第三章 傅里叶变换
第三章傅里叶变换的性质.ppt

0
f (t)奇函数:X ()
f (t)sin tdt 2
f (t)sin tdt
0
X () 0
R() 0
可见,R()=R(- )为偶函数; X()= -X(- )为奇函数; 若 f (t)是实偶函数,F(j )=R() 必为实偶函数。 若 f (t)是实奇函数,F(j )=jX() 必为虚奇函数。
1 T
(t
T
)
F( j)
T
根据时域微分特性:
( j)2 F ( j) 1 e jT 2 1 e jT ,
0 2
T
TT
T
F(
j )
2
2T
(1
cosT )
4
2T
sin
2 (T
2
)
TSa2 (T
2
)
第三章第1讲
12
频域微分和积分特性
公式:
( jt)n f (t) F (n) ( j) f (0) (t) 1 f (t) F (1) ( j)
表明信号过延程时都了是t0在秒频并谱不搬会移改的变基其础频上谱完的成幅的度。,但是 使其相位变化了 - t0
频移特性: f (t)e j0 t F[ j( 0 )]
表明信号 f (t)乘以 e j0 t,等效于其频谱 F(j)沿频率右移 0
因为: cos 0 t
1 2
(e
j0 t
e
j0 t
)
sin
0t
1 2j
(e
j0 t
信号与系统第三章傅里叶变换

a0
F f t F
f t
0
t
2
2
f
(at)
1 |a|
F
a
F
2
2
f t
0
t
4
4
F
4
4
时域中压缩
频域中扩展,时域中扩展
频域中压缩
(实例:录音:慢录快放,时间短、频带宽
t
f
t
1
t T1
0 t T1
F
2T1 sincT1
f t sinWt F
t
f t W sin cWt
W /
/W
/W
0
F
j
1
0
W W
F
t
1 F j
-W 0 W ω
1 X1 j
F j ea t e j tdt
0
eat e j t dt e at e j t dt
0
1 1
a j a j
F
j
2a
a2 2
ea t
a
0F
a
2
2a
2
f
t
1
0
2
2 f t F j e j td
交换 t ,
2 f
F
jt e j t dt
1F 2 2
f (t) 1
信号与系统第三章:傅里叶变换

bn
n1
sin(n1t)
其中
an
,
bn
称为傅里叶系数,
1
2
T
。
16
傅里叶系数如何求得
Ci
t2 t1
f
(t
)
i
(t
)dt
t2
t1
i
2
(
t
)dt
1 Ki
t2 t1
f
(t
)
i
(t
)dt
式中: Ki
t2
t1
i
2
(t
)dt
an
2 T
T
2 T
f (t) cos(n1t)dt
2
a0 2
,
1 T
0 T
2
(1)
cos(n1t
)dt
2 T
T
2 0
cos(n1t
)dt
23
0
T
1
n1
2 T
sin(n1t
)
T 2
2 T
1
n1
sin(n1t
)
2 0
1
2
T
an
0
n 0,1, 2,3,L
24
bn
2 T
T
2 T
f (t) sin(n1t)dt
2
2 T
0 T
2
(1)
sin(n1t
)dt
2 T
T
2 0
26
T
T
0
T/ 2
t
0
T/ 2
t
(a)基波
(b)基波+三次谐波
0
T/ 2
Tt
第3章离散时间傅里叶变换

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
第3章 连续信号的频谱——傅里叶变换

• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波
器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。 • 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。 • 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。 • 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
nw1 nw1
0
w
nw1
w1 0 w1
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性
—时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
1 t0 T1 2 f (t )dt P f (t ) t T1 0 1 1 2 2 2 2 2 a0 ( an bn ) c0 cn 2 n 1 2 n 1
其傅里叶级数三角展开式中 仅含基波和奇次谐波
例子
例如:奇谐函数
f (t )
E 2
T1 2
f (t )
E 2
T 1 2
0
E 2
T1 2
t
0
E 2
T1 2
t
sin( w1t )
E 2
f (t )
E 2
T1 2 T 1 2 T1 2
f (t )
0
E 2
t
0
E 2
T1 2
033第三章 傅里叶变换

T 0
f
2(t)d t
a02
1 2 n1
an2
bn2
a02
1 2
cn2
n1
Fn
n
2
这是帕塞瓦尔定理在傅里叶级数情况下的具体体现; 表明:
周期信号平均功率=直流、基波及各次谐波分量 有效值的平方和;
也就是说,时域和频域的能量是守恒的。 Fn 2 ~ 绘成的线状图形,表示 各次谐波的平均功率 随频率分布的情况,称为功率谱系数。
第三章 傅里叶变换
3.1 引言
X
频域分析
第 2
页
频域分析将时间变量变换成频率变量,揭示了信 号内在的频率特性以及信号时间特性与其频率特性之 间的密切关系,从而导出了信号的频谱、带宽以及滤 波、调制和频分复用等重要概念。
从本章开始由时域转入变换域分析,首先讨论傅里 叶变换。傅里叶变换是在傅里叶级数正交函数展开的基 础上发展而产生的,这方面的问题也称为傅里叶分析 (频域分析)。将信号进行正交分解,即分解为三角函 数或复指数函数的组合。
第第 2222
页页
偶函数 奇函数 奇谐函数 偶谐函数
注:指交流分量
X
第第
1.偶函数
2233
页页
信号波形相对于纵轴是对称的
f (t) f (t)
f (t) E
bn 0
4
an T
T
2 0
f (t)cosn1t d t
0
F
n
F (n1 )
1 2
an
jbn
1 2
an
T
O
n 0
T
t
傅里叶级数中不含正弦项,只含直流项和余弦项。
n
Fn1
信号课件第三章傅里叶变换

• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
信号与系统第3章 傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2
得
2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P=a
2 0
1 2
n 1
an2 bn2
c02
1 2
cn2
n 1
n
Fn
2
;
3、一个特别的性质: e jn e jn
3.1.3 函数的对称性与傅里叶系数的关系
1、波形对称分类:(1)、整周期对称,例如偶函数和奇函数,其可决定级数中只可能含有余弦项或正弦项;(2)半 周期对称,例如奇谐函数,其可决定级数中只可能含有偶次项或奇次项。 2、对称条件: (1)、偶函数:若信号波形相对于纵轴是对称的,即满足 f(t)=f(-t),此时 f(t)是偶函数,偶函数的 Fn 为实数。在偶函 数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2)奇函数:若波形相对于纵坐标是反对称的,即满足 f(t)=-f(-t),此时 f(t)是奇函数,奇函数的 Fn 为虚数。在奇函数 的傅里叶级数中不会含有余弦项,只可能含有正弦项。虽然在奇函数上加以直流成分,它不再是奇函数,但在它的 级数中仍然不会含有余弦项。 (3)寄谐函数:若波形沿时间轴平移半个周期并相对于该轴上下翻转,此时波形并不发生变化,即满足:
n2 1 2
) cos n1t
基波和偶次谐波频率分量。谐波幅度以 1 规律收敛。 n2
其中1
=
2 T1
;其频谱只包含直流、
3.2.5 周期全波余弦信号
1、周期全波余弦信号的傅里叶级数为:
f
(t)
2E
4E 3
cos(1t)
4E 15
cos(21t)
4E 35
cos(31t)
2E
4E
1n 1
第三章 傅里叶变换
傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的;
3.1 周期信号的傅里叶级数分析
3.1.1 三角函数形式的傅里叶级数
1、若
f(t)的周期为 T1 ,角频率为 1 =
2 T1
;频率为
f1
1 T1
,则傅里叶级数展开式为:
f (t) a0 an cos(n1t) bn sin(n1t) ;式中 n 为正整数,各次谐波成分的幅度值按照如下 n 1
f (t) f (t T1 ) ,这样的函数或称为寄谐函数。在半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正 2
弦值和余弦值,而不会包含偶次谐波项。 3.1.4 傅里叶有限级数与最小均方差 1、选取有限项级数是一种近似的方法,所选项数越多,有限项级数越逼近原函数,也就说,其方差误差越小;
n
E T1
Sa( n1 )
n
2
e jn1t
3、结论:
(1)、周期矩形脉冲如同一般的周期信号那样,它的频谱时离散的,两谱线的间隔 1 (=
2 T1
),当脉冲重复周期越大,
谱线越靠近
(2)、直流分量、基波及各谐波分量的大小正比于脉幅 E 和脉宽 ,反比于周期 T1 。
(3)、周期矩形信号包含无穷多条谱线,但其主要能量集中在第一个零点以内。常常把 0 ~ 2 这段频率范围称
a0
1 T1
t0 T1 f (t) dt
t0
an
2 T1
t0 T1 t0
f
(t )
cos(n1t )dt
bn
2 T1
t0 T1 t0
f
(t) sin(n1t)dt
为了方便起见,通常积分区间 t0
~
t0
T1取为0~T1或-
T1 2
~
T1 2
。
2、不是所有的周期信号都能进行傅里叶级数展开。被展开的函数 f(t)需要满足“狄里赫利条件”,如下所示:
2、一些性质 (1)、傅里叶级数所取项数 n(=N)越多,相加后波形越逼近原信号 f(t),两者的方均误差越小; (2)、当信号 f(t)是脉冲信号时,其高频分量主要影响脉冲的跳变沿,而低频分量主要影响脉冲的顶部;所以,f(t) 的波形变化越剧烈,所包含的高频分量越丰富;变化越缓慢,所包含的低频分量越丰富; (3)、当信号中任一频谱分量的幅度或相位发生相对变化时,输出波形一般要发生失真。 3:吉布斯现象:当所取的项数 N 很大时,该峰起值趋于一个常数,它大约等于总跳变值的 9%,并从不连续点开始 以起伏振荡的形式逐渐衰减下去。
3.2 典型周期信号的傅里叶级数
3.2.1 周期矩形脉冲信号
1、周期矩形信号的三角形傅里叶级数为:
f (t)
E T1
2E T1
n 1
Sa(
n T1
)
cos
n1t
或
f
(t)
E T1
E1
Sa( n1
n 1
2
) cos n1t
2、周期矩形信号的指数的傅里叶级数为:
f
(t)
Fne jn1t
为矩形信号的频带宽度,记作
B,于是 B
2
, Bf
1
;脉冲宽度 B 只与脉宽
有关,而且成反比关系。
3.2.2 周期锯齿脉冲信号
1、周期锯齿脉冲信号的傅里叶级数为: 的幅度以 1 的规律收敛;
n
f
(t)
E
n 1
n 1
(1)
1 n
sin(n1t)
;周期锯齿脉冲信号的频谱只包含正弦分量,谐波
3.2.3 周期三角脉冲信号
(1)、在一周期内,如果有间断点存在,则间断点的数目应该是有限个;
(2)、在一周期内,极大值和极小值的数目应是有限个;
(3)、在一周期内,信号是绝对可积的,即
| t0 T1
t0
f (t)| dt 等于有限值( T1 为周期)
3、把频率为 f1 的分量称为基波,频率为 2 f1 ,3 f1 ,…的分量分别称为二次谐波、三次谐波、… 4、周期信号的频谱只会出现在 0, 1 ,2 1 ,…离散频率点上,这种频谱称为离散谱,它是周期信号的主要特点。
1、周期三角脉冲信号的傅里叶级数为:
f
(t)
E 2
4E 2
n 1
1 n2
sin2 ( n 2
) cos n1t ;其频谱只包含直流、基波及奇次谐波
频率分量,谐波的幅度以 1 的规律收敛。 n2
3.2.4 周期半波余弦信号
1、周期半波余弦信号的傅里叶级数为:
f
(t)
E
2E
n 1
1
n
cos(
3.1.2 指数形式的傅里叶级数
1、f(t)的指数形式的傅里叶级数为: f
(t)
n
F
n1 e jn1t
,其中
Fn
F
n1
1 T1
t0 T1 f t dt ,n 为从- 到 的整数。
t0
由于 Fn 一般为复函数,所以称这种频谱为复数频谱。
2、周期信号
f(t)的平均功率与傅里叶系数的关系:
n 1
1 4n2
1
cos(
n 2
) cos 2n0t
其频谱包含直流分量及
ห้องสมุดไป่ตู้
0
的基波和各次谐波分量,或着说,只包含直流分量及
0
的偶次谐波分量。谐波的幅度以
1 n2