多光子共聚焦扫描显微镜的原理以及应用

多光子共聚焦扫描显微镜的原理以及应用
多光子共聚焦扫描显微镜的原理以及应用

多光子共聚焦扫描显微镜的原理以及应用

多光子共聚焦显微镜是光学显微镜的重大改进,主要表现为可以观

察活细胞、固定细胞和组织的深层结构,并且可以得到清晰锐利的

多层Z平面结构,即光学切片,并以此可以构建标本的三维实体结构。共聚焦显微镜采用激光光源,经过扩充后充满整个物镜后焦平面,然后经过物镜的透镜系统,在标本的焦平面上会聚成非常小的点。根据物镜数值孔径不同,最亮照明点直径大小约0.25 ~ 0.8μm,深度约0.5 ~ 1.5μm。共聚焦点大小决定于显微镜设计、激光

波长、物镜特性、扫描单元状态设定和标本性质。场式显微镜的照

明范围和照明深度都很大,而共聚焦显微镜的照明则集中到焦平面

上的一个精确的焦点上。共聚焦显微镜最基本的优点是可以对厚荧

光标本(可以达到50 μm或以上)进行精细的光学切片,切片的厚度约为0.5到1.5μm。系列光学切片图像可以通过精确的显微镜Z

轴步进马达上下移动标本获得。图像信息的采集被控制在精确的平

面内,而不会被位于标本上其他位置发出的信号干扰。在去除背景

荧光影响和增加信噪比后,共聚焦图像的对比度和分辨率比传统场

式照明荧光图像有明显的提高。在很多标本中,许多错综的结构成

分相互交织构成复杂的系统,仅用几张光学切片很难还原标本本身

的结构特征,但是一旦能够采集到足够的光学切片,我们就能通过

软件对其进行三维重建。这种实验方法已经被广泛应用与生物学研

究中,用来阐明细胞或组织之间复杂的结构和功能关系。

与传统光学显微镜相比,多光子共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所

以它问世以来在生物学的研究领域中得到了广泛应用。在对生物样

品的观察中,多光子显微镜有其优越性:对活细胞和组织或细胞切

片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞

膜系统的三维图像。可以得到比普通荧光显微镜更高对比度、高解

析度图象、同时具有高灵敏度、杰出样品保护。多维图象的获得,

如7 维图象(XYZaλIt): xyt、xzt和xt 扫描,时间序列扫描旋转

扫描、区域扫描、光谱扫描、同时方便进行图像处理。细胞内离子

荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。荧光标记探头标记的活细胞或切片标

本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察。对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图

像可及时输出或长期储存。

当前,激光共聚焦显微镜较广泛应用的研究领域有:细胞生物学:

如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结

构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进

行观察和定量;分析正常细胞和癌细胞骨架与核改变之间的关系;

细胞黏附行为等。生物化学:如酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹

染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变

的更加简单、准确。药理学:如药物对细胞的作用及其动力学;药

物进入细胞的动态过程、定位分布及定量。生理学、发育生物学:

如膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎

的形成,骨髓干细胞的分化行为;细胞膜电位的测量,荧光漂白恢

复(FRAP)的测量等。遗传学和组胚学:如细胞生长、分化、成熟

变化、细胞的三维结构、染色体分析、基因表达、基因诊断。神经

生物学:如神经细胞结构、神经递质的成分、运输和传递。微生物

学和寄生虫学:如细菌、寄生虫形态结构。病理学及病理学临床应用:如活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断。

免疫学、环境医学和营养学:如免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白

质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、

分裂、分化过程中的时空表达。

激光共聚焦显微镜的原理与应用范围

激光共聚焦显微镜的原理与应用范围 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。 1激光扫描共聚焦显微镜(LSCM)的原理 从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上作了以下几点改进: 1.1用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。1.2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差 1.3采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。这两种图像的清晰度和精密度是无法相比的。 1.4用计算机采集和处理光信号,并利用光电倍增管放大信号图 在共聚焦显微镜中,计算机代替了人眼或照相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。由于综合利用了以上技术。可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。 2LSCM在生物医学研究中的应用 目前,一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH)、微分干涉差显微镜(DIC)等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。

《扫描探针显微镜》讲义

《扫描探针显微镜》讲义 2007/11/13 丁喜冬 目次 一扫描探针显微镜(SPM)概述 二扫描力显微镜(SFM)概述 三SFM中的力及其检测技术 四几种常见的SPM 五商品化的SPM仪器的例子 六SPM的应用举例 参考文献: (1)白春礼、田芳、罗克著,扫描力显微术,科学出版社,2000 (2)白春礼编著,扫描隧道显微术及其应用,上海科学技术出版社,1992.10 (3)G..Binning,C.F.Quate,Ch.Gerber. Phys.Rev.Lett 56,930(1986) (4)J. K. H. Ho¨rber1 and M. J. Miles,Scanning Probe Evolution in Biology,Volume302, Science, 7.Nov 2003 (5)Werner A.Hofer, Adam S.Foster, Alexander L.Shluger, Theories of scanning probe microscopes at the atomic scale, Reviews of Modern Physics, V olume75, October 2003.

一扫描探针显微镜(SPM)概述 1、发展背景 1982年,国际商用机器公司(IBM)苏黎世实验室的宾尼(Binning)和罗雷尔(Rohrer)及其同事们研制成功了世界上第一台新型的表面分析仪器——扫描隧道显微镜(Scanning Tunning Microscope, STM)。宾尼和罗雷尔因此而获得1986年的诺贝尔物理学奖。它的出现,使人类第一次能够实时的观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,被国际科技界公认为80年代十大科技成就之一。随后,STM仪器本身及其相关仪器获得了蓬勃发展,诞生了一系列在工作模式、组成模式及主要性能与STM相似的显微仪器,用来获取STM无法获取的各种信息。这些仪器目前统称为扫描探针显微镜(Scanning Probe Microscope, SPM)。这些仪器的共同特点是:采用尖锐的探针在样品表面扫描的方法来获取样品表面的一些性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同。这些仪器的发明,使人们跨入了原子和分子世界,成为人们认识微观世界的有力工具,在科技和工业方面已经、并且必将继续产生深刻的影响,在材料科学、微电子学、物理、化学、生物学等领域有着重大的意义和广阔的应用前景。 2、SPM的种类 扫描探针显微镜(SPM)家族中目前有近20个成员。由于其技术还在不断发展之中,所以其成员将继续增加。按照工作原理,大致可以分为:与隧道效应有关的显微镜、扫描力显微镜、扫描离子电导显微镜、扫描热显微镜等几类。与隧道效应有关的显微镜是基于量子隧道效应工作的。STM是SPM家族的第一个成员,也是与隧道效应有关的显微镜的典型代表。其成员还包括扫描噪声显微镜(SNM)、扫描隧道电位仪(STP)、弹道电子发射显微镜(BEEM)、光子扫描隧道显微镜(PSTM)等。扫描力显微镜(Scanning Force Microscope,SFM)通过检测探针与样品之间的相互作用力而成像,除了宾尼等人于1986年发明的原子力显微镜(Atomic Force Microscope,AFM)外,应用较广的还有:磁力显微镜(MFM)、静电力显微镜(EFM)、摩擦力显微镜(LFM)、化学力显微镜(CFM)等。 3、SPM的工作原理 扫描探针显微镜采用尖锐的探针在样品表面扫描的方法来获取样品表面的电、磁、声、光、热等物理的或化学的性质。不同的扫描探针显微镜主要是针尖特性及相应针尖-样品相互作用的不同,即各种扫描探针显微镜除了探针部分外,工作原理是基本一样的。 4、SPM的应用前景 SPM具有的原子和分子尺度上的探测材料性质的能力,因此,SPM无论在基础项目研究还是在技术领域的应用都具有独一无二的优势。目前,SPM已广泛应用于材料科学、物理、化学、生命科学等科研领域,取得了许多重要的研究成果,并推动着这些学科向前发展,出现了一系列新的交叉学科。另外,扫描探针显微镜的应用已不仅仅局限于基础研究方面,它已迅速向工业应用领域扩展。 图1-1 SPM的分类 图1-2 SPM的工作原理

激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图 二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地

进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 (一)细胞的三维重建 普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。(二)静态结构检测 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡 检测细胞凋亡不同时期细胞形态、细胞凋亡相关蛋白

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

原子力显微镜的原理及使用

原子力显微镜的原理及使用 通过近代物理实验课的学习,了解了许多仪器的工作原理以及使用方法,对今后的科研学习有很大的 帮助。其中原子力显微镜就是其中之一,对于做材料方面的专业来说,原子力显微镜在表征物质的表面结 构及性质起着重要的作用。前段时间我们利用AFM对用RF磁控溅射制备的PZT薄膜进行了表征,通过对AFM的使用并查找相关文献,使我对原子力显微镜有了更加深刻的认识。 原子力显微镜,英文:Atomic Force Microscope ,简写: AFM。是一种利用原子,分子间的相互作用力来观察物体表面微观 形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操 控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样 品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描 样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品 表面的形貌或原子成分。 它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运 动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控 制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电 流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针 尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分 辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。 一、仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置 检测部分、反馈系统。 1、力检测部分 在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品 的特性,以及操作模式的不同,而选择不同类型的探针。 2、位置检测部分 在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量 的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作 信号处理。 3、反馈系统 在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作 反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针 尖保持一定的作用力。 AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料, 当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与 所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分 别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面 扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。 原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动, 再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测 器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性 以影像的方式给呈现出来。 二、工作原理: 将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于 针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬 臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法

激光扫描共聚焦显微镜的原理和应用-17954讲解

激光扫描共聚焦显微镜的原理和应用 Tina(2007-10-23 09:40:17 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图

二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 一)细胞的三维重建

普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM 能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM 的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。 二)静态结构检测:原位鉴定细胞或组织内生物大分子、观察细胞及亚细胞形态结构 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

激光共聚焦显微镜技术1讲解

激光共聚焦显微镜技术 The techniques and applications of Confocal Laser Scanning Microscopy 激光共聚焦显微镜(LSCM)的发展简史 1957年,Marvin Minsky提出了共聚焦显微镜技术的某些基本原理,获得了美国的专利。1978年,阿姆斯特丹大学的G.J.Brakenhoff首次展示了改善了分辨率的共焦显微镜。 1985年,Wijnaendtsvan Resandt推出了第一台对荧光标记的材料进行光切的共焦显微镜 激光共聚焦显微镜(LSCM)的发展简史 ?80年代末,各家公司都推出了商品化的共焦显微镜,英国的Bio-Rad公司的MRC系列,德国Leica公司的TCS系列,Zeiss公司的LSM系列等。 ?近二十年来,从滤片型到光谱型,人们对共焦高分辨率,采集图像快速,技术的改进及应用开发不断进行,出现了很多新的技术。如双光子,FCS,FLIM ,STED等。 共焦显微镜的优点 人眼分辨率:0.2mm 光学显微镜分辨率:0.25μm 电子显微镜分辨率:0.2nm 共焦显微镜分辨率:μm 共焦显微镜的优点 ?电子显微镜的缺陷: 1.只能观察固定样品 2.样品制备过程(固定、包埋、切片)造成的假象 ?荧光显微镜的缺陷: 1.可以观察活细胞或组织,但细胞或组织内结构高度重叠。 2.荧光具有强散射性,造成图像实际清晰度的大大下降。 3.荧光漂白很快,使荧光图像的拍照有困难。 4.如果荧光滤片选配不当,多荧光标记样品图像的采集很困难,且很难抑制光谱交叉。 共焦显微镜的优点 ?共焦显微镜与传统显微镜的区别 1.抑制图像的模糊,获得清晰的图像 激光扫描共焦显微镜技术 ?共焦显微镜与传统显微镜的区别

显微镜的原理和

显微镜的原理和使用方法

显微镜的原理和使用方法-装片的制作 显微镜的结构和使用 (2)显微镜的成像 ①光源(天然光或人工光源)→反光镜→光圈→物体→物镜(凸透镜)→在镜筒内形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大 ②显微镜放大倍数=物镜放大倍数×目镜放大倍数 (3)高倍显微镜的使用 ①用低倍显微镜观察 取镜与安放: a. 右手握镜臂,左手托镜座。

b. 显微镜放在实验台的前方稍偏左。 对光: a. 转动转换器,使低倍物镜对准通光孔。 b. 选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒内,通过目镜,可能看到自亮的视野。 低倍镜观察: a. 把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心。 b. 转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞)。

c. 左眼看目镜内,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰。 ②高倍镜观察 a. 移动装片,在低倍镜下使需要放大观察的部分移动到视野中央。 b. 转动转换器,移走低倍物镜,转换为高倍物镜。 c. 调节光圈,使视野亮度适宜。 d. 缓缓调节细准焦螺旋,使物像清晰 ③注意事项 a. 使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行。 b. 下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片。否则会压碎装片和损坏物镜(l0x物镜的工作距离为0. 5-1 cm)。 c. 有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜。因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分。

扫描探针显微镜(scanning

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介: 该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。 ●分辨率 原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能 样品尺寸:最大可达直径12mm,厚度8mm 扫描范围:125X125μm,垂向1μm ●型号: Veeco NanoScope MultiMode扫描探针显微镜 本次培训着重介绍该设备常用模式:Contact Mode AFM 二、AFM独特的优点归纳如下: (l)具有原子级的超高分辨率。理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。,从而可获得物质表面的原子晶格图像。 (2)可实时获得样品表面的实空间三维图像。既适用于具有周期性结

构的表面,又适用于非周期性表面结构的检测。 (3)可以观察到单个原子层的局部表面性质。直接检测表面缺陷、表面重构、表面吸附形态和位置。 (4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。 三、AFM的基本原理: AFM基于微探针与样品之间的原子力作用机制。以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。原子力变化的梯度约为10-13N/nm。原子力虽然很微弱,但是足以推动极为灵敏的微悬臂并使之偏转一定的角度。因此,微悬臂的偏转量与探针一样品间距成对应关系,在对样品进行XY扫描时,检测这一偏转量,即可获得样品表面的微观形貌。

激光共聚焦显微镜原理

激光共聚焦显微镜原理 激光共聚焦扫描显微技术(Confocal laser scanning microscopy)是一种高分辨率的显微成像技术。普通的荧光光学显微镜在对较厚的标本(例如细胞)进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过计算机控制的一点一点的扫描形成标本的二维或者三维图象。在此过程中,来自焦点以外的光信号不会对图像形成干扰,从而大大提高了显微图象的清晰度和细节分辨能力。 图1. 共聚焦显微镜简化原理图 图1是一般共聚焦显微镜的工作原理示意图。用于激发荧光的激光束(Laser)透过入射小孔(light source pinhole)被二向色镜(Dichroic mirror)反射,通过显微物镜(Objective lens)汇聚后入射于待观察的标本(specimen)内部焦点(focal point)处。激光照射所产生的荧光(fluorescence light)和少量反射激光一起,被物镜重新收集后送往二向色镜。其中携带图像信息的荧光由于波长比较长,直接通过二向色镜并透过出射小孔(Detection pinhole)到达光电探测器(Detector)(通常是光电倍增管(PMT)或是雪崩光电二极管(APD)),变成电信号后送入计算机。而由于二向色镜的分光作用,残余的激光则被二向色镜反射,不会被探测到。

图2. 探测针孔的作用示意图 图2解释了出射小孔所起到的作用:只有焦平面上的点所发出的光才能透过出射小孔;焦平面以外的点所发出的光线在出射小孔平面是离焦的,绝大部分无法通过中心的小孔。因此,焦平面上的观察目标点呈现亮色,而非观察点则作为背景呈现黑色,反差增加,图像清晰。在成像过程中,出射小孔的位置始终与显微物镜的焦点(focal point)是一一对应的关系(共轭conjugate),因而被称为共聚焦(con-focal)显微技术。共聚焦显微技术是由美国科学家马文?闵斯基(Marvin Minsky)发明的;他于1957年就为该技术申请了专利。但是直到八十年代后期,由于激光研究的长足进步,才使得激光共聚焦扫描显微技术(CLSM)成为了一种成熟的技术。 图3. 激光共聚焦显微镜原理框图 当今的激光共聚焦显微镜已经发展为一种结合了激光技术,显微光学,自动控制和图像处理等多种尖端科研成果的高技术工具。是现代微观研究领域不可缺少的利器之一。Nikon秉承“信赖与创造”的一贯企业理念,正在为业界提供世界领先水平的共聚焦显微镜系统产品。

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

扫描探针显微镜原理及其应用-精工

扫描探针显微镜原理及其应用

扫描探针显微镜的历史 General term of a type microscope, which performs surface form observation in minute domain by detecting the physics properties between probe and sample . STM (1981 invention 1987 utilization) AFM (1986 invention 1990 utilization) DFM (Dynamic Force Mode )FFM (Friction Force Microscope)MFM (Magnetic Force Microscope)VE-AFM (Viscoelasticity AFM)KFM (Surface potential)SNOM Probe Sample surface physical interaction

10 mm 10μm 10 nm 10 nm 10 mm X,Y resolution/m 10μm Z r e s o l u t i o n /m SEM Optical Microscope 10 pm SPM TEM 扫描探针显微镜与其他显微镜在分辨能力上的比较 0.2nm 800μm 15μm Reference :NIKKEI MICRDEVICES 86.11

High Resolution in 3D image Atomic Image (HOPG)STM(~2nm□) Magnet-Optical Disk MFM(10μm□) Lung cancer cell among culture solution DFM(100μm□) AFM Lithography by oxidization with elec. field Vector Scan(1μm□) ~ In Air ,High Vacuum ,Liquid ,Heat ,Cool ,Magnetic Field 扫描探针显微镜的优势 Observation?Analysis ?Processing Topography & Physical property Measurement in various environment Before After

显微镜的原理和使用方法

显微镜的原理和使用方法 Prepared on 22 November 2020

显微镜的原理和使用方法-装片的制作 显微镜的结构和使用 (2)显微镜的成像 ①光源(天然光或人工光源)→反光镜→光圈→物体→物镜(凸透镜)→在镜筒内形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大 ②显微镜放大倍数=物镜放大倍数×目镜放大倍数 (3)高倍显微镜的使用 ①用低倍显微镜观察 取镜与安放: a.右手握镜臂,左手托镜座。 b.显微镜放在实验台的前方稍偏左。 对光: a.转动转换器,使低倍物镜对准通光孔。 b.选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒内,通过目镜,可能看到自亮的视野。 低倍镜观察: a.把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心。 b.转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞)。 c.左眼看目镜内,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰。 ②高倍镜观察 a.移动装片,在低倍镜下使需要放大观察的部分移动到视野中央。 b.转动转换器,移走低倍物镜,转换为高倍物镜。 c.调节光圈,使视野亮度适宜。 d.缓缓调节细准焦螺旋,使物像清晰 ③注意事项 a.使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行。 b.下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片。否则会压碎装片和损坏物镜(l0x物镜的工作距离为-1 cm)。 c.有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜。因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分。 d.换高倍物镜时,千万不可将镜筒升高,正确的做法是直接转动转换器,换上高倍物镜即可。

激光共聚焦显微镜与普通显微镜成像原理及区别

激光扫描共聚焦显微镜采用激光作为光源, 有效地除去了非聚焦平面的信息, 提高了微观形貌的清晰度和分辨率。其与计算机软件结合可以实现深度方向的光学切片观察, 再将这些扫描得到的信息通过软件算法以及叠加和重组, 可以获得材料的微观三维形貌, 因此激光共聚焦显微镜具有快速、无损、制样简单等优点。那么激光共聚焦显微镜的原理又是怎样的呢? 它采用激光点光源照射样品, 从发射器发出的光经过光路后在聚焦平面上形成一个大小分明的光点,它沿着原照射光路到达分光镜并且该点发出的光被物镜收集,分光镜将收集来的光直接反馈给探测器。光点通过前方探测器设有的探测针孔等一系列的透镜, 最终同时聚焦于探测针孔, 这样来自聚焦平面的光可以会聚在探测孔之内, 而来自聚焦平面上方或下方的散射光都被挡在探测孔之外而不能成像, 从而提高了焦平面的分辨率。激光共聚焦显微镜逐点扫描样品, 探测针孔后的光电倍增管也逐点获得对应光点的共聚焦图像, 转为数字信号传输到计算机上, 最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。转为数字信号传输到计算机上, 最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。此外激光共聚焦显微镜还可以对样品进行逐层光学切片扫描, 得到高度方向每一层的图像信息, 传回计算机软件叠加处理后可以得到三维形貌图。它成像清晰、精确、最大的优点在于能对材料进行深层形貌的观察。可以对样品进行断层扫描观察和成像, 进行无损观察和三维形貌分析。 激光共聚焦显微镜可用来观察样品表面亚微米级别的三维轮廓形貌, 也可以测量多种微几何尺寸, 像晶粒度、体积、膜深、膜厚、深度、长宽、线粗糙度、面粗糙度等。激光共

聚焦相比于其他测量手段有其独特的优势, 它提高了图片的清晰度, 有很好的景深, 提高了分辨率, 可以进行无接触的三维轮廓测试。在金属材料研发方面还经常用到光学显微镜和扫描电子显微镜。光学显微镜是一种二维的形态学工具, 有效分辨率较低, 分辨率的景深较小, 也不能观察纵向方向的三维形态。而扫描电镜在样品的制备方面比较复杂, 有时还会引起样品的破坏, 对于扫描的面积和材料的表面高度都有所限制, 同时它也不能测量面积、体积、深度等信息。在钢铁材料的生产和开发过程中, 众多的环节需要关注表面形貌, 采用激光共聚焦显微镜技术进行相应检测, 不仅可以获得媲美SEM的显微图像, 同时还能够进行快速、无损测量, 加之其较低的引入和维护成本,更符合目前行业成本控制的需求。本文将举例说明激光共聚焦显微镜在金属研究领域的典型应用。 激光共聚焦显微镜由于其优于光学显微镜的清晰度和分辨率, 使其在金相组织观察方面有独特的优势。试验样品为海洋平台用钢, 将样品进行磨制、抛光处理, 并用腐蚀溶液腐蚀, 要求观察并测量基体上粒状贝氏体的形态和尺寸。相比于普通光学显微镜, 激光共聚焦显微镜清晰度好, 分辨率高。激光作为光源, 它的单色性非常好, 光束的波长相同, 从根本上消除了色差。共聚焦显微镜中在物镜的焦平面上放置了一个带有针孔的挡板, 将焦平面以外的杂散光挡住, 从而消除了球差。同时激光共聚焦显微镜采取的点扫描技术和计算机采集和处理信号也进一步提高了图像的清晰度。

扫描电子显微镜的结构原理

实验一扫描电子显微镜的结构原理及图像衬度观察 一、实验目的 1.了解扫描电镜的基本结构和工作原理。 2.通过实际样品观察与分析,明确扫描电镜的用途。 二、基本结构与工作原理简介 扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。图5-1是扫描电镜主机构造示意图。试验时将根据实际设备具体介绍。这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。但在有些情况下需对样品进行必要的处理。 (1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 (2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 (3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。 2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

显微镜的原理和使用方法

显微镜的原理和使用方法Newly compiled on November 23, 2020

显微镜的原理和使用方法-装片的制作 显微镜的结构和使用 (2)显微镜的成像 ①光源(天然光或人工光源)→反光镜→光圈→物体→物镜(凸透镜)→在镜筒内形成物体放大的实像→目镜→把经物镜形成放大的实像进一步放大 ②显微镜放大倍数=物镜放大倍数×目镜放大倍数 (3)高倍显微镜的使用 ①用低倍显微镜观察 取镜与安放: a. 右手握镜臂,左手托镜座。 b. 显微镜放在实验台的前方稍偏左。 对光: a. 转动转换器,使低倍物镜对准通光孔。 b. 选一较大的光圈对准通光孔,左眼注视目境,转动反光镜,使光线通过通光孔反射到镜筒内,通过目镜,可能看到自亮的视野。 低倍镜观察: a. 把所要观察的玻片标本放在载物台上,用压片夹压住,标本要正对通光孔的中心。 b. 转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(此时实验者的眼睛应当看物镜镜头与标本之间,以免物镜与标本相撞)。 c. 左眼看目镜内,同时反向缓缓转动粗准焦螺旋,使镜筒上升,直到看到物像为止,再稍稍转动细准焦螺旋,使看到的物像更加清晰。 ②高倍镜观察 a. 移动装片,在低倍镜下使需要放大观察的部分移动到视野中央。 b. 转动转换器,移走低倍物镜,转换为高倍物镜。 c. 调节光圈,使视野亮度适宜。 d. 缓缓调节细准焦螺旋,使物像清晰 ③注意事项 a. 使用显微镜一定要严格按照取镜→安放→对光→压片→观察的程序进行。 b. 下降镜筒时,一定要用双眼从侧面注视物镜,使之接近装片,但又要防止镜头触及装片。否则会压碎装片和损坏物镜(l0x物镜的工作距离为0. 5-1 cm)。 c. 有必要使用高倍物镜时,必须先在低倍物镜下将目标移到视野的中心,然后换用高倍物镜。因为在低倍物镜下看到的物像放大倍数小,但看到的标本实际面积大,容易找到目标;与低倍物镜相比,高倍物镜下看到的物像人,同样的视野面积看到的标本的实际面积小,在装片不动的情况下,高倍物镜看到的只是低倍物镜视野的中心部分。 d. 换高倍物镜时,千万不可将镜筒升高,正确的做法是直接转动转换器,换上高倍物镜即可。 e. 使用高倍物镜之后,透镜与装片之间的距离很近,使用粗准焦螺旋容易压碎玻片和损坏透镜,或者由于物像一闪而过,找不到要观察的目标.因此,必须用细准焦螺旋调焦,细准焦螺旋只在调节图像清晰度时使用。 ④原理说明

相关文档
最新文档