21.3.1实际问题与一元二次方程(第一课时)同步练习含答案

合集下载

21.3实际问题与一元二次方程+同步训练2024-2025学年人教版数学九年级上册

21.3实际问题与一元二次方程+同步训练2024-2025学年人教版数学九年级上册

21.3 实际问题与一元二次方程同步训练一、选择题1.某100元的商品连续两次降价后价格下降了36%,则平均每次降价的百分数为()A.10% B.20% C.30% D.40%2.某种商品原价是100元,经两次降价后的价格是81元,设平均每次降价的百率为x,可列方程为()A.100x(1−2x)=81B.100(1+2x)=81C.100(1−x)2=81D.100(1+x)2=813.有3人患了流行性感冒,经过两轮传染后共有363人患了流行性感冒,则每轮传染中平均一个人传染的人数是()A.7B.8C.9D.104.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的分支,若主干、支干和小分支的总数是57,则每个支干长出()根小分支A.5根B.6根C.7根D.8根5.某饲料厂今年三月份生产饲料600吨,五月份生产饲料840吨,若四、五月份两个月平均每月生产增长率为x,根据题意,所列方程正确的是()A.600(1+2x)=840B.600(1+x2)=840C.600(1+x)2=840D.600(1−x)2=8406.“绿水青山就是金山银山”,某地为打造绿色产业,实行退耕还林,若计划2023年退耕还林10万公顷,以后退耕还林面积逐年递减,递减率均为10%,那么预计2025年退耕还林的面积为()A.10万公顷B.9万公顷C.8.1万公顷D.7.29万公顷7.九年级(5)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了132本图书,如果设全组共有x名同学,依题意,可列出的方程是()A.x(x+1)=132 B.x (x-1)=132C.2x(x+1)=132 D.1x(x+1)=13228.(古代数学问题)直田积八百六十四步,只云长阔共六十步,问长多阔几何.——摘自古代数学家杨辉的《田亩比类乘除捷法》译文:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,则它的长比宽多()A.6 B.12 C.24 D.36二、填空题9.某足球比赛,要求每两支球队之间都要比赛一场,若共比赛45场,则有支球队参加比赛. 10.一人患了流感,经过两轮传染后共有64人患了流感.如果不及时控制,第三轮将又有人被传染.11.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2022年初有贫困人口4万人,通过社会各界的努力,2022年初贫困人口减少至1万人.则2022年初至2024年初该地区贫困人口的年平均下降率是.12.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为64元,设平均每次降价的百分率为x,则可以列出的方程是.13.如图,在一个长为40 m,宽为26m的矩形花园中修建小道(图中阴影部分),其中AB=CD=EF= GH=xm,每段小道的两边缘平行,剩余的地方种植花草,要使种植花草的面积为864m2,那么x= m.三、解答题14.某品牌汽车第一季度的销售量为62.5万辆,第二季度的销售量下降了20%,经销商从第三季度起加强管理,改善经营,使销售量稳步上升,第四季度的销售量达到了72万辆.(1)求第二季度的销售量.(2)求第三、第四季度销售量的平均增长率.15.无锡阳山水蜜桃是中国国家地理标志产品,软香可口、汁多味甜,有“水做的骨肉”美誉.某水果批发商销售阳山水蜜桃,每箱成本是50元,经过调查发现:销售单价是60元时,平均每天的销量是80箱,当销售单价每提高5元,平均每天就少售出10箱,但销售单价不得超过90元.(1)若销售单价为65元,求每天的销售利润;(2)要使每天销售阳山水蜜桃盈利1200元,水蜜桃属于易坏食品,批发商想要尽快销售水蜜桃,那么每箱水蜜桃的售价应为多少元?16.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.17.为培养学生正确的劳动价值观和良好的劳动品质.某校为此规划出矩形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为15米)另三边用木栏围成,中间也用垂直于墙的木栏隔开分成面积相等的两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD的一边AB长为x米.(1)矩形ABCD的另一边BC长为米(用含x的代数式表示);(2)矩形ABCD的面积能否为72m2,若能,请求出AB的长;若不能,请说明理由.18.今年七八月份世界大学生运动会在成都顺利召开,中国向世界展现了热情好客的一面,也获得了许多外国友人的喜爱与赞赏, 其中我国“国宝”熊猫更是引发了一番热潮, 熊猫周边供不应求:现成都一玩偶店销售“抱竹熊猫”、“打坐熊猫”两款熊猫玩偶,其中“抱竹熊猫”成本每件100元, “打坐熊猫”成本每件120元, “打坐熊猫”售价是“抱竹熊猫”售价的43倍,大运会开幕第一天“抱竹熊猫”比“打坐熊猫”多卖3件 ,且两款玩偶当天销售额都刚好到达1800元.(1)求两款熊猫玩偶的售价分别是多少元?(2)为了更好的宣传国宝熊猫,第二天店家决定降价出售,但是市场规定降价之后的售价不能低于成本价的54,“抱竹熊猫”的售价降低了 14m%,当天“抱竹熊猫”的销量在第一天的基础上增加了54m%, “打坐熊猫”的售价打8.5折, 结果“打坐熊猫”的销量在第一天的基础上增加了56m%, 最终开幕第二天两款熊猫玩偶的总利润为1230元, 求m 的值.。

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练(含答案)

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练(含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程 同步训练一、单选题1.某商店将进货价格为20元的商品按单价36元售出时,能卖出200个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨x 元时,获得的利润为1200元,则下列关系式正确的是( ) A .()()1620051200x x +-=B .()()1620051200x x ++=C .()()1620051200x x -+=D .()()1620051200x x --= 2.某县2020年人均可支配收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ) A .()22.71 2.36x +=B .()22.361 2.7x += C .()22.71 2.36x -= D .()22.361 2.7x -= 3.在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为a 小时,经过去年下半年和今年上半年两次调整后,现在平均每周作业时长为b 小时,设每半年平均每周作业时长的下降率为x ,则可列方程为( ) A .()1a x b -=B .()21a x b -= C .()1b x a += D .()21a x b += 4.某种药品的原来价格是每盒220元,准备进行两次降价,若每次降价的百分率都为x ,且第二次降价后每盒价格为168元,则可列方程( )A .()()222012201x x -=-B .()2201168x x -=C .()22201168x -=D .()2202201x x x =-5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共相互赠送标本72件,若全组有x 名同学,则根据题意列出方程是( )A .()1722x x -=⨯B .()172x x +=C .()2172x x +=D .()172x x -= 6.某超市经销一种水果,每千克盈利10元,每天可售出500千克,经市场调查发现,在进价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该超市要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价( )元A .5元B .5元或10元C .10元或15元D .15元7.活动选在一块长40米、宽28米的矩形空地上,如图,空地被划分出6个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为128平方米,小路的宽应为多少米?设小路宽为x 米,则可列方程为( )A .()()402281286x x --=⨯B .()()40228128x x --=C .()()402821286x x --=⨯D .()()40282128x x --=8.小李去参加聚会,每两人之间都互相赠送礼物,最终参加聚会的所有人的礼物总数共20件,则参加聚会的人数为( )A .4人B .5人C .6人D .7人二、填空题9.某商品原售价为60元,4月份下降了20%,从5月份起售价开始增长,6月份售价为75元,设5,6月份每个月的平均增长率为x ,则x 的值为________.10.某商品原价100元,经过连续两次涨价,现价为225元,则这个平均价格增长率为______.11.参加足球联赛的两支球队之间都要进行两场比赛,总共比赛110场,则共有________支球队.12.如图,某单位准备在院内一块长30m 、宽20m 的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的部分种植花草.如图,要使种植花草的面积为2532m ,则小道进出口的宽度为______m .13.某工厂一月份的产值是100万元,预计三月份的产值要达到121万元,如果每月产值的增长率相同,设这个增长率为x ,那么根据题意可列方程为___________.14.某年级举行篮球比赛,每一支球队都和其他球队进行了一场比赛,已知共举行了21场比赛,那么共有________支球队参加了比赛.15.2022年世界女子冰壶锦标赛有若干支队伍参加了单循环比赛(每两支队伍之间进行一场比赛),共进行了55场,则参赛的队伍有___________支.16.已知一人得了流感,经过两轮传染后,患病总人数为121人,设平均每人传染了x 个人,则列出关于x的方程为______.三、解答题17.要建一个面积为2250m的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用围栏围成.(1)若围栏的总长为45m,墙足够长,则与墙平行的围栏长为多少m?(2)若围栏的总长为60m,墙长为15m,则与墙垂直的围栏长为多少m?18.某校九年级一班的一个数学综合实践小组去超市调查某种商品“双十一”期间的销售情况,下面是调查后小阳与其他两位同学交流的情况:小阳:据调查,该商品的进价为11元/件;小佳:该商品定价为20元时,每天可售400件;小欣:在定价为20元的基础上,每涨价1元,每天少售20件.根据他们的对话,若销售的商品每天能获利3800元时,为尽快减少库存,应该怎样定价更合理?19.新华商场销售某种彩电,每台进价为3500元,调查发现,当销售价为3900元时,平均每天能售出8台,而当销售价每降低75元,平均每天能多卖6台.(1)若每台彩电降价x元,则每天彩电的销量为多少?(请用含有x的式子表示)(2)商场要想使这种彩电的销售利润平均每天达到5000元,则每台彩电应降价多少元?a.20.现有可建筑60m围墙的材料,准备依靠原有旧墙围成如图所示的仓库,墙长为ma ,能否围成总面积为225m的仓库?若能,求AB的长为多少?(1)若50(2)能否围成总面积为2400m的仓库?请说说你的理由.参考答案:。

人教版九年级上册数学21.3实际问题与一元二次方程同步训练(word、含答案)

人教版九年级上册数学21.3实际问题与一元二次方程同步训练(word、含答案)

人教版九年级上册数学21.3实际问题与一元二次方程同步训练一、单选题1.受国际原油涨价影响,今年国内成品油价格大幅上涨.三月份加“95号”汽油的价格为9.16元/升,五月份加“95号”汽油的价格为9.55元/升,设四月份和五月份的加“95号”汽油价格的月平均增长率为x ,则可列方程( ) A .()9.16129.55x += B .()29.1619.55x+=C .()29.1619.55x +=D .()9.1619.55x +=2.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x ,根据题意得方程为( )A .50(1+x )2=175B .50+50(1+x )2=175C .50(1+x )+50(1+x )2=175D .50+50(1+x )+50(1+x )2=1753.如图,面积为250m 的矩形试验田一面靠墙(墙的长度不限),另外三面用22m 长的篱笆围成,平行于墙的一边开有一扇1m 宽的门(门的材料另计).设试验田垂直于墙的一边AB 的长为x (m ),则所列方程正确的是( )A .()22150x x +-=B .()22150x x --=C .()221250x x +-=D .()221250x x --=4.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x ,则根据题意可列的方程为( ) A .2500(1+x )2=9100B .2500[1+(1+x )+(1+x )2]=9100C .2500[(1+x )+(1+x )2]=9100D .9100(1+x )2=25005.如图,△ABC 中, AB =AC =24 cm , BC =16cm ,AD = BD .如果点P 在线段BC 上以 2 cm/s 的速度由B 点向C 点运动,同时,点 Q 在线段CA 上以v cm/s 的速度由C 点向A 点运动,那么当△BPD 与△CQP 全等时,v =( )A .3B .4C .2或 4D .2或36.某电影上映第一天票房收入3亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入一共为10亿元.若增长率为x ,则下列方程正确的是( ) A .()311x += B .()23110x +=C .()233110x ++=D .()()23313110x x ++++=7.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,则平均每次降价的百分率为( ) A .10%B .20%C .19%D .36%8.某商店从厂家以每件18元的价格购进一批商品.该商品可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a 元,则可卖出()32010a -件,但物价部门限定每件商品加价不能超过进货价的25%,如果商店计划要获利400元.则每件商品的售价应定为( ) A .22元B .24元C .26元D .28元9.有一块矩形铁皮,长50cm ,宽30cm ,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为2800cm .设切去的正方形的边长为cm x ,可列方程为( )A .24800x =B .250304800x ⨯-=C .()()5030800x x --=D .()()502302800x x --=二、填空题10.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x ,那么可列方程是 _____.11.疫情期间市民为了减少外出时间,许多市民选择使用手机软件在线上买菜,某买菜软件今年一月份新注册用户为300万,三月份新注册用户为432万,求二、三两个月新注册用户每月平均增长率.若设二、三两个月新注册用户每月平均增长率为x,则可列方程为________.12.电影《长津湖》于2021年9月30日在中国大陆上映,某地第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达7亿元,若把增长率记作x,则方程可以列为__.13.目前以5G等为代表的战略性新兴产业蓬勃发展,某市2020年底有5G用户2万户,计划到2022年底全市5G用户数达到13.52万户,设全市5G用户数年平均增长率为x,则x值为___________.14.若一个直角三角形两条直角边的长分别是一元二次方程2640-+=的两个实数x x根,则这个直角三角形斜边的长是_________.15.如图,在一块长22m,宽为14m的矩形空地内修建三条宽度相等的小路,其余部分种植花草.若花草的种植面积为240m2,则小路宽为______m.16.某种商品原价50元,因销售不畅,3月份降价10%后,销量大增,4、5两月份又连续涨价,5月份的售价为64.8元,则4、5月份两个月平均涨价率为______.三、解答题17.如图,学校课外生物小组的试验园地的形状是长32米、宽20米的长方形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,小道以外的区域用于种植有关植物,要使种植总面积为570平方米,则小道的宽为多少米?18.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.若商场平均每天要盈利1600元,每件衬衫应降价多少元?19.如图,Rt△ABC中,△C=90°,BC=,△ABC=30°.点P从点B出发,沿B→A→C以每秒3cm的速度向终点C运动,同时点Q从点B的速度向终点C运动,其中一点到达终点即停止.设点P的运动时间为t.(1)当t=2秒时,求△BPQ的面积;(2)PQ能否与△ABC的一条边平行,如果能,求出此时t的值;如不能,说明理由;(3)△BPQ的面积能否为△ABC面积的三分之一?如果能,请求出的值;如果不能,请说明理由.20.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算.该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校.若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?参考答案:1.C2.D3.C4.B5.D6.D7.A8.A9.D10.100(1+x)2=20011.()23001432x+=12.222(1)2(1)7x x++++=13.160%14.15.2 16.20% 17.1米18.36元19.2 (2)不能,(3)能,t=20.(1)该市这两年投入基础教育经费的年平均增长率为20% (2)2021年最多可购买电脑880台。

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练 (含答案)

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练  (含答案)
A. B. C. D.
二、填空题
9.为了让农民能种植高产、易发芽的种子,某农科ห้องสมุดไป่ตู้验基地大力开展种子实验.该实验基地两年前有150种种子,经过两年不断地努力,现在已有216种种子.若培育的种子平均每年的增长率为x,则x的值为______.
10.在元旦庆祝活动中,每个参加活动的同学都给其余参加活动的同学各送1张贺卡,共送贺卡42张,设参加活动的同学有 人,根据题意,可列方程是______
(1)若销售单价定为每件45元,求每天的销售利润;
(2)要使每天销售这种纪念品盈利1600元,同时又要让利给顾客,那么该纪念品的售价单价应定为每件多少元?
19.如图,老李想用长为 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈 ,并在边 上留一个 宽的门(建在 处,另用其他材料).
(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640 的羊圈?
A. B. C. D.
7.据省统计局发布,2022年我省有效发明专利数比2021年增长23%.假定2023年的年增长率保持不变,2021年和2023年我省有效发明专利分别为a万件和b万件,则()
A. B.
C. D.
8.如图,在一块长为 ,宽为 的矩形 空地内修建四条宽度相等,且与矩形各边垂直的道路,四条道路围成的中间部分恰好是一个正方形,且边长是道路宽的4倍,道路占地总面积为 ,设道路宽为 ,则以下方程正确的是()
11.某次聚会,每两个人握手一次,总共握手 次,那么有___________人参加聚会.
12.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程___________.

新人教版九年级数学上册 21.3 实际问题与一元二次方程(1)同步练习1(含答案)

新人教版九年级数学上册 21.3 实际问题与一元二次方程(1)同步练习1(含答案)

21.3 实际问题与一元二次方程(第1课时)用一元二次方程解决传播问题1.列一元二次方程可以解决许多实际问题,解题的一般步骤是:①审题,弄清已知量、__未知量___;②设未知数,并用含有__未知数___的代数式表示其他数量关系;③根据题目中的__等量关系___,列一元二次方程;④解方程,求出__未知数___的值;⑤检验解是否符合问题的__实际意义___;⑥写出答案.2.一个两位数,个位数字为a ,十位数字为b ,则这个两位数为__10b +a___,若交换两个数位上的数字,则得到的新两位数为__10a +b___.知识点1:倍数传播问题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是91,设每个支干长出小分支的个数为x ,则依题意可列方程为__1+x+x 2=91___.2.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?解:(1)设每轮分裂中平均每个有益菌可分裂出x 个有益菌,根据题意得60(1+x)2=24000,解得x 1=19,x 2=-21(不合题意,舍去),则每轮分裂中平均每个有益菌可分裂出19个有益菌 (2)60×(1+19)3=60×203=480000(个),则经过三轮培植后共有480000个有益菌知识点2:握手问题3.(2014·天津)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( B )A .12x(x +1)=28B .12x(x -1)=28 C .x(x +1)=28 D .x(x -1)=284.在某次聚会上,每两人都握了一次手,所有人共握手210次,设有x 人参加这次聚会,则依题意可列出方程为__x (x -1)2=210___. 5.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?解:设有x 家公司出席了这次交易会,根据题意得12x(x -1)=78,解得x 1=13,x 2=-12(不合题意,舍去),故有13家公司出席了这次交易会知识点3:数字问题6.两个连续偶数的和为14,积为48,则这两个连续偶数是__6和8___.7.已知一个两位数比它的个位上的数的平方小6,个位上的数与十位上的数的和是13,求这个两位数.解:设这个两位数的个位数字为x ,则十位数字为(13-x),由题意得10(13-x)+x +6=x2,整理得x2+9x-136=0,解得x1=8,x2=-17(不合题意,舍去),∴13-x=5,则这个两位数是588.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件,如果全组有x名同学,则根据题意列出的方程是( B)A.x(x+1)=132 B.x(x-1)=132C.x(x+1)=132×2 D.x(x-1)=132×29.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( C)A.4个B.5个C.6个D.7个10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( D)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31A.32B.126C.135D.14411.一个直角三角形的三边长恰好是三个连续整数,若设较长的直角边长为x,则根据题意列出的方程为__x2+(x-1)2=(x+1)2___.12.某剧场共有1050个座位,已知每行的座位数都相同,且每行的座位数比总行数少17,求每行的座位数.解:设每行的座位数为x个,由题意得x(x+17)=1050,解得x1=25,x2=-42(不合题意,舍去),则每行的座位数是25个13.有人利用手机发微信,获得信息的人也按他的发送人数发送该条微信,经过两轮微信的发送,共有56人手机上获得同一条微信,则每轮一个人要向几个人发送微信?解:设每轮一个人要向x个人发微信,由题意得x(x+1)=56,解得x1=7,x2=-8(不合题意,舍去),则每轮一个人要向7个人发送微信14.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x个人,则1+x+x(x+1)=64,解得x1=7,x2=-9(不合题意,舍去),即每轮传染中平均一个人传染7个人(2)64×7=448(人)15.读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,由题意得10(x -3)+x =x 2,解得x 1=5,x 2=6.当x =5时,周瑜的年龄为25岁,非而立之年,不合题意,舍去;当x =6时,周瑜的年龄为36岁,符合题意,则周瑜去世时的年龄为36岁16.(1)n 边形(n >3)其中一个顶点的对角线有__(n -3)___条;(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.解:(2)设这个凸多边形是n 边形,由题意得n (n -3)2=14,解得n 1=7,n 2=-4(舍去),则这个多边形是七边形 (3)不存在.理由:假设存在n 边形有21条对角线,由题意得n (n -3)2=21,解得n =3±1772,因为多边形的边数为正整数,但3±1772不是正整数,故不合题意,所以不存在有21条对角线的凸多边形价为60元7.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?解:设购买了x 件这种服装,根据题意得[80-2(x -10)]x =1200,解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不符合题意,舍去,∴x =20,则她购买了20件这种服装。

21.3实际问题与一元二次方程同步练习2024-2025学年人教版数学九年级上册

21.3实际问题与一元二次方程同步练习2024-2025学年人教版数学九年级上册
(2)18
23.50%
24.(1)2
(2)长为20,宽为15
25.(1)2米
(2)20%
译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为.
12.某种商品原价是 元,经两次降价后的价格是 元,设平均每次降价的百分率为 ,则 .
13.某店4月份利润为16万元,要使6月份利润达到25万元,则平均月增长率是.
14.某公司今年一月份的利润为 万元,三月份的利润下降到 万元,为量化该公司一月份至三月份利润下降的速度,请你提出一个数字问题为.
25.某初中学校要新建一块篮球场地(如图所示),要求:①篮球场地的长和宽分别为28米和16米;②在篮球场地四周修建宽度相等的安全区域;③篮球场地及安全区域的总面积为 .
(1)求安全区域的宽度.
(2)某公司希望用50万元承包这项工程,该单位认为金额太高需要降价,通过两次协商,最终以32万元达成一致.若两次降价的百分率相同,求每次降价的百分率.
参考答案:
1.C
2.B
3.C
4.A
5.C
6.A
7.
8.D
9.D
10.B
11.x(x-12)=864.
12.20%
13.25%
14.该公司一到三月份平均每月利润下降的百分率是多少?
15.15cm
16.
17.1
18.7.5.
19.
20.
21.保持这样的增长率,到 年能完成公司的五年规划,略
22.(1)
A.4 B.
C. D.
10.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2450张照片,如果全班有x名同学,根据题意,列出方程为()

人教版九年级数学上册21.3实际问题与一元二次方程(第一课时)同步测试题含答案初中

21.3实际问题与一元二次方程第一课时传播与增长率问题一、选择题1.某种药品原价为35元/盒,经过连续两次降价为25元/盒,设平均每次降价的百分率为x ,根据题意所列方程正确的是( )A. ()25361362-=-xB. ()2521362=-x C. ()251362=-x D. ()251362=-x2.某市去年的常住人口为120万人,预计明年会达到145.2万人,如果平均年增长率为x ,则x 满足的方程是( ) A.()2.14511202=+x B. ()2.145211202=+x C. ()2.145%1120=-x D. ()2.145%21120=+x3.某班同学毕业时每人都将自己的照片向其他同学各送一张表示留念,全班共送1056张照片,若全班有x 名同学,则根据题意,可列方程为( )A. ()10561=+x xB. ()210561⨯=-x xC. ()10561=-x xD. ()105612=+x x4.某经济开发区今年一月份工业产值达50亿元,第一季度总产值达175亿元,若二、三月份工业产值不断上升,问二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程为( )A. ()1751502=+xB. ()175150502=++x C. ()()1751501502=+++x x D. ()()175150150502=++++x x 二、填空题5.有一人患了流感,经过两轮传染后,共有100人患流感,若设每轮传染中平均每人传染了x 人,那么可列方程 .6.中国红十字人某分会为灾区募捐,第一天募捐30万元,而前三天共募捐168万元,设日平均增找长率为x ,则有 .7.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的平均增长率为 .三、解答题8.滨州市体育局要组织一次赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过程,并完成填空.解:设应邀请x 支球队参赛,则每对共打 场比赛,比赛总场数用代数式表示为 .根据题意,可列出方程 .整理,得 .解这个方程,得 .符合乎实际意义的解为 .答:应邀请 支球队参赛.9.青山村种的水稻2011年平均每公顷产8 000kg ,2013年平均每公顷产9 680kg ,求该村水稻每公顷产量的年平均增长率.解:设该村水稻每公顷产量的年平均增长率为x .(1)用含x 的代数式表示:①2012年种的水稻平均每公顷的产量为 ;②2013年种的水稻平均每公顷的产量为 ;(2)根据题意,列出相应方程 ;(3)解这个方程,得 ;(4)检验: ;(5)答:该村水稻每公顷产量的年平均增长率为 %.10.中国粮食产量连续9年持续增长,2011年全国粮食产量约5亿吨,2013年全国粮食产量约6亿吨,若两年的增长率相同,请问2011年至2013年全国粮食产量的平均增长率为多少? (477.530,162.310,236.25≈≈≈)11.在2016年的一次国际会议的宴会上,来自世界各灶的领导人见面时两两握手一次,共握了190次手,那么一共有多少个国家的领导人参加此次宴会?12.二手车交易市场有一辆原价为12万元的轿车,但已使用三年(第一年的折旧率为20%,以后折旧率有所变化),现知第三年这辆轿车值7.776万元,求这辆轿车第二、第三年平均每年的折旧率.参考答案1.C ;2.A ;3.A ;4.D ;5. ()()1001112=++++x x ;6. ()()168130130302=++++x x ; 7. ()1210110002=+x ; 8. 解:设应邀请x 支球队参赛,则每对共打 (x ﹣1)场比赛,比赛总场数用代数式表示为 21x (x ﹣1). 根据题意,可列出方程21x (x ﹣1)=28. 整理,得21x 2﹣21x =28, 解这个方程,得 x 1=8,x 2=﹣7.合乎实际意义的解为 x =8.答:应邀请 8支球队参赛.9.解:(1)①8000(1+x );②8000(1+x )(1+x )=8000(1+x )2;(2)8000(1+x )2=9680;(3)x 1=0.1,x 2=-2.1;(4)x 1=0.1,x 2=-2.1都是原方程的根,但x 2=-2.1不符合题意,所以只取x =0.1;(5)10.10. 设2011年至2013年全国粮食产量的平均增长率为x ,由题意,得5(1+x )2=6,解得:x 1=5305+-≈0.1094x 2=5305--(舍去) .答:2011年至2013年全国粮食产量的平均增长率为10.94%11.2012. 第一年的价格为12×(1-20%)=9.6,设这辆车后两年平均每年的折旧率为x .9.6×(1-x )2=7.776,解得x 1=0.1=10%,x 2=1.9(不合题意,舍去).∴x=10%.答:这辆车后两年平均每年的折旧率为10%参考答案1.C ;2.D ;3.C ;4.C ;5.C ;6.7,021==x x ;7.0;8. 21,321-==x x ;9.0或2; 10(1)()05034=-x x 503,021==x x(2)()02=-x x2,021==x x(3)()()122122+=+y y()()012212=+-+y y()()021212=-++y y21,2121-==y y(4)()0122=+x1221-==x x(5)()()0112112=-+x x211,21121=-=x x(6)()()0254254=+---+-x x x x 1,321==x x11. ()22-=-x x x()()022=---x x x()()012=--x x1,221==x x12.10。

人教版九年级上册数学实际问题与一元二次方程同步练习(含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程同步练习一、单选题1.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排36场比赛,则八年级班级的个数为( )A .6B .9C .7D .8 2.随着国内新冠疫情逐步得到控制,人们的口罩储备逐渐充足,市场的口罩需求量在逐渐减少,某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到64万只,则该厂七八月份的口罩产量的月平均减少率为( ) A .18% B .20% C .36% D .40% 3.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .35×20-35x -20x +2x 2=600B .35×20-35x -2×20x =600C .(35-2x )(20-x )=600D .(35-x )(20-x )=6004.把一个边长为40cm 的正方形硬纸板的四周按如图所示的方式剪掉一些长方形,将剩余部分折成一个有盖的长方体盒子,折成的一个长方体盒子的表面积为550cm 2,则此时长方体盒子的体积为( )A .750cm 3B .1536cm 3C .2000cm 3D .2304cm 3 5.在 “双减政策” 的推动下, 我校学生课后作业时长有了明显的减少. 2021 年第三季度平均每周作业时长为 630 分钟, 经过 2021 年第四季度和 2022 年第一季度两次整改后, 现䢎平均每周作业时长为 450 分钟,设每季度平均每周作业时长的季度平均下降率为 a , 则可列方程为 ( )A .()6301450-=aB .()4501630+=aC .()26301450-=aD .()24501630+=a6.如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子(纸板的厚度忽略不计)若该无盖盒子的底面积为900cm2,盒子的容积是()A.34500cm D.39000cm4000cm C.33600cm B.37.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,此肺炎具有人传人的特性,若一人携带病毒未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,设每轮传染中平均每个人传染了x人,则根据题意可列出方程()A.x(1+x)=256B.x+(1+x)2=256C.x+x(1+x)=256D.1+x+x(1+x)=2568.如图,某底板外围呈正方形,其中央是边长为x米的空白小正方形,空白小正方形的四周铺上小块正方形花岗石(即阴影部分),恰好用了144块边长为0.8米的正方形花岗石,则边长x的值是()A.3米B.3.2米C.4米D.4.2米二、填空题9.金滩商场4月份的利润是28万元,预计6月份的利润将达到40万元,设每月利润的平均增长率为x,则根据题意所列方程是__________________.10.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百九十一步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为891平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多_________步.11.新冠肺炎全球蔓延,为防控疫情,做到有“礼”有“距”,“碰肘礼”逐渐流行起来.某次会议上,每两个参加会议的人都相互一次“碰肘礼”,经统计所有人共碰肘36次,则这次会议到会人数是_____人.12.某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,问增加了_________行或_________列.13.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x步,则可列方程______.14.襄阳市要组织一次少年足球联赛,要求参赛的每两队之间都要进行两场比赛,共要比赛90场,则共有______个队参加比赛.15.某地区加大教育投入,2021年投入教育经费2000万元,以后每年逐步增长,预计2023年,教育经费投入为2420万元,则该地区教育经费投入年平均增长率为______.16.2022年春季,新一轮的新冠病毒的传染性极强,莱市某社区因1人患了新冠肺炎没有及时隔离治疗,经过两轮的传染后,共有25人患了新冠肺炎,每轮平均1人感染了_____________个人.三、解答题17.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.若平均每年的增产率相同,求平均每年的增产率.18.如图,学校课外生物小组的试验园地是长30米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为532平方米,求小道的宽.19.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和6.05万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率:(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年8月份的投递任务?20.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算.该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校.若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?参考答案:1.B2.B3.C4.A5.C6.C7.D8.C9.()2x+=2814010.611.912.3313.x(x+12)=86414.1015.10%16.417.平均每年的增产率为10%18.小道宽1米.19.(1)该快递公司投递的快递件数的月平均增长率为10%(2)不能完成今年8月份的投递任务,理由见解析20.(1)该市这两年投入基础教育经费的年平均增长率为20% (2)2021年最多可购买电脑880台。

21.3实际问题与一元二次方程同步练习2024—2025学年人教版数学九年级 上册

21.3实际问题与一元二次方程 一、选择题。

1.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条线,一共开了21条线,则这个航空公司共有飞机场( )A .4个B .5个C .6个D .7个2.2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .93.我区高效课堂建设确定以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从2020年起三年共投入3640万元,已知2020年投入1000万元,设投入经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .()2100013640x +=B .21000100010003640x x ++=C .()2100013640x +=D .()()210001100012640x x +++= 4.我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多.....x 步.,则下列符合题意的方程是( )A .(60 - x )x = 864B .606022x x -+⨯ = 864C .(60 + x )x = 864D .(30 + x )(30 - x )= 8645.某商品原价300元,经过两次连续降价后为220元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A .()22012300x +=B .()22201300x += C .()30012220x -= D .()23001220x -= 6.如图,是某月的日历表,在此日历表上可以用一个矩形圈出33⨯个位置相邻的数(如6,7,8,13,14,15,20,21,22).如果圈出的9个数中,最小数x 与最大数的积为161,那么根据题意可列方程为( )A .(8)161x x +=B .(16)161x x +=C .(8)(8)161x x -+=D .(16)161x x -=7.如图,面积为50m 2的矩形试验田一面靠墙(墙的长度不限),另外三面用22m 长的篱笆围成,平行于墙的一边开有一扇1m 宽的门(门的材料另计)(m ),则所列方程正确的是( )A .(22+1﹣x )x =50B .(22﹣1﹣x )x =50C .(22+1﹣2x )x =50D .(22﹣1﹣2x )x =50 二、填空题。

人教版九年级数学上册21.3实际问题与一元二次方程(第一课时)及答案 Word版免费下载

22.3实际问题与一元二次方程(第一课时)◆随堂检测1、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( )A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元2、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A .2002(1%)a +=148B .2002(1%)a -=148C .200(12%)a -=148D .2002(1%)a -=1483、某商场的标价比成本高p %,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d %,则d 可用p 表示为( )A .100p p +B .pC .1001000p p -D .100100p p+ 4、某农户的粮食产量,平均每年的增长率为x ,第一年的产量为m 千克,•第二年的产量为_______千克,第三年的产量为_______千克,三年总产量为_______千克.5、据报道,我国农作物秸杆的资源巨大,但合理利用量十分有限,某地区2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定该地区每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(≈1.41)◆典例分析某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.分析:列一元二次方程解一元二次方程的一般步骤(1)审题,(2)设设出未知数,(3)找等量关系列出方程,(4)用适当方法解方程,(5)检验方程的解是否符合题意,将不符合题意的解舍去,(6)答题.要注意各个环节的准确性.解:(1)∵年获利率=年利润年初投入资金×100%,∴第一年年终的总资金是(5050)p +万元,即50(1)p +万元.(2)则依题意得:50(1)(110%)66p p +++=把(1+p )看成一个整体,整理得:2(1)0.1(1) 1.320p p +++-=,解得:1 1.2p +=或1 1.1p +=-,∴120.2, 2.1p p ==-(不合题意舍去).∴p =0.2=20%.∴第一年的年获利率是20%.◆课下作业●拓展提高1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人.A .12B .10C .9D .82、县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产%x ,则第三季度化肥增产的吨数为( )A .2)1(x a +B .2%)1(x a +C .2%)1(x + D .2%)(x a a + 3、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x ,则可列出方程为________________________.4、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.5、某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额平均增长率是多少?(分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是10(1)x +,三月份的营业额应是102(1)x +.)6、上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元,那么哪个商场利润的月平均上升率较大? ●体验中考1、(2009年,太原)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是________________________. (注意:要理解增长率或降低率问题中的数量关系.)2、(2009年,广东)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?参考答案1、B .2、B.3、A . 由题意得:(1%)(1%)1p d +-≥,解得100p d p≤+.故选A. 4、第二年的产量为(1)m x +千克,第三年的产量为2(1)m x +千克,三年总产量为2(1)(1)m m x m x ⎡⎤++++⎣⎦千克.5、解:设该地区每年产出的农作物秸杆总量为a ,合理利用量的增长率是x .由题意得:30%a 2(1)x +=60%a ,即2(1)x +=2,∴1x ≈0.41,2x ≈-2.41(不合题意舍去).∴x ≈0.41.答:该地区每年秸秆合理利用量的增长率约为41%.◆课下作业●拓展提高1、C 设这个小组共有x 个人.由题意得:(1)72x x -=,解得129,8x x ==-(不合题意,舍去).故选C.2、B.3、215(1)60x +=.4、199 甲第一次将这手股票转卖给乙,获利10%为100元;乙而后又将这手股票返卖给甲时乙损失了10%,返卖的价格为1100(1-10%)=990;最后甲按990⨯0.9的价格将这手股票卖出,甲又盈了990⨯0.1=99(元).故在上述股票交易中,甲共盈了199元.5、解:设该公司二、三月份营业额平均增长率为x .则依题意得:21010(1)10(1)x x ++++=33.1把(1+x )看成一个整体,配方得: 21(1)2x ++=2.56,即23()2x +=2.56,∴x +32=±1.6,即x +32=1.6或x +32=-1.6. ∴1x =0.1=10%,2x =-3.1∵因为增长率为正数,∴取x =10%.答:该公司二、三月份营业额平均增长率为10%.6、解:设甲商场的月平均上升率为x .乙商场的月平均上升率为y .则依题意得:2100(1)121x +=解得:120.1, 2.1x x ==-(不合题意舍去).∴x =0.1=10%.设乙商场的月平均上升率为y .则依题意得:2200(1)288y +=解得:120.2, 2.2y y ==-(不合题意舍去).∴y =0.2=20%.∵0.1<0.2,∴乙商场的月平均上升率较大.答:乙商场的月平均上升率较大.●体验中考1、23200(1)2500x -=.2、解:设每轮感染中平均一台电脑会感染x 台电脑.则依题意得:(1)(1)81x x x +++=整理,得:2(1)81x +=解得:128,10x x ==-(不合题意舍去).∴x =8.3轮感染后,被感染的电脑有81818729700+⨯=>.答:每轮感染中平均一台电脑会感染8台电脑;若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与一元二次方程(第一课时)附答案◆随堂检测1、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( )A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元2、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A .2002(1%)a +=148B .2002(1%)a -=148C .200(12%)a -=148D .2002(1%)a -=148 3、某商场的标价比成本高p %,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d %,则d 可用p 表示为( ) A .100p p + B .p C .1001000p p - D .100100pp+4、某农户的粮食产量,平均每年的增长率为x ,第一年的产量为m 千克,•第二年的产量为_______千克,第三年的产量为_______千克,三年总产量为_______千克.5、据报道,我国农作物秸杆的资源巨大,但合理利用量十分有限,某地区2011年的利用率只有30%,大部分秸杆被直接焚烧了,假定该地区每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2013年的利用率提高到60%,求每年的增长率.(◆典例分析某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%)(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.分析:列一元二次方程解一元二次方程的一般步骤(1)审题,(2)设设出未知数,(3)找等量关系列出方程,(4)用适当方法解方程,(5)检验方程的解是否符合题意,将不符合题意的解舍去,(6)答题.要注意各个环节的准确性. 解:◆课下作业 ●拓展提高1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人. A .12 B .10 C .9 D .82、县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产%x ,则第三季度化肥增产的吨数为( ) A .2)1(x a + B .2%)1(x a + C .2%)1(x + D .2%)(x a a +3、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x ,则可列出方程为________________________.4、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.5、某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额平均增长率是多少?(分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是10(1)x +,三月份的营业额应是102(1)x +.)6、上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元,那么哪个商场利润的月平均上升率较大?7、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。

8. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。

●体验中考1、某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是________________________. (注意:要理解增长率或降低率问题中的数量关系.)2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?●挑战能力1、小明同学将100元压岁钱第一次按一年期储蓄存入“少儿银行”,到期后将本金和利息取出,并将其中50元捐给“希望工程”,剩余的全部按一年定期存入,这时存款的年利率调到第一次存款时年利率的一半,这样到期后,可得本金和利息共63元,求第一次存款时的年利率。

2、一个容器中盛满的纯药液,倒出纯药液后,用水加满,再倒出等量的液体,再用水加满,此时容器中的药液与水之比为,问每次倒出液体多少升?3、某同学根据2014年安徽省内五个城市商品房销售均价(即销售平均价)的数据,绘制了如下统计图:(1)这五个城市2014年商品房销售均价的中位数、极差分别是多少?(2)若2012年A 城市的商品房销售均价为1600元/平方米,试估计A 城市从2012年到 2014年商品房销售均价的年平均增长率约是多少(要求误差小于1%)?4、某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的二分之一.求新品种花生亩产量的增长率?5、机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?参考答案◆随堂检测1、B.2、B.3、A.由题意得:(1%)(1%)1p d+-≥,解得100pdp≤+.故选A.4、第二年的产量为(1)m x+千克,第三年的产量为2(1)m x+千克,三年总产量为2(1)(1)m m x m x⎡⎤++++⎣⎦千克.5、解:设该地区每年产出的农作物秸杆总量为a,合理利用量的增长率是x.由题意得:30%a2(1)x+=60%a,即2(1)x+=2,∴1x≈0.41,2x≈-2.41(不合题意舍去).∴x≈0.41.答:该地区每年秸秆合理利用量的增长率约为41%.◆课下作业●拓展提高1、C设这个小组共有x个人.由题意得:(1)72x x-=,解得129,8x x==-(不合题意,舍去).故选C.2、B.3、215(1)60x+=.4、199 甲第一次将这手股票转卖给乙,获利10%为100元;乙而后又将这手股票返卖给甲时乙损失了10%,返卖的价格为1100(1-10%)=990;最后甲按990⨯0.9的价格将这手股票卖出,甲又盈了990⨯0.1=99(元).故在上述股票交易中,甲共盈了199元.5、解:设该公司二、三月份营业额平均增长率为x.则依题意得:21010(1)10(1)x x++++=33.1把(1+x)看成一个整体,配方得:21(1)2x++=2.56,即23()2x+=2.56,∴x+32=±1.6,即x+32=1.6或x+32=-1.6.∴1x=0.1=10%,2x=-3.1∵因为增长率为正数,∴取x=10%.答:该公司二、三月份营业额平均增长率为10%.6、解:设甲商场的月平均上升率为x.乙商场的月平均上升率为y.则依题意得:2100(1)121x +=解得:120.1, 2.1x x ==-(不合题意舍去). ∴x =0.1=10%.设乙商场的月平均上升率为y . 则依题意得:2200(1)288y +=解得:120.2, 2.2y y ==-(不合题意舍去). ∴y =0.2=20%.∵0.1<0.2,∴乙商场的月平均上升率较大. 答:乙商场的月平均上升率较大. ●体验中考1、23200(1)2500x -=.2、解:设每轮感染中平均一台电脑会感染x 台电脑. 则依题意得:(1)(1)81x x x +++= 整理,得:2(1)81x +=解得:128,10x x ==-(不合题意舍去). ∴x =8.3轮感染后,被感染的电脑有81818729700+⨯=>.答:每轮感染中平均一台电脑会感染8台电脑;若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.解:设第一次存款时间利率为。

解之:,(舍去)答:第一次存款的年利率为10%。

解:设每次倒出液体∴(舍去)答:每次倒出液体为6升。

解:(1)中位数是2534(元/平方米);极差是351520561459(元/平方米).(2)设A 城市2007年到2009年的年平均增长率为,由题意,得:,.∵,∴,当时,1.3225<1.324375,当时,1.3456>1.324375,可知 1.15<<1.16,∴0.15<<0.16.答:平均增长率约为15%(或16%等,答案不惟一).。

相关文档
最新文档