线性代数第二版答案(共10篇)
线性代数高等教育出版社第二版卢刚主编课后习题答案

础解系1 (1,1,1)T 。
对应于 1 = 2 3 1 的线性无关的特征向量只有一个,
A 不能对角化。
5、 已知三阶矩阵 A 的特征值为 -1,1,2,矩阵 B A 3A2 。试求 B 的特征
值和 det B 。
解: B A 3A2 , 2E B =( E A )( 2E 3A ),
第四章 矩阵的特征值和特征向量
习题四
(B)
1、判断下述结论是否正确
(1)实数域上的 n 阶矩阵 A 一定有 n 个特征向量; 解 : 错 。n 阶矩阵 A 的特征多项式在实数域上不一定有 n 个根。 (2) A 与 AT 有相同的特征值和特征向量;
解 : 错。 若 A 与 AT 有相同的特征值和特征向量,设 是 A 的属于 0 的特征向量
n (1,1,1,,1)T 。
(2)A 可以对角化。 令 P=(1 2 ,, n ) 即
1 1 1 1 1 1 0 0 0 1
P=
0
0
10 0
0 1 时, 则 P 1 AP 为对角矩阵。
0
1
00
0 1
1 (1,0,1)T ,
对于 3 1 ,解齐次线性方程组( E A )X=0,可得方程组的一个基础解系
2 (3,1,0)T , v1 , v2的特征子空间的基为1 (1,0,1)T , v3的特征子空间的基为 2 ( 3,1,0)T .
1 1 0 3、 设 A = 2 x 0 ,求 A 的特征值为 1,2,3。试求 x 的值。
det B =(-2) (4) (10) 80 。
6、 试证:
1) 果 A 为奇数阶正交矩阵,且 det A =1,则 1 是 A 的一个特征值。
线性代数 第二版 王希云 习题解答

= D ,同理可证
(1)
34215 35215
1998 1999
2000
;(2) 2001 2002 2003 28092 29092 2004 2005 2006 y x+ y x x+ y x y
x 1 2 3 (3) 0 1 2 ;(4) y x+ y 1 1 1
a1 − b1 a1 − b2 a1 − bn a − b a − b a2 − bn (5) 2 1 2 2 an − b1 an − b2 an − bn
a14 a15 a24 a25 0 0 . 0 0 0 0
a
a13 a23 0 0 0
解:(1)原式 = 1 × 1 − log b
× loga b = 0
原 式
=(1× 3 × 5 × 4 ) × ( −1)
(3)
N ( 2341)
=60 × ( −1)( 0 + 0 + 0 + 3) =−60
原 式
( 0 + 0 + 0 +0 + n −1)
= ( −1)
n!
(5)原式 = 0 (不同行式不同列相乘, 每次均会出现 0, 故其和为 0) 6. 问
a11 0 0 a41
0 a a33a44 − a14 a23a32 a41 = a33 0 0 a44
解:由定义知,原式=0
x+ y −y = −2 ( x 3 + y 3 ) y−x
a1 − b1 a1 − b2 a1 − bn a2 − b1 a2 − b2 a2 − bn = 0 an − b1 an − b2 an − bn
线性代数习题解答 [理工类] 第二版(主编:肖马成)
![线性代数习题解答 [理工类] 第二版(主编:肖马成)](https://img.taocdn.com/s3/m/5f3f84360912a21614792961.png)
习题一A 组1.计算下列二阶行列式 (1)521-12= (2)012896= (3)2222ba abbab a -= (4)11112322--=++-x x x x xx2.计算下列三阶行列式(1)132213321=1+8+27-6-6-6=18 (2)5598413111= (3)714053101-=- (4)00000=dc b a 3. 当k 取何值时,10143kk k-=0. 解:10143kk k-0)3(0)(02-----++=k k , 得 0342=+-k k , 所以 1=k 或 3=k 。
4.求下列排列的逆序数.解:(1) 512110)51324(=++++=τ.(2) 8142010)426315(=+++++=τ. (3) 21123456)7654321(=+++++=τ.(4) 1340423000)36715284(=+++++++=τ.5.下列各元素乘积是否是五阶行列式 ij a 中一项?如果是,该项应取什么符号? 解:(2) 不是. 因为 5145332211a a a a a 中有俩个元素在第一列. (3) 是. 对应项为534531*********)1(a a a a a )(τ-1021)24153(+++=τ 所以该项应取负号。
6.选择i , j 使j i a a a a a 54234213成为五阶行列式 ij a 中带有负号的项解: 当 )5,1(),(=j i 时, 30102)31425(=+++=τ, 是奇排列.当 )1,5(),(=j i 时, 81232)35421(=+++=τ, 是偶排列. 所以 i = 1, j = 5.8.利用行列式性质计算下列行列式.解: (1) 111212321-2343032123121----+-+-r r r r 6243032132-=--+-r r (2) 6217213424435431014327427246-621721100044354320003274271000123c c c ++621721144354323274271103=. 62110014431002327100110323c c +-621114431232711105=31212r r r r +-+-2942111032711105--=294105⨯ (3)1111111111111111---820000200002011114,3,21-=---=+-i r r i(4)1502321353140422-----1523213531402112-----=11203840553002112234413121-----+++r r r r r r11205100046100211223424-----+-+-r r r r 7130051000461002112242------+-r r 7130120046100211)5(2-----=27120046100211)5(2743----+r r 272100641020111043---↔c c 270-=.(5)yy x x -+-+1111111111111111yyy x x x c c c c --+-+-11011010110123412yy x x r r r r --+-+-011000010124321yy x x--=00011000101012232001000010101y x yy xxr r =--+(6)dc b a c b a ba ad c b a c b a b a a dc b a c b a ba a dc b a++++++++++++++++++3610363234232cb a b a ac b a b a a c b a b a ad c b ai r r i 36103630234232004,3,21+++++++++=+-ba ab a ac b a b a ad c b ar r r r 37302000324232++++++-+-443020003a ab a ac b a b a ad c b ar r =+++++-9.用行列式性质证明:(1) 333332222211111c c b kb a c c b kb a c c b kb a ++++++=333222111c b a c b a c b a 证明: 333332222211111c c b kb a c c b kb a c c b kb a ++++++33332222111123c b kb a c b kb a c b kb a c c ++++-33322211112c b a c b a c b a c kc +-. (2) efcf bf de cd bdaeac ab---=abcdef 4证明: ef cfbf de cd bdae ac ab---d cbe c b e c b abf---的公因子提取各行111111111---abfbce 的公因子提取各列 022001113121-++a b c d e f r r r r 202011123--↔a b c d e f r r a b c d e f 4=.(3)y y x x ++++1111111111111111y x xyy x 222222++=证明:y y x x++++1111111111111111=y y x x+++++++1110111101111011111y y x +++=1111111111111111 yy x x++++111011*********y y x 0000000001111=yy x x +++++++110101101011101101y y x x y y xxy +++++++=1010011001010101000000011101112yy x x yx x xyxy+++++=101001001001100110011011022yy x x y x xxy+++=10100100100000110011011022=+++=)1(2222y y x y x xy222222y x y x xy++.10.解下列方程:(1)0913251323222321122=--xx解: 由 2243212240005132320321129132513232223211xx r r r r x x ----+-+---223140131********2xx r r ------+-222212401310332003211xx x r r x -------+22223403320013103211xx xr r ------↔)4)(32(22x x ---=得 0)4)(32(22=---x x 所以 2=x 或 2-=x .(2)0011101101110=x x x x解: 由=++++=+01110110122224,3,20111011011101xx x x x x x i r r xx x x i 0111011011111)2(xx x x +11111010101111)2(413121-------++-+-+-x x x x x x r r r xr r r x x x x x x x r r -------++10011010101111)2(43xxx x x x x xxx x x x x x r r x ------+=----+----++-10)1(0010101111)2(10)1)(1(10010101111)2()1(32xxx x x x ----⨯-+=1)1(111)2(=})1(){1)(2(22x x x x -+-+2)2)(2(x x x -+-=得 0)2)(2(2=-+x x x , 所以 021==x x ,23=x , 24-=x . 15. 用克莱姆法则解下列线性方程组:(1)⎩⎨⎧=+=+2731322121x x x x解:由系数行列式57332==D 172311==D 123122==D5111==DD x , 5122==DD x .(3) ⎪⎩⎪⎨⎧=+-=+-=+-445222725 1243321321321x x x x x x x x x解: 由系数行列式 63871702112452181211245272524331212313=--+-+----+-+----=r r r r r r r r D=--+-+---=411437862200124454722224131211c c c c D 63 126002312545322442722521331212=---+-+-=r r r r D 18910717703112452148131124522225143312123133=--+-+---+-+----=r r r r r r r r D 得 111==DD x , 222==DD x ,333==DD x .16.判断下列齐次方程组是否有非零解: (1) ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=++--=+-+0320508307934321432143214321x x x x x x x x x x x x x x x x解:由系数行列式3211151118137931------=D 4728144022198079313413121------+-+-+r r r r r r 0472814422198=-----= (第一、二行对应元素成比例) 此齐次方程组有非零解. (2). ⎪⎪⎩⎪⎪⎨⎧=-++=+++=-++=+-0302430332022432143214321421x x x x x x x x x x x x x x x解:由系数行列式315111104)1(231511122)1(31501131321022113121433132102212234232---+----=----+-+----=+r r r r r r D 0131114≠=---=此齐次方程组只有唯一的非零解.17. 若齐次线性方程组 ⎩⎨⎧=-+=+-0)2(504)3(y x y x λλ 有非零解.则λ取何值?解:由系数行列式 )2)(7(14520)2)(3(25432+-=--=---=--=λλλλλλλλD其齐次线性方程组有非零解,则 7=λ 或 2-=λ.习题二A 组1.计算下列矩阵的乘积. (1) ⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131. 解: ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛⨯+⨯⨯+-⨯⨯-+⨯⨯-+-⨯⨯+⨯⨯+-⨯=12111577251253)2(22)1(113)1()2(1231133)2(1. (2)()0111132=⎪⎪⎪⎭⎫⎝⎛---(3) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214. 解: ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=10316665350021161167923. (4)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x 解:()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x =233322222111x a x a x a +++212112)(x x a a ++313113)(x x a a ++323223)(x x a a + 2. 计算下列各矩阵:(1) 52423⎪⎪⎭⎫⎝⎛--. 解: 52423⎪⎪⎭⎫ ⎝⎛--22423⎪⎪⎭⎫⎝⎛--=22423⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛--=4421⎪⎪⎭⎫ ⎝⎛--4421⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛--=81267⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛-=8423. (2)2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 解: 2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡433349447(3) n⎪⎪⎭⎫ ⎝⎛1011. 解: n⎪⎪⎭⎫⎝⎛1011n⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=00101001 =nn n nn n n ⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛--0010001010012)1(001010011001221+⎪⎪⎭⎫ ⎝⎛=1001⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101000n n , 其中 20010⎪⎪⎭⎫ ⎝⎛ =⎪⎪⎭⎫ ⎝⎛=30010⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=00000010n. (4) n⎪⎪⎪⎭⎫⎝⎛λλλ001001解: n⎪⎪⎪⎭⎫⎝⎛λλλ001001=n⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛0001000100000λλλn⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=0010001010010001λ ⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=---- 222110001000101000100012)1(000100010100010001100010001n n n n nnn n n λλλ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=-00002)1(000000000000002n nnn nnn n n n λλλλλλ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-nn nn nn n n n n λλλλλλ0002)1(1其中 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛0000001000001000102, ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛0000000000001000100001000103n. 5. 证明:对任意n m ⨯矩阵A ,A A T 与T AA 都是对称方阵;而当A 为n 阶对称方阵时,则对任意n 阶方阵C ,AC C T为对称方阵.证明: (1)A A T 为n 阶方阵, 又A A A A T T T =)( A A T ∴为n 阶对称方阵同理T AA 为m 阶对称方阵(2)AC C T 为n 阶方阵, A 为n 阶对称方阵 A A T =∴ 又 AC C AC C T T T =)(AC C T ∴为n 阶对称方阵6.设C B A ,,均为n 阶方阵.证明:如果CA A C AB E B +=+=, 则.E C B =-解: 由已知 E B A E E AB B =-=-)(, 则 B A E =--1)(.且 A CA C =-即 A A E C =-)(, 则 AB A E A C =-=-1)(. 得 E AB B C B =-=-.8.(3)⎪⎪⎪⎭⎫⎝⎛--=122341213A 解:25=A 1011=A 521=A 531-=A712-=A 122-=A 1132=A 613-=A 823-=A 1333=A⎪⎪⎪⎭⎫⎝⎛-----=-1386111755102511A9. 解下列矩阵方程: (1) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛23123512X 解: 由 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-251335121, 得 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-1161923122513231235121X . (3) ⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛02110234101100001100001010X 解: 由 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛=--0110000102110234110000101001010000102110234110000101011X ⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛---=20143101201100001021341102, 即 ⎪⎪⎪⎭⎫⎝⎛---=201431012X . 11. 设 B A AB A -=⎪⎪⎪⎭⎫⎝⎛--=2,011002100, 求.B 解: 由已知 ,2)(,2A B E A A B AB =+=+因 01622)(3≠-===+=+A A B E A B E A1)(-+E A 存在, 则 A E A B 2)(1⋅+=-由 ()⎪⎪⎪⎭⎫⎝⎛----−→−++-⎪⎪⎪⎭⎫⎝⎛----=+22240420001021010120220042001110121012,3121r r r r A E A ⎪⎪⎪⎭⎫⎝⎛----−−→−++-⎪⎪⎪⎭⎫⎝⎛-----−→−+--31322211310010001216264042002210101321231332rr r r r r r所以 ⎪⎪⎪⎭⎫ ⎝⎛----=⋅+=-31322211132)(1A E AB . 12.设B A ,均为n 阶方阵,E 为n 阶单位阵,证明: (1) 若,AB B A =+ 则E A -可逆;(2) 若O E A A =+-432 则E A -可逆,并求-1)(E A -.解: (1)由已知 E E B A AB =+--, 即E E B E A E E B E B A =--=---))((,)()(,所以 E A -可逆,且E B E A -=--1)(.(2)由已知 E E A E A A E E A AE AA 2)(2)(,222-=----=+--,,2))(2(E E A E A -=-- 所以 E A -可逆,且A E E A E A 21)2(211--=--=-)(.14.设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=110210000230012A , 求 4,A A 及1-A. 解: 33111212312=⨯=---=A ,由⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛7-48-7-11-2197168-56-9723-1-244,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=740870000971680056974A . 由⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛112-13111-21231223-1-2-1-1,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=31310032-3100002300121-A . 15. 用初等变换把下列矩阵化为标准形: (1) ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A解: ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A ⎪⎪⎪⎭⎫⎝⎛-+-+⎪⎪⎪⎭⎫-- ⎝⎛+-+-10010001)1(1001101012-1-05-5021-133********r r r r r r r r r 16.求下列各矩阵的秩: (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=61331311405133312A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----↔3312311405136133141r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-152970275313018348061331243413121r r r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-152970275313035106133124r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------+-+-6601212003510613317134232r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→121206600351061331⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→0006600351061331 所以3)(=A R 17.设⎪⎪⎪⎭⎫⎝⎛=110101011A ,⎪⎪⎪⎭⎫⎝⎛=a a a B 111211,且矩阵AB 的秩为2,求a 解:因为2)(=AB R ,所以B A AB ==0 又因为0≠A , 所以0=B 即01=+-a 1=⇒a习题三A 组2. 设1233()2()5()αααααα-++=+,其中TTT123(2513)(101510)(4111),,,,,,,,,,,ααα===-, 求向量α.解:由已知 123325325αααααα-+-=--+, 即12312311325)325)66ααααααα=---+=+-((,所以 ().4,3,2,143215209510352152020661T=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+++-+-+=α3. 设向量组123,,ααα线性无关,而向量组 1121233132.,βααβαααβαα=+=-+=-,,试判断向量组123,,βββ的线性相关性.解:设数 321,,k k k 使得 1122330k k k βββ++= 成立,即 1122123313()()(2)0k kk ααααααα++-++-=, 1231122233()()(2)0.k k k k k k k ααα+++-+-=得线性方程组⎪⎩⎪⎨⎧=-=-=++02003221321k k k k k k k ,其系数行列式0.12-10011111≠= 线性方程组只有唯一解0321===k k k ,则向量组123,,βββ的线性无关.5.已知向量组 TTT123(123)(312)(23),,,,,,,,c ααα==-=问c 取何值时向量组123,,ααα线性无关或向量组123,,ααα线性相关.解:设数 321,,k k k 使得1122330k k k ααα++=成立,得线性方程组 ⎪⎩⎪⎨⎧=++=+-=++023032023321321321ck k k k k k k k k , 其系数行列式)5(732213321T--=-c c.所以 ⇔=-05c 线性方程组有非零解 ⇔向量组123,,ααα线性相关; ⇔≠-05c 线性方程组只有零解 ⇔向量组123,,ααα线性无关.6.设向量组123,,ααα线性无关,证明向量组122331,,αααααα+++也线性无关. 解:设数 321,,k k k 使得112223331()()0k k k αααααα+++++=()成立, 得线性方程组⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 其系数行列式02110011101T≠=线性方程组只有唯一解0321===k k k ,所以向量组122331,,αααααα+++线性无关.7. 设向量组123,,ααα线性无关,判断向量组12233441,,,αααααααα++++线性相关性 并证明之.解:设数 4321,,,k k k k 使得 112223334441()()()0k k k k αααααααα+++++++=() 成立 得线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+0043322141k k k k k k k k 其系数行列式0110011000111001=则线性方程组有非零解,所以向量组12233441,,,αααααααα++++线性相关 .9.若向量组m ααα ,,21线性无关,而向量β不能由m ααα ,,21线性表示,证明向量组βααα,,,m 21线性无关.证明: 反证法.设βααα,,,m 21线性相关,由定理3.1向量β可由m ααα ,,21线性表示,这与已知条件矛盾.假设不成立.所以向量组βααα,,,m 21线性无关. 10.判断题(结论对的请在括号内打“√” ,错的打“×”)(1) 若当数021====m k k k 时,有02211=+++m m k k k ααα 则向量组m ααα ,,21线性无关. ( × ).(2) 若有m 个不全为零的数m k k k ,,,21 , 使得02211≠+++m m k k k ααα 则向量组m ααα ,,21线性无关 ( × ).(3) 若向量组m ααα ,,21线性相关,则1α可由其余向量线性表示. ( × ).(4) 设向量组r I ααα,,,)(21 ;m r r II ααααα,,,,,,)(121 +.若向量组r I ααα,,,)(21 线性无关,则向量组m r r II ααααα,,,,,,)(121 +也线性无关. ( × ). (5) 若向量组βααα,,,21m ,线性无关,则向量β不能由m ααα,,,21 线性表示. ( √ ). (6) 若向量组m ααα,,,21线性无关且向量1+m α不能由m ααα,,,21 线性表示,证明向量组121,,,,+m m αααα 线性无关. ( √ ).(7) 若向量β不能由m ααα,,,21 线性表示,则向量组βααα,,,21m ,线性无关. ( × ).提示: 利用向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000,0020,0010,03024321αααα 讨论(1)—(4),(7),利用定理3.1和3.2讨论(5),(6).12.求下列向量组的秩,并求它的一个极大无关组.(1) T T T )3,3,1(,)2,2,0(,)0,1,1(321===ααα. 解: 取矩阵 ⎪⎪⎪⎭⎫⎝⎛==320321101),,(321αααA ⎪⎪⎪⎭⎫⎝⎛+-⎪⎪⎪⎭⎫ ⎝⎛+-1002201013202201013221r r r r 所以向量组的秩为3,极大无关组是321,,ααα.(2) T T T T )0,2,1,1(,)14,7,0,3(,)2,1,3,0(,)4,2,1,1(4321-===-=αααα. 解: 取矩阵),,,(4321αααα=A⎪⎪⎪⎪⎪⎭⎫⎝⎛-↔⎪⎪⎪⎪⎪⎭⎫-⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0004000011013014000000011013014220011003301301420142427121031130143413121r r r r r r r r 所以向量组的秩为3,极大无关组是421,,ααα.(3) TT T T )1,2,3,4(,)1,1,0,1(,)1,4,5,2(,)1,3,2,1(4321=--==-=αααα解: 取矩阵=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1111214330524121)),,,(4321αααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛---+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛-----++-+-00020800521041212080208005210412132523104205210412132433232413121r r r r r r r r r r r r 所以向量组的秩为3,极大无关组是321,,ααα. 14.求解线性方程组.(1) .343326133053321321321321⎪⎪⎩⎪⎪⎨⎧=+-=+--=-+=-+x x x x x x x x x x x x解: 由增广阵⎪⎪⎪⎪⎪⎭⎫⎝⎛↔⎪⎪⎪⎪⎪⎭⎫ ⎝-+-⎪⎪⎭⎝⎛------+-++⎪⎪⎪⎪⎪⎭⎫⎝⎛------+-+-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------+-↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=000110020101001201011000000100161351066006600320137835101529701834806133123351033120513613312311433126133105134232314342431214321r r r r r r r r r r r r r r r r r r r A所以 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛121321x x x .(2) ⎪⎩⎪⎨⎧-=-+=-+=++12321323321321321x x x x x x x x x解:由增广阵 ⎪⎪⎪⎭⎫⎝⎛---+-⎪⎪⎪⎭⎫⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛--=3000241031115410241031111212321321311132321r r r r r r A 得 3)(2)(=<=A r A r , 所以此方程组无解.(3) ⎪⎪⎩⎪⎪⎨⎧=+++=++-=++-=--+323153423221234321432143214321x x x x x x x x x x x x x x x x解:由增广阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=000000000017410117501730747007470074701213132311231534123212121313212413121r r r r r r r r r r A得同解方程组 ⎪⎪⎩⎪⎪⎨⎧==+=--=443343243174751x x x x x x x x x x ;取 ,,72413k x k x == 得通解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛101107450001214321k k x x x x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x解:由增广阵 ⎪⎪⎪⎭⎫⎝⎛------+-+-⎪⎪⎪⎭⎫ ⎝⎛-----↔⎪⎪⎪⎭⎫ ⎝⎛-----=59571018101402534123111124312325341253414312311112312131r r r r r r A⎪⎪⎪⎪⎭⎫⎝⎛----007579751076717101得同解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧==-+-=++=4433432431797575717176x x xx x x x xx x取 ,7,72413k x k x == 得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛70910751007576214321k k x x x x . 15.求下列齐次线性方程组的基础解系及全部解. (1)⎪⎩⎪⎨⎧=--+=+--=--+02302022432143214321x x x x x x x x x x x x解:由系数阵⎪⎪⎪⎪⎭⎫⎛---+⎪⎫ ⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛------=001511005301525155150212132121311122121123121r r r r r r A 得同解方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==4433432315153x x xx x x x x x , 取 ,,52413k x k x ==得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10100013214321k k x x x x , 基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1010001321ηη,.(2) ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解:由系数阵 ⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛----=0000100102104040011215351105316311213121r r r r A 得同解方程组⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 取 ,,2412k x k x ==得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10100012214321k k x x x x ,基础解系⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1010001221ηη,. (4) ⎪⎩⎪⎨⎧=---=++++=++++02202243022253215432154321x x x x x x x x x x x x x x解:由系数阵 ⎪⎪⎪⎭⎫⎝⎛--------+-+-⎪⎪⎪⎭⎫ ⎝⎛---↔⎪⎪⎪⎭⎫ ⎝⎛---=326532650224312102211221222431102212243112212312121r r r r r r A⎪⎪⎪⎪⎭⎫⎝⎛+000053525610515452015312r r 得同解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧===---=---=55443354325431535256515452x x x x x x x x x x x x x x , 取 3524135,5,5k x k x k x ===,得基础解系⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=50031,0502400562321ηηη, , 通解 332211ηηηηk k k ++=.18.已知非齐次线性方程组⎪⎩⎪⎨⎧-=+++=+-+=++12)3(13)12(12321321321λλλλλλλλx x x x x x x x x 解: 由增广阵 ⎪⎪⎪⎭⎫⎝⎛---+-+-⎪⎪⎪⎭⎫⎝⎛-+-=22100110121231312123121λλλλλλλλλλλλλr r r r A 知: 当1=λ时, ⎪⎪⎪⎭⎫⎝⎛+-⎪⎪⎪⎭⎫⎝⎛=0000100101120000100121112r r A ,32)()(<==A r A r ,方程组有无穷多解, 通解为 ⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0110011321k x x x ;当0=λ时, ⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----++⎪⎪⎪⎭⎫⎝⎛---=300210020102120130002210011012002313r r r r A 则 3)(2)(=<=A r A r ,方程组无解;当1,0≠λ时, 有3)()(==A r A r ,方程组有唯一解. 19.问b a 、取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++4234321321321x bx x x bx x x x ax 有唯一解,无解,无穷多解(无穷多解时并求其解)解:(1)系数行列式1211111bb aA ==)1(-a b 当1,0≠≠a b 时方程组有唯一解(克拉默法则)(2)当0=b 时,−−→−⎪⎪⎪⎭⎫⎝⎛=+-324113101411rr aA ⎪⎪⎪⎭⎫ ⎝⎛1003101411a)()(A R A R ≠ 所以线性方程组无解(3)当1=a 时,⎪⎪⎪⎭⎫⎝⎛---+-+-⎪⎪⎪⎭⎫⎝⎛=0012010104111412131141113121b b r r r r bb A 当012=-b 时,即21=b 时 32)()(<==A R A R ,方程组有无穷多解,同解方程组为 ⎪⎩⎪⎨⎧-=-=++12142321x x x x令03=x 得方程组的特解⎪⎪⎪⎭⎫ ⎝⎛=0220X 取13=x 得基础解系⎪⎪⎪⎭⎫⎝⎛-=101η此时全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101022k 其中k 为任意常数20. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111,1111,1111111111214321ααααβ,, 将β表示成向量组4321,,,αααα的线性组合.解: 设数 4321,,,k k k k 使得 βαααα=+++44332211k k k k 得 ⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++11214321432143214321k k kk k k k k k k k k k k k k其增广阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----↔+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛------+-+-+-⎪⎪⎪⎪⎪⎭⎫⎝⎛------=022122000202010101210022002020122001111111111111112111111111324313413121r r r r r r r r r r r r A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎛---4110210100410010450001411041010041001010101142111000101010101)21(132r r r 得41,41,41,454321-=-===k k k k , 即432141414145ααααβ--+=.21.设四元线性方程组β=AX 的系数矩阵的秩为3,321X X X ,,是其3个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=80021X ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132X X .求其全部解 解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+-123232321)(X X X 所以全部解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=123238002k ξ 其中k 为任意常数B 组1. 判断题(结论对的请在括号内打“√” ,错的打“×”)(1) 若n m >,则n 维向量组m ααα,,,21 线性相关. ( √ ) 提示:定理3.3的推论2.(2)若向量组线性相关,则它的任意一个部分组都相关. ( × ) 提示:利用上面(10)题解中的4321,,,αααα讨论.(3) 若向量组m ααα,,,21 线性相关,则它的秩小于m ,反之也对. ( √ ) 提示: 若向量组m ααα,,,21 的秩为m ,则若.(4) 向量组T T T )1,2,0,0(,)5,1,2,4(,)0,3,0,1(321===ααα的极大无关组为21,αα. ( × ) 提示: 向量组321,,ααα的秩为3.(5) 若n 阶方阵A 的行列式不等于零,则A 的列向量组线性相关. ( × ) 提示: 由n 阶方阵A 的行列式不等于零, 方阵A 的秩n =,和A 的列向量组的秩=方阵A 的秩n =, 则A 的列向量组线性相关. 2. 填空题(1) 向量组T T T )6,0,0(,)5,4,2(,)3,2,1(321===ααα的秩= 2 .解: 由()⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎪⎭⎫⎝⎛==000100321600100321600542321,,21321r r A ααα. (2) 若21,αα都是齐次线性方程组0=AX 的解向量,则)43(21αα-A = 0 . 解: 043)43(2121=-=-ααααA A A .(3) 若向量组T T T t t )1,0,0(,)0,2,1(,)0,1,1(2321+=+==ααα线性相关,则1 . 解: 由321,,ααα线性相关,有 0,,321==αααA .即 0)1)(1()1)](1(2[1021011,,222321=+-=++-=++==t t t t t t A ααα.(4) 方程组⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-00111032321x x x 的基础解系所含向量的个数= 1 . 解:由系数阵的秩是2,.(5) 方程组⎩⎨⎧=-=-004321x x x x 的基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1100,001121ηη .(6) 若线性方程组⎪⎩⎪⎨⎧=+=+=-kkx x x x x x 2121213122的有解,则长数=k 15/4 .解: 线性方程组⎪⎩⎪⎨⎧=+=+=-kkx x x x x x 2121213122的有解,则其系数阵的秩=增广阵的秩,有0=A所以 0154)3)(1()6(363130211331212112121=-=+---=-+--+-+--=k k k k k r r r r kkA . 3. 单项选择题(1) 向量组(I)线性相关的充分必要条件是( B ). (A) (I)中每个向量都可由其余向量线性表示.(B) (I)中至少有一个向量都可由其余向量线性表示. (C) (I)中只有一个向量都可由其余向量线性表示. (D) (I)中不包含零向量. 提示:定理3.2.习题四A 组10.下列矩阵是否为正交矩阵? (1)⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-61616221210313131 (2)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--2102102131213121 解:(1)),,(321ααα=A ,其中),,(3211==i i α )(,),(j i j i ≠=0αα),,,(321=j i 所以A 为正交矩阵(2)),,(321ααα=A ,其中),,(3211=≠i i α )(,),(j i j i ≠≠0αα),,,(321=j i 所以A 不是正交矩阵11.设A 是n 阶对称矩阵,B 是n 阶正交矩阵,证明AB B 1-也是对称矩阵证明: 由题意可知A A T =, 1-=B B T因为AB BAB BT11--=)( 所以AB B1-也是对称矩阵习题五A 组1. 设矩阵 ⎪⎪⎪⎭⎫⎝⎛--=111131111A , 试证向量T)1,1,1(-=α为矩阵A 的属于特征值1=λ的特征向量.解:由 αα⋅=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=1111111111131111A所以向量T )1,1,1(-=α为矩阵A 的属于特征值1=λ的特征向量.3. 若0λ是矩阵A 的一个特征值, m 是正整数,试证m 0λ是矩阵m A 的一个特征值. 证明: 由0λ是矩阵A 的一个特征值,存在非零向量α,使得αλα0=A 成立,即α是矩阵A 的属于特征值0λ的特征向量.那么有αλαλαλαλαλαmm m m m m mAA AAAAm AA 02202010011)(=======-----所以m 0λ是矩阵m A 的一个特征值. 4. 若0λ是矩阵A 的一个特征值,试证(1)2020-+λλ是矩阵E A A 22-+的一个特征值; (2)若022=-+E A A ,矩阵A 的特征值只能等于-2或1.证明: 由0λ是矩阵A 的一个特征值,存在非零向量α,使得αλα0=A 成立,即α是矩阵A 的属于特征值0λ的特征向量.那么有(1) αλλααλαλαααα)2()2(02002022-+=-+=-+=-+E A A E A A 所以2020-+λλ是矩阵E A A 22-+的一个特征值. (2) 由022=-+E A A , 和 αλλα)2()2(0202-+=-+E A A , 00=α, 有02020=-+λλ, 得1200=-=λλ,,即矩阵A 的特征值只能等于-2或1. 7. 求下列矩阵的特征值与特征向量. (1) ⎪⎪⎭⎫⎝⎛--=2223A 解:由 0)2)(1(4)2)(3(2223=+-=+-+=⎪⎪⎭⎫⎝⎛--+=-λλλλλλλA E 得特征值.2,121-==λλ当11=λ时,对应的特征向量应满足齐次线性方程组()0=-X A E ,即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00122421x x ,其基础解系⎪⎪⎭⎫⎝⎛=211α.所以矩阵A 的属于特征值11=λ的全部特征向量为11αk , 其中1k 是任意非零常数.当22-=λ时,对应的特征向量应满足齐次线性方程组()02=--X A E , 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00422121x x ,其基础解系⎪⎪⎭⎫⎝⎛=122α.所以矩阵A 的属于特征值22-=λ的全部特征向量为22αk , 其中2k 是任意非零常数. (2) ⎪⎪⎭⎫⎝⎛-=4112A 解:由 0)3(1)2)(4(41122=-=+--=⎪⎪⎭⎫⎝⎛---=-λλλλλλA E 得特征值.321==λλ当321==λλ时,对应的特征向量应满足齐次线性方程组()03=-X A E , 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00111121x x ,其基础解系⎪⎪⎭⎫⎝⎛=11α.所以矩阵A 的属于特征值321==λλ的全部特征向量为αk , 其中k 是任意非零常数.(3) ⎪⎪⎪⎭⎫⎝⎛-=311111002A 解:由 3)2(]1)3)(1)[(2(3111112-=+---=⎪⎪⎪⎭⎫⎝⎛------=-λλλλλλλλA E 得特征值.2321===λλλ当.2321===λλλ时,对应的特征向量应满足齐次线性方程组()02=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---000111111000321x x x ,其基础解系⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121αα.所以矩阵A 的属于特征值.2321===λλλ的全部特征向量为2211ααk k +,其中21,k k 是任意不同时为零常数.8. 设A 为3阶矩阵,满足023,0,0=-=+=-A E A E A E , 求 (1)A 的特征值; (2)A 的行列式A .解: (1) 因,0=-A E 得;11=λ因(),0)1(3=---=---=+A E A E A E 即,0=--A E 得;12-=λ因,0232232233=-=⎪⎭⎫ ⎝⎛-=-A E A E A E 即,023=-A E 得.233=λ (2)由,23,1,1321=-==λλλ和321λλλ=A ,有23-=A .9. 已知矩阵 ⎪⎪⎪⎭⎫⎝⎛----=x A 44174147的特征值,12,3321===λλλ求x 的值,并求矩阵A 特征向量。
大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整

1 a2 a3 1 0
0
( )( ) ( )( ) 22、解法 1: 1 b2 b3 = 1 b2 − a2 b3 − a3 = b2 − a2 c3 − a3 − c2 − a2 b3 − a3
1 c2 c3 1 c2 − a2 c3 − a3
整理得 = (ab + bc + ca)(b − a)(c − a)(c −b)
1 1 11 1 1 1 1
−2 1 0
1 −1 2 1
1 −1 2 1 0 −2 1 0
13、
第1,4行交换 −
=−
= − −3 −2 −4 = −7
4 1 20
4 1 2 0 0 −3 −2 −4
−1 −5 −3
1 1 11
5 0 4 2 0 −1 −5 −3
14、先将第 1 行与第 5 行对换,第 3 行与第 4 行对换(反号两0 0 1 3 第3,5行对换 − 0 1 0 1 1 = − 6 7 8
= −10*2 = −20
43
00024
00024 010
01 01 1
00 01 3
17、根据课本 20 页公式(1.22)
0 0 1 −1 2
0030 0024 1 240
2
1 −1 2
0 = (−1)2×3 3
2 2 3 L 2 2 第3行 − 第1行 1 0 1 L 0 0
28、
L L L L L L LLLLLL L L L L L L
2 2 2 L n −1 2 第n行 − 第1行 1 0 0 L n − 3 0
−5 0 0 0 0
所以
* A = (−1)3*5 | A || B |= −3!5!
线性代数 第二版 陈殿友 课后答案.khdaw

A
A3=0
3.1(A)
E-A
(E-A)-1=E+A+A2
(E-A)(E+A+A2)=E3-A3=E.
(E+A+A2)(E-A)=E3-A3=E.
E-A
(E-A)-1=E+A+A2
3.
n
A
A3=0
A3=0
(E-A)(E+A+A2)=E3-A3=E.
(E+A+A2)(E-A)=E3-A3=E.
E-A
(E-A)-1=E+A+A2
4
31 12 31 02
6 78 20 5 10
a 5)
b
11 aa
00
ma mb b b 0 0
2.
11 A 11
11
3AB-2A ATB.
1
1,B
1
1 23 1 2 4, 0 51
11 1 1 23 AB 1 1 1 1 2 4
1 11 0 51
058 0 56 290
0 15 24 3AB 2A 0 15 18
6 27 0
22 2 22 2 2 22
2 13 22 2 17 20 4 29 2
11 1 ATB 1 1 1
1 11
1 23 1 24 0 51
3.
A=PQ,
058 0 56 290
1 P 2 ,Q 2, 1, 2
1
A A100.
A PQ
1 2 2, 1
1, 2
2 12 4 24 2 12
1 Qp 2, 1, 2 2 2
1 a 0 r1 ri
i 2,3, ,n 1.
线性代数(第2版)习题全解(习题一)

线性代数(第2版)习题全解(习题一)1.(1) 解 .14)4(492243=----++-=D (2) 解 .100sin 00cos 22-=---++-=θθD 2.(1)解 21010=+++=τ 偶排列 (2)解 19644221=+++++=τ 奇排列(3)解 =-+++++++=)22(420000n τ)1())1(21(2-=-+++n n n 偶排列)2(≥n(4)解 =++-++-+++=1)1()1(21 n n n τ2)]1(21[2n n n =+-+++ 排列的奇偶性与n 的奇偶性相同3. 解 为使6654431213a a a a a a j i -为六阶行列式中的一项, 应选择i 和j , 使列标构成的6阶排列6413j i 为奇排列.于是应取2,5==j i , 此时排列642153的逆序数为501220=++++=τ4. (1)解 列展开235012101331020307r r r 2r 3431---++D3223rr 35123120371)1)((+---+00361437335120614037=⨯-=-=-(2) 解 29730000300003022211r r r r r r 52211252112251122211c c c c c c 141312413121=---+++D(3) 解 =-----------÷-÷-÷-÷-÷00000)1()1(r )1(r )1(r )1(r )1(r 234123211232114321554321dc b ad c b a c c b a b b b a a a a a D D D -=-T ,于是0=D .(4)解 =---------32321212113412311200001111r r r r r r a a a a a a a a a a a a a a a D))()((321a a a a a a ---5. 计算下列n 阶行列式:(1)解 列展开n n n n nn r r r r r r D n n13210001200001132111312-------=----+132100120001)1(1 n n n n nn n 1)1(+-(2)解 =-+000302001)1(111 n D n列展开!)1(2)2()1(n n n ---(3) 解 1113122122121121r r r r r r 0001---++++n nn n n n nb a a a a b a a a a b a a a a D升阶113212112121c 1c c 1c c 1c 010010011++++---n nn nb b b b b b a a a=+∑=nn ni ii b b b a a a b a0000000121211⎪⎪⎭⎫⎝⎛+∑=ni i i n b a b b b 1211(4)解 211211211211)1(121211+--+n nD D 行展开21-21--n n D D 列展开于是 =-=-=------32211n n n n n n D D D D D D 12312=-=-=D D 故 1)1(21121+=-+==+=+=-+n n D D D D n n n6.(1)解 构造5阶范德蒙行列式并利用相应的计算公式得==44444333332222211111)(x d c b a x d c b a x d c b a x d c b ax f ))()()()()((b d b c a x a d a c a b ------=----))()()((d x c x c d b x])([))()()()()((34 ++++-------x d c b a x c d b d b c a d a c a b )(*又 55445335225155)(A x A x A x xA A x f ++++列展开注意到3x 的系数D D A -=-=+5445)1(,又由)(*式直接得到3x 的系数,故))()()()()()((d c b a c d b d b c a d a c a b D +++------=(2)解 321121111r r r r r r 1)()1(111)1(r r r r r r ↔↔↔-----↔↔↔-+-++nn n n n n n n nn n n n n a a an a a a D ==--------+222)1()()1()()1(1111)1(n a a a n a a a na a an n n n n=-----++-+nn n n n n a a a na a a )()1(1111)1(1)1(∏≥>≥++=------112)1()]1()1[()1(j i n n n j a i a∏∏≥>≥+≥>≥++-=--11112)1()()()1(j i n j i n n n j i i j7.(1)证 +++++++=bz ay by ax az by ax bx az ay bx az bz ay ax D 121131c c c )2(c c c (1)a bb abzay by ax bx byax bx az bz bxaz bz ay by -÷-÷++++++++++ay by ax z ax bx az y azbz ay xa 232323c c c )2(c c c )1(a bb abzay by x byax bx z bxaz bz y b -÷-÷+++b abzy x byx zbxz yb yaxz x az y z ay x a ÷÷+3222c )2(c )1( 213233c c c c )2(↔↔+zy x y x z x zy b y x z x z yz y xa yxzx z yx y xb a )(33+ (2)证 =----++-111)1(111x x a xD D n n n n列展开=++=+---n n n n n a a xD x a xD )(121==++-- n n n a x a D x 122=++++---n n n n a x a x a D x12211n n n n a x a x a x ++++--111(3)证+ddc dc b a b a aD n012行展开0)1(21cd cdc b a bab n+-=-----+--221)12(22)1(12(2)12)1(n n n D bc adD n n 行展开按行展开按==-=--- )2(22)1(2)()(n n D bc ad D bc ad=--21)(D bc ad n n bc ad )(-8.(1)解 141312r 2r r r r r 11124121111114141------=D 34323r 7r r 3r )2(r 29370102201313014141++-÷--------206423264051102300141412==-141312)1(r r r r r r 11124122111514142++------=D 2013501864133713050180641303714142=---=----=--------------=29360102001307014121r 2r r r r r 11224121115114121141312)2(D 40293610201307=-----=-----------=38103710151113730r 2r r r r r 12124221151114241242321)3(D 20637022703-=-----故 1,3,2,1)4(4)3(3)2(2)1(1-========DD x D D x D D x D D x(2)解 =-+==+410140011)1(144100141001410142134D D =--=-21223)4(44D D D D D 20915)4154(4=--⨯⨯=----=41031417014160010c 5c 410314120144001521)1(D 2094131470116=--- =----=15110142001410054r 4r 413014200141005434)2(D 20915110141054=-- =-----=430012100441011150r 4r 430012100441051421)3(D 20943012101115-=----=---=01001441011415014c 3c 31024104141501434)4(D 2091410141514=-- 故 1,1,1,14)4(44)3(34)2(24)1(1==-======D D x D D x D D x D D x9. 解 系数行列式12r r 2)2(1111111++--++=λλλD 21cc 2)2(1022111-+-+++λλλλ=++=+-++231)2(2)2(302011λλλλλλλ)3)(2(-+λλ当2-=λ或3=λ时,0=D ,齐次线性方程组有非零解.。
线性代数简明教程-第二版-答案

3. 求下列排列的逆序数
(1) (315624) 6
(2) (13(2n 1)24(2n)) n(n 1)
2
4. 计算下列行列式
2500 350
55
(1)
500 70
1500 70
31
35000(5 15) 350000
a11 a12 a21 a22 (2) 0 0
00 00 a33 a34
2 0
0
0 1 0
0
0 1
4
4 0 0
0 3 0
0 0 2
2 0 0
0 3 0
0
0 1
2
12.设
1 2 3
A
0 3 0
2 2 1
2 0 2
利用初等行变换求 A1
2
1 1 1
,
1 2 3 2 1 0 0 0
(
A
E)
0 3 0
2 2 1
2 0 2
1 0 1 0 0
5、已知两个线性变换
x2
x1 2 y1 y3 2 y1 3y2
2 y3
x3 4 y1 y2 5 y3
y1 3z1 z2 y2 2z1 z3
,
y3 z2 3z3
求从 z1, z2 , z3 到 x1, x2 , x3 的 线性变换
分析:X AY ,Y BZ ,
1 1
0 0
0 0
1 0
10
1 2 3 2 1 0 0 0
~r3 3r1 0
0 0
2 4 1
2 9 2
1 0 1 0 0
5 1
3 0
0 0
1 0
0 1
1 2 3 2 1 0 0 0
线性代数(第二版)答案

5 3 2 1
6 6 1 3
⎞−1 ⎟ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
x1 x2 x3 x4
⎞ ⎟ ⎟ ⎟ ⎟ ⎠
=
⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜
7. 首先将系数矩阵化为规范阶梯矩阵,
A
=
⎛ ⎜ ⎝
2 1
1 1
−1 −1
1 0
−3⎞
1
⎟ ⎠
→
⎛ ⎜ ⎝
1 0
0 1
0 −1
1 −1
−4 5
⎞ ⎟ ⎠
=
B
选 x3, x4 , x5 为 自 由 未 知 量 , 分 别 取 x3 = 1, x4 = 0, x5 = 0 , x3 = 0, x4 = 1, x5 = 0 和
( ) ( ) ( ) ( ) 8.设
aij
,
2×2
bij
属于该集合,则
2×2
aij
+k
2×2
bij
也属于该集合,即该集合是 M 2×2 的子空
2×2
间;设
ε11
=
⎛ ⎜ ⎝
1 0
0⎞ −1⎟⎠
, ε12
=
⎛0
⎜ ⎝
0
1⎞ −1⎟⎠
,
ε 21
=
⎛ ⎜ ⎝
0 1
0⎞ −1⎠⎟
,则若有
k1ε11
+
k2ε12
为一组基. 10.因为 k1k3 ≠ 0 ,即 k1 ≠ 0 , k3 ≠ 0 ,于是由
k1α1 + k2α2 + k3α3 = O
(1)
可得
α1
=
−
k2 k1
α2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数第二版答案(共10篇)
线性代数第二版答案(一): 高等数学线性代数,概率统计第二版课后答案姚孟臣版
最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议:
线性代数第二版答案(二): 线性代数和概率论与数理统计教程答案
线性代数(第二版)是张民选主编南京大学出版社
概率论与数理统计教程周国利主编南京大学出版社
教程答案
线性代数第二版答案(三): 数学线性代数,举2阶矩阵的例子,它们有相同的特征值但是不相似。
注:不要复制粘贴,拍题搜出来的答案
数学线性代数,举2阶矩阵的例子,它们有相同的特征值但是不相似。
注:不要复制粘贴,拍题搜出来的答案不对。
线性代数第二版答案(四): 线性代数第二版陈维新
设ε1,ε2,...,εn为线性空间V的一组基,求这个基到基ε2,...,εn,ε1的过渡矩阵
设ε1,ε2,...,εn为线性空间V的一组基,求这个基到基ε2,...,εn,ε1
的过渡矩阵
解:因为(ε2,...,εn,ε1)=(ε1,ε2,...,εn)A
A =
0 0 0 ... 0 1
1 0 0 ... 0 0
0 1 0 ... 0 0
... ...
0 0 0 ... 0 0
0 0 0 ... 1 0
所以ε1,ε2,...,εn 到ε2,...,εn,ε1 的过渡矩阵为A.
线性代数第二版答案(五): 线性代数:为什么二次型的标准形式不唯一的,而它的规范形唯一
标准形对平方项的系数没有严格限制
如 4x^2 = (2x)^2
作一个变换其标准形就改变了.
但规范型要求平方项的系数是1或-1
而二次型的正负惯性指数是不变量
所以规范型是唯一的(不考虑变量的顺序)
线性代数第二版答案(六): 大二,线性代数习题,
设二次型
f(X1,X2,X3)=X1 +X2 +X3 -2(X1X2)-2(X2X3)-2(X3X1),
1求出二次型f的矩阵A的全部特征值
2求可逆矩阵P,使(P的逆阵乘以AP)成为对角阵
3计算A的m次方的绝对值(m是正整数)
很多数学符号我打不出来或者大不清楚题目中的“ ”是平方
(1)A=
|1,-1,-1|
|-1,1,-1|
|-1,-1,1|
由特征方程|A-入E|=0,得到入(2-入)^(入+1)=0,所以三个特征值分别是-
1,2,2
代入(A-入E)x=0,求得三个x特征向量分别是(也就是方程的基础解系)
-1对应的解系(1,1,1),2对应的解系(1,1,-2),(1,0,-1)
(2)所以可逆矩阵P=
|1,1,1|
|1,1,-2|
|1,0,-1|
特征值矩阵B=
|-1,0,0|
|0,2,0|
|0,0,2|
使得A=P^(-1)BP
(3)A的行列式|A|=|B|=-4
所以|A^m|=|A|^m=(-4)的m次方
线性代数第二版答案(七): 线性代数二次型方面的问题
1、试证:可逆实对称矩阵A与A逆是合同矩阵.
2、证明:一个实二次型可以分解成两个实系数一次齐次多项式乘积的充分必要条件是它的秩等于2,而且符号差为零;或者秩等于1.
3、设A为n阶实对称矩阵,且满足A三次方 -2A平方 +4A-3E=0.证明A为正定矩阵.
4、设A为正定矩阵,E为n阶单位阵,证明:A+E的行列式大于1.
先解最后一道:
因为:A是正定矩阵,则A的所有特征值均大于零.(λi>0)则对于矩阵
(A+E),其特征值∧i>1.
|A+E|=,所以,|A+E|是大于1的.
线性代数第二版答案(八): 线性代数求逆序数题
第一题:1,3……(2n-1)2,4……2n
第二题:1,3......(2n-1)2n(2n-2) (2)
第一题结果是n(n-1)/2
首先,前n个数都是从小到大排列的,没有逆序数对.
然后,看2,前面n个数除了1以外的n-1个数都比它大,每一个都与它组成一对逆序数对,就有n-1个;
接着,看4,前面n个数除了1和3以外的n-2个数都比它大,每一个都与它组成一对逆序数对,就有n-2个;
.
到了2n-2时,就只有2n-1比它大,有一个逆序数对.
2n 是0.
加起来就是0+1+2+……(n-1)=n(n-1)/2
第二题结果是n(n-1)
首先,前n个数都是从小到大排列的,没有逆序数对.
然后,看2,前面2n-1个数除了1以外的2n-2个数都比它大,每一个都与它组成一对逆序数对,就有2n-2个;
接着,看4,前面2n-2个数除了1和3以外的2n-4个数都比它大,每一个都与它组成一对逆序数对,就有2n-4个;
.
到了2n-2时,有2个比它大,有2个逆序数对.
2n 是0.
加起来就是 2*【0+1+2+……(n-1)】=n(n-1)【线性代数第二版答案】
线性代数第二版答案(九): 哪位大侠能帮我证眀下线性代数第52页推论2:若向量组1可由向量组2线性表示,则向量组1的秩不超过向量组2的秩【线性代数第二版答案】
把向量组都用矩阵表示,组1记为A.矩阵记为B.向量组1可由向量组2线性表示说明,一定姑在个矩阵C.使得A=B*C
再利用性质,做积之后秩变小了.所以A秩小于等于B秩.
线性代数第二版答案(十): 线性代数矩阵计算
[1 2 3]
[4 5 6]
[7 8 9]
的答案是不是0
是0,第三行减第二行,第二行减第一行,
[1 2 3] [123]
[4 5 6] -----> [333]
[7 8 9] [333]
第三行减第二行
[1 2 3]
[3 3 3]
[0 0 0]
线性代数第二版同济
线性代数第二版戴斌祥。