勾股定理的实际应用习题

勾股定理的实际应用习题
勾股定理的实际应用习题

17.1勾股定理提升练习

1.如图18-29所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )

A.3

B.4

C.5

D.6

2.如图18-30所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10 cm,正方形A的边长为6 cm,B的边长为5 cm,正方形C的边长为5 cm,则正方形D的边长为( )

A.14cm

B.4 cm

C.15cm

D.3 cm

3.如图18-31所示,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD的边BC的长为( )

A.20

B.22

C.24

D.30

4.如图18-32所示,四边形ABCD为长方形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于( )

A.43

B.33

C.42

D.8

5.如图18-33所示,直线l是一条河,P,Q两地相距8千米,P,Q两地到l的距

离分别为2千米、5千米,欲在l上的某点M处修建一个水泵站,向P,Q

两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是(如图18-34所示)( )

6.如图18-35所示,已知半圆A的面积是3,半圆B的面积是4,则半圆C的面积是.

7.若直角三角形的斜边长为25 cm,一条直角边的长为20 cm,则它的面积

为cm2,斜边上的高为cm.

8.若直角三角形的两条直角边长分别为8,15,则它的周长为.

9.如图18-36所示,P是△ABC内任意一点,PD⊥AB,垂足为D,PE⊥BC,垂足为E,PF⊥AC,垂足为F,则AD2+BE2+CF2=AF2+BD2+CE2成立么?说明理由.

10.一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则一个半小时后,两船相距多少海里?

11.将一根长24 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形透明玻璃杯中,如图18-37所示,设筷子露在杯子外面的长为h cm,求出h的取值范围.

12.如图18-38所示,探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n=2时,钉子板上所连线段的不同长度值只有1与2,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;当n=3时,钉子板上所连线段的不同长度只有1, 2,2,5,22五种,比n=2时增加了3种,即S=2+3=5.

(1)观察图形,填写下表:

钉子数(n×n) S值

2×2 2

3×3 2+3

4×4 2+3+( )

5×5 ( )

(2)写出(n-1) ×(n-1)和n×n的两个钉子板上不同长度值的线段种数之间的关

系;(用式子或语言表述均可)

(3)对n×n的钉子板,写出用n表示S的代数式.

13.把一副三角板按如图18-39所示放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6 cm,DC=7 cm,把三角板DCE绕点C顺时钉旋转15°得到△D′CE′,如图18-40所示,这时AB与CD′相交于点O,D′E′与AB相交于点F.

(1)求∠OFE′的度数;

(2)求线段AD′的长;

(3)若把△D′CE′绕点C顺时钉再旋转30°得△D″CE″,这时点B在△D″CE″的内部、外部,还是边上?证明你的判断.

参考答案

1.A[提示:因为∠B =90°,AB =6,BC =8,所以AC 2=AB 2+BC 2=62+82=100,所以AC =10,又因为△ABD ≌△AED ,所以BD=DE ,∠AED=∠B =90°,AB=AE =6,设BD=DE=x ,则DC=BC-BD =(8-x ) 2,所以x =3.]

2.A[提示:设正方形D 的边长为x cm ,由图可知62+52+52+x 2=102,解得x =14.]

3.C

4.A[提示:由题意可知DE =3,AE=AB =6,在Rt △ADE 中,由勾股定理得AD =33,在Rt △EFC 中,设CF=x ,则BC=AD =33,EF=BF=33-x ,根据勾股定理得x =3,所以BF =33-x =23,在Rt △ABF 中,AB =6,BF =23,根据勾股定理得AF =43.故选A.]

5.A[提示:A 项:管道长为PM+PQ =2+8=10(千米),B 项:如图18-41所示,PM+QM=BQ =22AB AQ +,在Rt △PCQ 中, PC=22228(52)55PQ CQ -=--=,

∴BQ=22(55)(52)++=104≈10.2(千米),C 项:如图18-42所示,∵PB+BQ >PQ ,∴PB+BQ >8,BM=P A =2,∴PB+BQ+BM >10,D 项:∵M 为直线l 上任意一点,∴PM+QM 要大于图18-41中的PM+MQ ,即铺设管道D 中的要大于B 中的. ∴管道最短的是A.]

6.7[提示:S 半圆C =S 半圆A +S 半圆B .]

7.150 12[提示:另一直角边长为222520-=15,∴

12×20×15=12×25 h ,∴h =12.]

8.40[提示:斜边长为22815+=17,∴周长为17+8+15=40.]

9.解:相等.现由如下:连接

AP ,BP ,CP ,由勾股定理,得

AD 2=AP 2-PD 2,BE 2=BP 2-PE 2,CF 2=CP 2-PF 2,所以

AD 2+BE 2+CF 2=AP 2-PD 2+BP 2-PE 2+CP 2-PF 2

=(AP 2-PF 2)+(BP 2-PD 2)+(CP 2-PE 2),而AP 2-PF 2=AF 2,BP 2-PD 2=BD 2,CP 2-PE 2=CE 2,所以AD 2+BE 2+CF 2=AF 2+BD 2+CE 2.

10.解:如图18-43所示,东南方向即南偏东45°,西南方向即南偏西

45°,故∠BOA =90°,又因为两船行驶 1.5 小时,则OA =16×1.5=24(海

里),OB =12×1.5=18(海里),连接AB ,在Rt △AOB 中,由勾股定理得

AB 2=OA 2+OB 2.所以AB 2=242+182=576+324=900,所以AB =30海里.答:

一个半小时后两船相距30海里.

11.解:当筷子竖起放置时,露在外面的最长,此时h =24-12=12(cm).设筷子斜放时,插入杯最大长度为x cm.由勾股定理得x 2=52+122=169, ∴x =13,此时h =24-13=11(cm). ∴11≤h ≤12.

12.解:(1)4 2+3+4+5(或14) (2)n×n 的钉子板比(n -1) ×(n -1)的钉子板上不同长度值的线段种数增加了n 种或分别用a,b 表示n×n 与(n -1) ×(n -1)的钉子板上不同长度值的线段种数,则a=b+n. (3)S =2+3+…+n .

13.解:(1)如图18-44所示,因为∠3=15°, ∠E ′=90°, ∠1=∠2,所以

∠1=75°,又因为∠B =45°,所以∠OFE ′=∠B +∠1=45°+75°=120°,

(2)因为∠OFE ′=120°,所以∠D′FO =60°,又因为∠CD′E′=30°,

所以∠4=90°,又因为AC=BC ,AB =6,所以OA=OB =3,因为∠ACB =90°,

所以CO =12AB =12

×6=3,又因为CD′=7,所以OD′=CD′-OC =7-3=4, 在Rt △AD′O 中,AD ′=222234OA OD +'=+=5(cm).

(2) 点B 在△D″CE ″的内部,理由下如:设BC (或延长线)交D″E″于点B′,因为

∠B′CE″=15°+30°=45°,在Rt △B′C E″中,CB ′=2CE ″=

722,又∵CB =32<

722,即CB <CB ′,所以点B 在△D″CE″的内部.

勾股定理应用题

2.勾股定理实际问题应用 1.若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( ) A. 48 cm 2 B. 36 cm 2 C. 24 cm 2 D.12 cm 2 2.一根32厘米的绳子被折成如图所示的形状钉在P 、Q 两点,PQ=16厘米,且RP ⊥PQ , 则RQ= 厘米 3.小明和小强的跑步速度分别是6m/s 和8m/s ,他们同时从同一地点分别向东、南练习跑 步,那么从出发开始需__________s 可以相距160m 4.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸 地点偏离目标地点200m ,他在水中实际游了520m ,那么该河的宽度为 ( ) A.440 m B.460 m C.480 m D. 500 m 5、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱 形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取 值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm 6.一架5m 长的梯子靠在一面墙上,梯子的底部离建筑物2m ,若梯子底部滑开1m ,则梯 子顶部下滑的距离是___________(结果可含根号) 7、有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. 如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒外对面中部点B 需要多少时间? (结果保留π) 8.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 大约是 ( ) A.6cm B.10cm C.14cm D. 18cm 9、如图,笔直的公路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于 点B ,已知DA=15km ,CB=10km ,现在要在公路的AB 段上建一个土特产品收购站E ,使得C 、 D 两村到收购站 E 的距离相等,则收购站E 应建在离A 点多远处? A D E B C A · B · A B · ·

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

勾股定理的应用教学设计20

勾股定理在实际生活中的应用 学习目标 1通过本科的学习,掌握利用勾股定理理解:决实际问题的方法分析———画图———解答。 2掌握勾股定理在实际生活中的重要性。 3在互助学习中进一步了解数学源于生活,有服务于生活的道理。 教学重点 如何利用勾股地理解决实际问题。 教学难点 将实际生活问题转化成用勾股定理解决的数学问题。 教学手段 多媒体课件 教学准备 课件五个生准备门框框架 教学方式 互助学习 教学过程 —,温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读了非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 一、温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读的非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 师:请同学们打开教材25页,互助合作学习完成例1,例2. 二、互助学习 (一)出示课件2、3结合课件小组进行互助学习。师友互学,教师巡视指导。 生1汇报例1,师友补充并展示例1的解题过程。 生2讲解例2,师友展示例2解答过程。 (二)生讨论归纳:通过对例1、例2的学习,你发现了什么? 教师板书:分析---------画图---------解答 (RTΔ)(勾股定理) 三、探究提升 (一)出示课件4(思考题)

勾股定理的实际运用

勾股定理的实际运用 一.勾股定理: (1)直角三角形两直角边的_______等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么_____. (2)我国古代把直角三角形中较短的直角边称为_____,较长的直角边称为________,斜边称为______. 二.直角三角形的判别条件 1.直角三角形的判别条件(也称为勾股定理的逆定理) 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形(此判别条件也称为勾股定理的逆定理).如图所示,在△ABC中,如果AC2+BC2=AB2.那么△ABC就是以∠C为直角的直角三角形. 2.判断直角三角形的步骤 (1)确定最长边. (2)算出最长边的平方与另两边的平方和.(3)比较最长边的平方与另两边的平方和是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形. 3.直角三角形的判别条件与勾股定理的联系和区别 (1)联系 都是和直角三角形有关的内容,都和三角形的三边有关系,都渗透了数形结合的思想. (2)区别 勾股定理是由形到数,即由直角三角形得到三边之间的数量关系,是直角三角形的一个性质;而直角三角形的判别条件是由数到形,即由三边关系得到三角形的形状—直角三角形,是直角三角形的一种判别方法.

知识点一.确定几何体表面上的最短路线 1.解决几何体表面上两点之间最短路线问题的关键是把立体图形转化为平面图形,具体步骤是:(1)把立体图形展开成平面图形;(2)确定最短路线;(3)确定直角三角形;(4)根据直角三角形的边长,利用勾股定理求解 2.求立体图形表面上两点之间的最短路线长,主要涉及如下问题: (1)圆柱形物体表面上两点之间的最短路线长,主要涉及如下问题:(1)圆 柱形污图表面两点之间的最短路线长;(2)长方体表面两点之间的最短路线长;(3)台阶表面两点之间的最短路线长. 例题1:如图所示,有一个圆柱形油罐,要从点A处环绕油罐建梯子,正好到 点A的正上方点B,问梯子最短需要多长?(已知油罐的底面周长是12m,高AB 是5m) 知识点二.利用直角三角形的判别条件判断垂直 利用直角三角形的判别条件判断三角形是直角三角形也是判断垂直的一种方法.在实际生活中常常需要判断两直线是否垂直,解决此类问题的一般方法是将实 际问题转化为数学问题.首先,结合题意画出符合要求的三角形,再利用直角三角形的判别条件判断垂直. 例题2.如图所示,如果只给你一把带有刻度的直尺,你能否检验∠P是不是直角?简述你的作法,并说明理由.

勾股定理的应用

卓邦教育勾股定理应用练习 1.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)() A、3 B、5 C、4.2 D、4 1题2题3题4题 2.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为() A、10米 B、6米 C、7米 D、8米 3.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺. A、10 B、12 C、13 D、14 4.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为() A、10米 B、16米 C、15米 D、14米 5.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA⊥AB 于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km. A、5 B、10 C、15 D、25 6.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=8m,AD=6m,CD=24m,BC=26m,又已知∠A=90°.求这块土地的面积. 7.如图,某地方政府决定在相距50km的两站之间的公路旁E点,修建一个土特产加工基地,且C、D两村到点E的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

勾股定理经典例题(含答案)A

勾股定理经典例题(含答案)A

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 举一反三【变式1】如图,已知:,,于P. 求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从 营地A点出发,沿北偏东60°方向走了到 达B点,然后再沿北偏西30°方向走了500m到达目的地C 点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 举一反三【变式】在数轴上表示的点。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 2.原命题:对顶角相等 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等.7、如果ΔABC的三边分别为a、b、c,且满足

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) ? 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________; __________;___________. 2. 请你画出圆柱的侧面展开图. 3. 读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 的长度来估计爬行的路程,如图1. 方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,的方法,动手测量一下这条线的长度. ? 知识点睛

蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. ?精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8 cm,底面半径等于2 cm.在 圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A上升到点B,已知 AB=5 cm,树干的直径为4 cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3) 3.如图所示,有一根高为2 m的木柱,它的底面周长为0.3 m,为了营造喜庆的气 氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

勾股定理及其应用

勾股定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。 C. 勾股数组、基本勾股数组及勾股数的推算公式。 D. 勾股定理及其逆定理的应用。 E. 感受“方程”思想、“数形结合”思想、“化归与转化”思想等数学思想。 重点知识勾股定理的验证

(美)伽菲尔德总统拼图 如右图,直角梯形的面积等于三个直角三角形的面积之和,所以 ()()22121221 c ab b a b a +?=+? +,即222c b a =+ 赵爽弦图 如右图,用四个全等的直角三角形可得到一个以()a b -为边长的小正方形和一个边长为c 的大正方形,因为大正方形的边长为c ,所以面积为2c ,又因为大正方形被分割成了四个全等的直角边长分别为b a ,的直角三角形和一个边长为()a b -的正方形,所以其面积为 ()2 2 14a b ab -+?所以()2 22 14a b ab c -+?=,从而222b a c +=. 刘徽:青朱出入图 如右图,通过拼图,以c 为边长的正方形面积等于分别以b a ,为边长的两个正方形的面积之和 名师提示 用拼图法验证勾股定理的思路:①图形经过割补拼接后,只 要没有重叠、没有空隙,那么面积就不会改变;②根据同一种图形面积的不同表示方法(简称面积法)列出等式,推导勾股定理 重点知识 确定几何体上的最短路线 描述 示意图 9 E D B A C F 7 D A E B C F 展开 5 甲 F D E F

(完整版)勾股定理的实际应用题

18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 19.(2007?义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处; (2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处; (3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A. 20.(2013?贵阳模拟)请阅读下列材料: 问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线: 路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π) (1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短. (2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:= _________.路线2:=_________.所以选择路线_________(填1或2)较短. (3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

勾股定理经典例题(含答案)29050

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长 是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长, 进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中, . ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD

最新勾股定理逆定理讲义(经典例题+详解+习题)

XX教育一对一个性化教案 授课日期:2014 年月日学生姓名许XX 教师姓名授课时段2h 年级8 学科数学课型VIP 教学内容勾股定理及逆定理 教学重、难点重点:运用勾股定理判定一个三角形是否为直角三角形。难点:运用用勾股定理和勾股定理逆定理解决实际问题。 教学步骤及突出教学方法一、知识归纳 1、勾股定理的逆定理 如果三角形三边长a,b,c满足222 a b c +=,那么这个三角形是直角三角形,其中c为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22 a b +与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222 a b c +<,时,以a,b,c为三边的三角形是钝角三角形;若222 a b c +>,时,以a,b,c为三边的三角形是锐角三角形; ②定理中a,b,c及222 a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222 a c b +=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。 2、勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222 a b c +=中,a,b,c为正整数时,称a,b,c为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n组勾股数: 22 1,2,1 n n n -+(2, n≥n为正整数); 22 21,22,221 n n n n n ++++(n为正整数) 2222 ,2, m n mn m n -+(, m n >m,n为正整数)

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例 一、利用勾股定理解决立体图形问题 勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。 一、长方体问题 例1、如图1,图中有一长、宽、高分别为5cm、4cm、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是() A、41cm B、34cm C、50cm D、75cm 分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC,根据已知条件,可以判断BD 是Rt△BCD 的斜边,BD 是Rt△ BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。 解:在Rt△ABC 中,AB=5 ,AC=4,根据勾股定理, 得BC= AB2 AC2 = 41 , 在Rt△BCD 中,CD=3,BC= 41 , 22 BD= BC2 CD2 = 50 。所以选C。说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。二、圆柱问题 例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?

分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。由题意可知,S、 F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3 的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。 解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm),FB=18―1―1=16 (cm),在Rt△SBF 中,∠SBF=90°,由勾股定理得,SF= SB2 FB 2 = 302 162 =34(cm),所以蜘蛛所走的最短路线的长度是34cm。 说明:将立体图形展开,转化为平面图形,或将曲面转化为平面,然后再运用“两点之间,线段最短”和勾股定理,则是求立体图形上任意两点间的最短距离的常用的方法,这也是一种重要的数学思想转化思想。 二、利用勾股定理确定最短问题 我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题. 例1(恩施自治州)如图 1 ,长方体的长为15,宽为10 ,高为20,点 B 离点 C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是() 图1 ①

(完整版)勾股定理典型练习题

新人教版八年级下册勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 222()2S a b a ab b =+=++ 所以222 a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=? , 则c = ,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。 ① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形” 来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形; ② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b , c 为三边的三角形是锐角三角形; ③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b , c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222 ,2,m n mn m n -+(,m n >m ,n 为正整数) c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

相关文档
最新文档