2,4A B ,故A B 中元素的个数为2.所以选 B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ,则()A B CA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B 【解析】由题意可得1,2,4,6A B ,所以()1,2,4A B C .故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x ,{02}Q x ,那么P QA .(1,2)B .(0,1)C .(1,0)D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q (1,2).故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017年高考山东文数】设集合11M x x ,2Nx x,则M NA .1,1B .1,2C .0,2D .1,2【答案】C【解析】由|1|1x 得02x ,故={|02}{|2}{|02}M N x xx xx x.故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d > ”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】由46511210212(510)S S S a da d d ,可知当0d时,有46520S S S ,即4652S S S ,反之,若4652S S S ,则0d,所以“d > ”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d ,结合充分必要性的判断,若p q ,则p 是q 的充分条件,若p q ,则p 是q 的必要条件,该题“0d ”“46520S S S ”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数,使得m n ”是“0<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】若0,使m n ,则两向量,m n 反向,夹角是180,那么cos1800m nm n m n;若0m n ,那么两向量的夹角为90,180,并不一定反向,即不一定存在负数,使得mn ,所以是充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ,则p 是q 的充分条件,若pq ,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,xR 210xx ;命题q :若22ab ,则a <b .下列命题为真命题的是A .p q B .p q C .pqD .pq【答案】B 【解析】由0x时,210xx 成立知p 是真命题;由221(2),12可知q 是假命题,所以p q 是真命题.故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x R ,则“20x”是“|1|1x ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】由20x ,可得2x ,由|1|1x ,可得111x ,即02x ,因为22x xx x,所以“20x ”是“|1|1x ”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若pq ,那么p 是q 的充要条件,若,//p q q p ,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ,:q xB ,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若AB ,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q 是p ”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A ,{|0,}B x x xR ,则A B▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}AB .【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:. 【名师点睛】本题考查交集及其运算,考查基础知识,难度较小. 33.【2017年高考江苏】已知集合{1,2}A ,2{,3}Ba a,若{1}AB,则实数a 的值为▲ .【答案】1 【解析】由题意1B ,显然233a,所以1a ,此时234a ,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B 等集合问题时,往往容易忽略空集的情况,一定要先考虑时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11ab”为假命题的一组a ,b 的值依次为_________.【答案】,(答案不唯一)【解析】使“若,则”为假命题,则使“若,则”为真命题即可,只需取即可满足,所以满足条件的一组的值为(答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】123,1233,矛盾,所以-1,-2,-3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
17.(2017新课标Ⅱ理)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则
(A) (B) (C) (D)
20.(2017山东理)已知命题p: ;命题q:若a>b,则 ,列命下题为真命题的是
(A) (B) (C) (D)
21.(2017北京)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与 最接近的是
(参考数据:lg3≈0.48)
5(2017山东理)设函数 的定义域A,函数 的定义域为B,则
(A)(1,2) (B) (C)(-2,1) (D)[-2,1)
6(2017新课标Ⅰ理)已知集合A={x|x<1},B={x| },则
A. B.
C. D.
7(2017江苏)已知集合 , ,若 ,则实数 的值为.
8(2017天津)设集合 ,则
(A)1033(B)1053
(C)1073(D)1093
22.(2017北京)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为
______________________________.
23.(2017北京理)设m,n为非零向量,则“存在负数 ,使得 ”是“ ”的
A. B. C. D.
12(2017新课标Ⅲ)已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为( )
A.1B.2C.3D.4
13(2017新课标Ⅰ)已知集合A= ,B= ,则
A.A B= B.A B
C.A B D.A B=R
14(2017山东)设集合 则
(A) (B) (C) (D)
集合与简易逻辑专题
1.(2017北京)已知 ,集合 ,则
(A) (B) (C) (D)
2.(2017新课标Ⅱ理)设集合 , .若 ,则
A. B. C. D.
3(2017天津理)设集合 ,则
(A) (B) (C) (D)
4(2017新课标Ⅲ理)已知集合A= ,B= ,则A B中元素的个数为
A.3B.2C.1D.0
15.(2017浙江)已知等差数列{an}的公差为dபைடு நூலகம்前n项和为Sn,则“d>0”是“S4+S6>2S5”的
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
16.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则
(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
答案:1-5 CCBBD 6-10 A 1 BAA 11-15 ABACC 16-20 DABBD
21 -1,-2,-3(答案不唯一)22.A
A.乙可以知道四人的成绩B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩
18.(2017天津理)设 ,则“ ”是“ ”的
(A)充分而不必要条件(B)必要而不充分条件
(C)充要条件(D)既不充分也不必要条件
19.(2017山东)已知命题p: ;命题q:若 ,则a<b.下列命题为真命题的是
(A) (B) (C) (D)
9(2017新课标Ⅱ)设集合 ,则
A. B. C. D.
10(2017北京理)若集合A={x|–2 x 1},B={x|x –1或x 3},则A B=
(A){x|–2 x –1} (B){x|–2 x 3}
(C){x|–1 x 1} (D){x|1 x 3}
11(2017浙江)已知集合 , ,那么