电动汽车电磁干扰抑制
新能源汽车电控系统电磁干扰故障分析与检修方法

新能源汽车电控系统电磁干扰故障分析与检修方法发布时间:2021-12-28T02:59:28.387Z 来源:《中国科技人才》2021年第25期作者:石奇婷贺世荣王如龙[导读] 新能源汽车电控系统的电磁干扰故障问题对系统整体的正常运作、应用都会造成严重的影响,如果不能严格预防、规避和控制,就应按照电磁干扰问题的发生情况、发生状态。
为了能够让电子通讯工程的设备抗干扰能力得以不断地提高,那么这就需要相关的工作人员能够在这方面不断地加强研究和分析,通过有效的手段和技术创新,更好地提高设备的抗干扰能力。
山东英才学院山东省济南市 250104摘要:新能源汽车电控系统的电磁干扰故障问题对系统整体的正常运作、应用都会造成严重的影响,如果不能严格预防、规避和控制,就应按照电磁干扰问题的发生情况、发生状态。
为了能够让电子通讯工程的设备抗干扰能力得以不断地提高,那么这就需要相关的工作人员能够在这方面不断地加强研究和分析,通过有效的手段和技术创新,更好地提高设备的抗干扰能力。
基于此,本文主要分析了新能源汽车电控系统电磁干扰故障分析与检修方法。
关键词:新能源汽车;电控系统;电磁干扰故障;检修方法引言汽车上越来越多的电子系统使电磁干扰也越来越严重,电磁干扰的发生,会引起受到电磁干扰的电子系统性能下降,甚至可能出现电子系统功能失灵等问题,这对汽车的安全行驶有重大的隐患。
因此,通过制定科学合理的防护措施,不仅仅能够避免电磁干扰对汽车电器正常稳定运行造成影响,还能够有效推动行业经济往更好的方向发展。
1新能源汽车电控系统电磁干扰故障分析 1.1充电系统方面在汽车充电系统中,因为交流发电机使用炭刷与滑环的原因将激磁电流引入到转子线圈中,在运转时,只要两者的接触状态发生了变化,就会有火花产生,如此就可以产生电磁波了。
另外,交流发电机调节器会根据输出电压的情况自动的调整电流,因为电子式调节器使用的调节方式是瞬间断电形式的,会在磁场线圈中引发自感电势,并且是频率不一样、峰值不一样的,产生电势之后就会转化成为干扰性的电磁波 [1]。
新能源汽车电动驱动系统电磁干扰抑制技术的实验与优化

新能源汽车电动驱动系统电磁干扰抑制技术的实验与优化近年来,随着环境保护意识的提升和对传统燃油车污染的认识加深,新能源汽车逐渐成为未来汽车发展的趋势。
然而,随之而来的问题是新能源汽车电动驱动系统中存在的电磁干扰,这种干扰会对系统的性能和稳定性产生不利影响。
因此,如何有效抑制新能源汽车电动驱动系统中的电磁干扰成为当前研究的热点之一。
一、背景介绍新能源汽车的快速发展使得电动驱动系统的设计和优化变得尤为重要。
电动驱动系统由电机、电控器、电池组等部分组成,其中电机是实现电能转换为机械能的核心部件。
然而,电动驱动系统的高频电流和电压信号会在系统中引起电磁干扰,影响系统的正常工作。
电磁干扰不仅会降低系统的工作效率,还会导致系统的稳定性和可靠性下降,甚至对周围的其他电子设备造成干扰。
因此,研究如何有效抑制新能源汽车电动驱动系统中的电磁干扰对于提高系统性能和减少对环境的影响具有重要意义。
二、电磁干扰的来源与特点新能源汽车电动驱动系统中的电磁干扰主要来源于以下几个方面:1. 电机部分:电机在工作过程中会产生高频电流和电压信号,这些信号会通过电机的绕组和电缆在系统中传播,引起电磁干扰。
2. 电控器部分:电控器是控制电机运行的核心部件,其内部的功率变换部分和控制逻辑电路会产生电磁辐射和传导干扰。
3. 电池组部分:电池组中的大电流放电和充电会引起电磁干扰,影响系统的稳定性和电磁兼容性。
电磁干扰的特点主要表现在以下几个方面:1. 频谱宽:电动驱动系统中的电磁干扰频率范围广泛,从几十千赫兹到数兆赫兹不等。
2. 信号强度大:电动驱动系统中的电磁干扰信号强度往往较大,对系统和周围设备的影响较为显著。
3. 传播路径复杂:电动驱动系统中的电磁干扰信号通过电缆、绕组、导线等多种传播路径传播,路径复杂多样。
针对电磁干扰的来源和特点,需要通过一系列的实验研究和优化设计,才能有效地抑制电动驱动系统中的电磁干扰,提高系统的性能和稳定性。
三、电磁干扰抑制技术研究现状目前,国内外学者围绕新能源汽车电动驱动系统中的电磁干扰问题展开了大量的研究工作,主要包括以下几个方面:1. 电磁兼容性设计:通过对系统结构、布局、接地、屏蔽等进行合理设计,减小电磁干扰的产生和传播。
汽车电子电器电磁干扰的产生及解决方案

汽车电子电器电磁干扰的产生及解决方案随着电子技术的飞速发展,越来越多的电器设备应用到汽车上,提升了汽车的整体性能,但同时也带来了一个新的问题,由于采用大量电子设备而产生的电磁干扰。
针对汽车电子电器电磁干扰的产生及解决方案这一问题,本文系统分析了汽车内部的点火系统、电机、电源、线路以及静电等引起的电磁干扰,并提出一些措施来防止电磁干扰。
只要是带电的物体都会对周围产生辐射或受到其它磁场辐射的作用,那么对于应用大量电子设备的车辆而言,电磁辐射干扰对于车辆电气系统的正常运行就会带来很大的影响。
随着汽车工业日新月异的发展和汽车电子电器设备的大量应用,汽车电磁干扰的特点及其产生的影响也有了巨大的变化。
本文就汽车电子电器电磁干扰的产生及解决方案进行探讨。
1 汽车电器电磁干扰概念及分类:1.1汽车电器电磁干扰:是指任何能中断、阻碍、降低或限制汽车电气、电子设备有效性能的电磁能量,对有用电磁信号的接收产生不良影响,导致设备、传输信道和系统性能劣化的电磁骚扰。
根据电磁干扰所产生的特点,将干扰源、传播途径和敏感设备称为电磁干扰三要素,在汽车电磁干扰形成的过程中,电磁干扰源为汽车启动或运行时电压瞬时变化较大的设备:如高压点火系统、各种感性负载(电机类电器部件)、各种开关类部件(如闪光继电器)、各种电子控制单元以及各种灯具、无线电设备等;电磁干扰途径主要分为传导干扰和辐射干扰,如在汽车启动瞬间点火机构所产生的扰动为传导干扰,而无线电干扰即为辐射干扰。
敏感设备主要为汽车电子设备,如发动机控制单元(ECU)、ABS、安全气囊及各种电子模块等。
1.2汽车电子设备工作在行驶环境不断变化的汽车上,由于汽车电子设备形成以蓄电池和交流发电机为核心电源以及车体为公共地的电气网络,各部分线束都会通过电源和地线彼此传导干扰,而不相邻导线间也因天线效应而辐射干扰,干扰组成较多,环境中电磁能量构成的复杂性和多变性,意味着系统所受到的电磁干扰来源比较广泛。
新能源汽车车载通讯系统的电磁干扰优化与防护方案

新能源汽车车载通讯系统的电磁干扰优化与防护方案随着新能源汽车的普及和发展,车载通讯系统在车辆中扮演的角色越来越重要。
然而,随着车载通讯系统的不断发展和使用,电磁干扰问题也变得越发突出。
电磁干扰会严重影响车辆通讯系统的性能和稳定性,甚至会引发一些严重的安全隐患。
因此,如何优化和防护新能源汽车车载通讯系统的电磁干扰成为了当前急需解决的问题。
首先,我们需要深入了解新能源汽车车载通讯系统的电磁干扰问题。
电磁干扰是指外部电磁场对电子设备正常性能的影响,其来源包括电源系统、电动机、无线电设备等,而对新能源汽车车载通讯系统来说,最主要的干扰源可能就是来自电动汽车系统本身。
电动车电机及其电控系统产生的电磁干扰会通过电源线、信号线等途径传导到车载通讯系统中,导致通讯信号紊乱或丢失,从而影响通讯质量。
其次,针对新能源汽车车载通讯系统的电磁干扰问题,我们可以提出一些优化方法。
首先是在设计阶段就考虑电磁兼容性,通过合理的布线设计、屏蔽设计等来减小电磁干扰的影响;其次是采用专门的滤波器和隔离器来滤除干扰信号,保证通讯系统的正常工作;另外,通过优化信号处理算法,可以进一步提升系统抗干扰能力。
此外,为了进一步加强新能源汽车车载通讯系统的电磁干扰防护,我们还可以采取一些物理措施。
比如在车载通讯系统周围设置金属屏蔽罩,阻隔外部电磁场对系统的干扰;或者通过选择合适的电磁兼容材料来减小干扰源对系统的影响;另外,在系统维护过程中,及时检测和处理潜在的干扰问题也是非常重要的。
让我们总结一下本文的重点,我们可以发现,是一个需要高度重视的问题。
只有充分了解电磁干扰的影响机制,采取科学合理的优化和防护措施,才能确保车载通讯系统的正常运行和通讯质量,进一步推动新能源汽车技朧的发展和普及。
希望未来在这方面的研究能够取得更加显著的成果,为新能源汽车产业健康可持续发展贡献力量。
浅析新能源汽车电控系统电磁干扰故障与检修方法

车辆工程技术109维修驾驶1 新能源汽车电控系统产生电磁干扰故障的主要原因1.1 交流发电机充电系统引发的电磁干扰通常情况下,新能源汽车内部的交流发电机,其所使用的大多为滑环以及碳刷将相应的励磁电流有效引入到相应的转子线圈之中。
而在交流发电机的实际运转过程中,只要两者之间产生了不良接触,就很容易引发出电火花,引发电磁波出现,同时,交流发电机控制器会将相应的励磁电流自动调整到合适的水平中,但由于所采用的设置方式为立即关闭模式,这就会在磁场线圈当中产生具备着峰值以及频率的自动感应电动势。
并且这种电动势也会转变为相应的电磁干扰波,如果在交流发电机的高速运行过程中,发电机与电池之间的连接突然中断,这就会导致发电机的输出电压不断提升,引发相应的电气控制系统产生故障[1]。
1.2 电动机运转过程中产生的电磁干扰在新能源汽车之中,其所存在的电磁干扰电动机,具体包括刮水器电动机、风扇电动机以及起动机等多方面部件。
而由于这部分电动机大多都是拥有换向器以及碳刷的直流永磁电动机,这就使其在后续的操作过程中,特别是在高速运转的状态下很容易产生电火花,进一步引发出强电磁波。
同时,起动器所产生的电磁干扰频率,也与起动器自身的运转速度有着直接联系,其内部的电流峰值相对较高,并且还具备着极强的抗干扰性,起动机电磁干扰的主要特征就在于其仅仅只会在新能源汽车的启动阶段才会产生故障。
而其他引擎的峰值以及频率,其相对于起动器来说整体较弱,但其所产生的电磁干扰则是在驾驶过程中所出现的,这就导致其很可能会引发更大的安全问题。
1.3 继电器触电产生的电磁干扰通常新能源汽车的电磁干扰可划分为车辆外部以及车辆内部两种类型的干扰。
在新能源汽车的运转过程中,其触点通常会处于高速开启以及关闭的状态中,而在晶体管的正常工作电压下,线圈会转变为拥有着高频谱的瞬态干扰源,其所产生的工作电流也会不断提升,引发极强的电磁波辐射,并且其峰值震荡电压处在较高的状态,就会在继电器周边通过电线或是空气进行辐射。
新能源汽车电动车辆整车电磁干扰抑制技术研究

新能源汽车电动车辆整车电磁干扰抑制技术研究随着新能源汽车的快速发展,电动车辆在现代交通系统中扮演越来越重要的角色。
然而,随之而来的问题是电动车辆发展过程中可能出现的电磁干扰问题。
电动车辆整车电磁干扰抑制技术研究因此成为当前亟需解决的课题之一。
电动车辆作为一种未来可持续交通的代表,其使用新能源代替传统燃油,减少环境污染,对社会具有重要意义。
然而,正是因为其复杂的电子系统和大量的电动设备,电动车辆在工作过程中可能产生较大的电磁辐射。
电磁辐射对电子设备和人体健康都会造成不利影响,因此电磁干扰抑制技术的研究变得至关重要。
一方面,电动车辆中各种电子设备的运行会产生电磁辐射,可能干扰到车辆内部的其他电子元件,甚至影响到整车的正常工作。
另一方面,电动车辆周围环境的电磁信号也可能对车辆内部系统造成干扰。
为了保证电动车辆的安全可靠运行,必须加强对电磁干扰的控制和抑制。
目前,针对电动车辆的电磁干扰抑制技术研究主要集中在以下几个方面。
首先是对电动车辆整车电磁辐射特性的研究,包括电磁场的分布特点、频谱分布规律等,通过对电磁辐射进行深入了解,有助于有效抑制电磁干扰。
其次是对电动车辆内部电子设备的电磁兼容性分析,根据不同设备的工作特点和敏感性,设计相应的电磁屏蔽措施和滤波器,降低电磁干扰的发生概率。
再者是对电动车辆外部环境电磁信号的监测和干扰分析,及时发现可能导致电磁干扰的源头,采取有效的干扰抑制措施。
此外,随着电动车辆的不断普及和推广,对其电磁干扰抑制技术提出了更高的要求。
例如,针对电动车辆在高速行驶时可能会产生更强的电磁辐射,需要采取更加严格的电磁干扰控制措施。
又如,在城市交通拥堵时,电动车辆密集运行可能导致电磁干扰问题更加突出,因此需要综合考虑车辆之间的电磁干扰情况,并设计相应的干扰抑制策略。
在电动车辆整车电磁干扰抑制技术研究中,还存在一些挑战和难点需要克服。
首先是电动车辆的电子系统和电磁干扰控制系统的集成问题,如何有效地组合各种电磁干扰抑制技术,确保系统的高效运行,需要深入研究。
新能源汽车电磁屏蔽原理

新能源汽车电磁屏蔽原理
新能源汽车的电磁屏蔽原理是指通过一系列技术手段来减少电
磁辐射对车辆内部电子设备和乘客的影响。
电磁辐射是指电流通过
导线时产生的磁场和电场的传播现象,而新能源汽车的电动驱动系
统和充电系统都会产生一定程度的电磁辐射。
为了确保车内的电子
设备正常运行并保障乘客的健康,新能源汽车需要采取一些措施来
进行电磁屏蔽。
首先,新能源汽车会采用特殊设计的金属屏蔽罩或屏蔽壳来包
裹电动驱动系统和充电系统的关键部件,如电机、电池和充电器等,以阻挡电磁辐射的传播。
这些屏蔽罩或屏蔽壳能够有效地吸收和反
射电磁波,降低其对周围环境的影响。
其次,新能源汽车的电子设备和导线也会采用特殊的材料和结
构设计,以减少电磁辐射的产生和传播。
例如,采用屏蔽导线和屏
蔽电缆可以有效地减少电磁波的辐射,同时在设计电子设备时也会
考虑到电磁兼容性,采取合适的屏蔽措施。
此外,新能源汽车在设计和生产过程中也会进行电磁兼容性测试,以确保车辆在正常工作和充电时不会产生过多的电磁辐射。
这
些测试包括对整车系统和各个电子设备进行辐射测试和抗干扰测试,以确保其符合相关的电磁兼容性标准和法规要求。
总的来说,新能源汽车的电磁屏蔽原理涉及到车辆的设计、材
料选择、电子设备的布局和测试等多个方面,通过综合应用这些技
术手段,可以有效地减少电磁辐射对车辆内部和乘客的影响,保障
车辆的安全性和电子设备的正常运行。
利用随机零矢量比例调制抑制电动汽车用逆变器电磁干扰

2 0 1 3 年5 月
湖
南
工
业
大
学
学
报
VO l _ 27 N O. 3
J o u na r l o f Hu n a n Un i v e r s i t y o f T e c h n o l o g y
Ma v 2 01 3
d 3 — 9 8 3 3 . 2 0 1 3 . 0 3 . 0 1 1
f o r he t lg a o r i t h m e x p e ime r n t a l a n ly a s i s . S i mu l a i t o n r e s u l t s s h o w t ha t c o mp a r i n g wi h t s e v e n s e g me n t s y mme r t r y, he t r nd a o m
( 1 . S c h o o l o f E l e c t r i c a l a n dI n f o r ma i t o nE n g i n e e r i n g ,H u n a nU n i v e r s i t yo f T e c h n o l o g y ,Z h u z h o u Hu n n4 a 1 2 0 0 7 ,C h i n a ;
摘
要 :提 出 了一种 随机 零 矢量 比例调 制 方法来抑 制 电动 汽车用逆 变器 电磁 干扰 。该 方法在原 有的七段
对 称 法调 制 的 基 础 上 ,随 机 地 改 变 2 个 零 矢量 之 间 的 比例 ,从 而 实现 随 机 调 制 ;利 用 M a t l a b / S i mu l i n k软 件 搭
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动汽车电磁干扰抑制
在订单的设计及市场问题处理过程中学习了电磁干扰方面的相关内容,主要将抑制电磁干扰的的措施进行了总结。
抑制、消除电磁干扰主要有接地、屏蔽和滤波三种方法,三种方法各具特色,也相互关联。
1、搭铁搭铁就是在两点之间建立导电通路,其中的一点通常是系统的电气元件,而另一点则是参考点,一个搭铁系统的有效性取决于在多大程度上减小搭铁系统的电位差和减小搭铁电流。
良好的搭铁可以消除各种噪声的产生,减小电磁干扰的作用,降低对屏蔽和滤波的要求。
2、屏蔽屏蔽能有效地抑制通过空间传播的电磁干扰,即辐射电磁干扰。
采用屏蔽的目的有两个:一是限制辐射电磁能量越出某一区域;二是防止外来的辐射电磁能量进入某一区域。
屏蔽按其机理可以分为电场屏蔽、磁场屏蔽和电磁场屏蔽。
在电源设计时,主要是采用全密封的金属外壳封装来实现屏蔽,达到抑制辐射电磁干扰的目的。
3、滤波滤波能有效地抑制通过载流导体传播的电磁干扰,即传导电磁干扰。
采用滤波的目的有两个:一是限制传导电能通过载流导体越出某一区域;二是防止外来的传导电能通过载流导体进入某一区域。
传导电磁干扰分为差模干扰和共模干扰两种。
在实际工作中,抑制电源传导电磁干扰通过载流导体转播,主要是采取在电源的输入端和输出端设置差模共模滤波器,我们公司就曾在高压配电箱正负极并联滤波电容。
对于纯电动客车和插电式混合动力客车,可考虑从以下几个方面抑制电磁干扰:1、电器部件的布置
电动汽车在有限的空间中集成了大功率电力电子元件及多个电动机。
在电动汽车布置中,电机控制器应尽可能靠近驱动电机布置,使电机控制器和电机之间的连线尽可能缩短,最好不要超过1500mm,整车控制器作为电动汽车的控制核心,是整个CAN网络的网关,它作为敏感源,整车布置时要远离电机和电机控制器等高压电气部件。
2、电动汽车用线束的走向及选材
在电动汽车电磁兼容问题的因素中,高低压线束占有重要地位。
这是因为线束电缆是一根根高效的接收和辐射天线,另外线束中的导线平行传输的距离最长,因此导线之间存在较大的分部电容和互电感,这会导致导线之间发生信号的串扰。
由于电动汽车上安装空间的限制,不可能使所有导线都保持起码的间距,但必须将具有相同潜在的干扰和大致相同灵敏度的导线综合在一起,并分开布线。
为达到充分的退耦,电动汽车各类导线之间应保持最小间距。
电池连接线等高压直流线与低压导线应保持的最小间距为100mm,与CAN总线、信号线应保持的
最小间距为200mm,电机控制器与电机之间连接线和低压导线应保持的最小间距为200mm,和CAN总线、信号线应保持的最小间距为300mm。
电动汽车布线及选材的规则:
a、各类电缆要分开铺设并保持相互之间的最小间距;
b、在各类不同电缆的情况下,如果不能保持最小间距,尤其是相对信号线的间距,应使用附加的屏蔽物(如金属屏蔽管等)并充分隔离;
c、在长度小于1000mm的导线一起铺设时,高压线可以和普通低压线铺设在一起,但不能与但不能信号线铺设在一起;
d、各种不同类型的导线垂直交叉时,不需最小间距;
e、电机三相线为合适电压等级的带屏蔽层电缆,信号线应为带屏蔽层双绞线。
3、电器部件箱体屏蔽
电磁干扰沿空间的传播是以场的方式进行的,可以通过屏蔽箱体对电磁场的反射损耗及吸收损耗,来减弱或者消除电磁干扰对系统内外设备的干扰。
a、模块屏蔽
将控制器内一些辐射大或抗干扰能力差的单板或模块单独安装在屏蔽盒中。
通常将IGBT模块、电源板等功率模块用金属网罩屏蔽,变压器、电抗器通过铁心环路和绕组线圈外面包一层或多层金属短路环以减少漏磁通。
b、壳体屏蔽
通过金属壳体把整个系统屏蔽起来,利用金属外壳对电磁干扰反射和吸收损耗,切断机箱内外干扰信号的传播。
比较常用的屏蔽材料有钢板、铝板、铝箔铜板、铜箔等。
c、应用铁氧体磁环
电动汽车总装结束后,电缆上产生的共模电压也就一定了,这时,减小电缆上的共模电流的方法就是增加共模电流回路的阻抗。
实用且有效的方法是在电缆上增加铁氧体磁环,将整束电缆穿过一个铁氧体磁环就构成了一个共模扼流圈,共模扼流圈不需要搭铁,可以直接加到电缆上,根据需要,也可以将电缆在磁环上绕几匝。
为了工程方便,很多厂家也提供分体式的磁环,这种磁环可以很容易地卡在电缆上。
在使用铁氧体磁环时,需要注意以下问题:
①铁氧体材料的选择根据要抑制干扰的频率不同,选择不同材料成分和磁导率的铁氧体材料。
电动汽车上采用的磁环应具有较高的高频磁导率,常用的高频磁性材料有锰锌氧磁体和镍锌氧磁体,因镍锌氧磁体磁导率的频率稳定性较好,在高频情况下磁导率仍保持基本不变,一般经常采用。
②铁氧体磁环的尺寸磁环的内外径差越大,轴向越长,阻抗越大,但内径一定要包紧导线,因此要获得大的衰减,在磁环内径包紧电缆的前提下,尽量使
用体积较大的磁环。
③铁氧体磁环的安装位置一般尽量靠近干扰源或敏感源,在电动汽车上,磁环要尽量靠近电机控制器的电缆进出口、充电插口、整车控制器接线口。
4、搭铁设计
电动汽车中沿电缆和底盘传导的共模电流是电动汽车产生电磁干扰的重要原因,采用恰当的搭铁电阻,可以衰减流向底盘的共模干扰电流及其引发的电磁辐射。
电动汽车只有轮胎和地面接触,整个车身对地是绝缘的,共模干扰电流经电机控制器底座流向底盘产生的共模电压很有可能危及乘客的安全,因此电机控制器底座、电机外壳必须搭铁。
另外,搭铁阻抗必须恰当,从而最大程度衰减共模干扰电流。
电动汽车CAN通信网络采用屏蔽双绞线。
双绞线绞环中感应的电磁场相互抵消,从而降低了外界电磁场对绞线的干扰以及绞线间的干扰,同时双绞线还可以降低导线间的非平衡性互电容,可以降低衰减。
屏蔽双绞线上的屏蔽层不仅防止外部干扰进入绞线,同时又控制自身信号对外辐射干扰。