遗传的染色体学说
第三章 遗传的染色体学说

有丝分裂与减数分裂的区别
有丝分裂
分裂细胞类型 体细胞
减数分裂
原始生殖细胞(孢母细胞)
细胞分裂次数
子细胞数目 染色体数目变化 DNA分子数变化 染色单体数目变 化 同源染色体行为 可能发生的变异 意义
复制一次分裂一次
2 2n→2n 2n→4n→2n 0→4n→0
不联会、无四分体形成 基因突变和染色体变异
一套染色体(n)。
核型分析(analysis of karyotype)
把生物细胞核内全部染色体的形态特征(染色体长度、着丝点位置、 长短臂比、随体有无等)所进行的分析,也称为染色体组型分析 (genome analysis) 。
例如,人类的染色体有23对(2n = 46),其中22对为常染色体,另一 对为性染色体。 人类的染色体组型分析,对于鉴定和确诊染色体疾病具有重要 的作用。
(2)高等植物的受精
授粉 pollination:成熟的花粉粒落到柱头上并 开始萌发的过程。 自花授粉 异花授粉(风媒、虫媒) 常异花授粉 受精 fertilization:雌雄配子融合成为合子的过 程。
被子植物的双受精
1898年俄国科学家纳瓦兴发现了被子植物的双受精现象 double fertilization。
着丝粒
后期(anaphase)
4、末期(telophase)
在核的四周核膜重新形成,染色体又变为均匀的 染色质,核仁又重新出现,又形成了间期核。细胞质被 新的细胞膜分隔为两部分,结果产生了两个子细胞。
末期(telophase)
早前期
晚前期
中期
间期
末期
晚后期
遗传的染色体学说PPT课件

解析 孟德尔的豌豆杂交实验为假说—演绎法;萨 顿提出假说“基因在染色体上”为类比推理的方 法;而摩尔根进行果蝇杂交实验也是假说—演绎 法。 答案 C
13
考点二 染色体组型、性染色体和性别决定
1.染色体组型(染色体核型)的理解 (1)概念:将某种生物体细胞内的全部染色 体,按大小和形态特征进行配对、分组和排列所 构成的图像。 (2)步骤:显微摄影→测量→剪贴→配对、分 组和排列→图像。 (3)用途:根据种的特异性来判断生物的亲缘 关系和遗传病的诊断。
3
三、染色体组型
染色体组型又称 染色体核型 ,是指将某种生物体 细胞中的全部染色体,按 大小和形态特征 进行 配对、分组和 排列所构成的图像。
四、性染色体和性别决定
1 . 染 色 体 分 类 : 一 类 是 性染色体 , 另 一 类 是 常染色体 。
2.性别决定的主要类型: XY 型和 ZW 型。
9
3.方法:类比推理法,即借助已知的事实及事物间 的联系推理得出假说。染色体上呈线性排列。每种生物的体细胞含 有一定数目的染色体,DNA主要存在于细胞核内, 少量存在于线粒体、叶绿体中。前者DNA位于染色 体上,复制前每条染色体有1个DNA分子,复制后每 条染色体有2个DNA分子,而后者DNA是裸露的。每 个DNA分子上含有许多基因,基因在染色体上呈线 性排列。
6
练一练 某种遗传病的遗传系谱如图所示。该病受一对基因 控制,设显性基因为A,隐性基因为a。请分析回答: (阴影为患者)
(1)该遗传病的致病基因位于常 染色体上 显性遗 传。 (2)Ⅰ2和Ⅱ4的基因型分别是aa和Aa 。 (3)Ⅱ4和Ⅱ5再生一个患病男孩的概率是3/8 。
7
构建知识网络
8
高频考点突破
遗传的染色体学说

的方便起见,通常将其分成前期、中期、后 期和末期四个时期,在两次有丝分裂中间的 时期称为间期。
细胞周期(cell cycle)
上一次细胞分裂结束起到下一次细胞分裂止,细
胞所经历的变化过程和时间。
例如:蚕豆根尖
19.5小时。
间期 分裂期 G1 — S — G2 — M 5 7.5 5 2
(减数分裂I,meiosis I)和第二次减数分裂(减 数分裂II,meiosis II),在两次减数分裂中都 能区分出前期、中期、后期和末期(图)。
第一次分裂 前期I(prophaseI)
第一次减数分裂的前期特别长,包括细 线期、偶线期、粗线期、双线期、终变 期。
细线期 leptotene
染色体细长如丝,首尾难分, 彼此缠绕在一起
偶线期 zygotene
同源染色体开始彼此靠拢联会配对
粗线期:染色体继续缩短变粗,两条同源染色体配对完 毕。因此原来是2n条染色体,经配对后形成n组染色体, 每一组合有2条同源染色体,这种配对的染色体叫做双 价体(二价体)。
粗线期 pachytene
二价体凝缩变短变粗呈粗线状 可发生非姊妹染色单体的交换。
同一物种相对恒定 水稻2n=24 玉米2n=20 陆地棉2n=52 萝卜2n=18 番茄2n=24
体细胞中成双
生殖细胞中成单
染色体组型分析和显带
染色体组:一个生物赖以生存和保证正常生
长与发育最低数目的一套染色体。
染色体组型:有丝分裂中期染色体的表现,
包括一个生物种的染色体数目、形态和组成。
有 丝 分 裂
间期
早前期
晚前期
有丝分裂的意义?
中期
第三章遗传的染色体学说课件

染色质和染色体是真核生物遗传物质存在的 两种不同形态,两者不存在成分上的差异, 仅反映它们处于细胞分裂周期的不同时期的 两种状态
1、染色体一般形态结构
分裂期出现,复制在间期,所以每条染色体含并列的两条染色单 体——姐妹染色单体。
初级缢痕:染色体一定部位、向内凹陷、着色 较浅且狭窄的部位叫初级缢痕;将染色体分两 部分,染色体的长、短臂。 着丝粒:在初级缢痕处把两条姐妹染色单体连 一起的颗粒状的结构,其位置固定。
后期
①着丝点一分为二, 姐妹染色单体分开, 成为两条染色体。
纺锤丝牵引着子染 色体分别向细胞的 两极移动。这时细 胞核内的全部染色
并分别向两极移动
体就平均分配到了
细胞两极
染色体特点:染色单体消失,染色体数目加倍。
末期
①染色体变成染 色质,纺锤体消 失。②核膜、核仁 重现
③在赤道板位置 出现细胞板,并 扩展成分隔两个 子细胞的细胞壁
(2) 中期I:
各个双价体排列在赤道面上,两个同源染色 体上的着丝粒逐渐远离,双价体开始分离, 但仍有交叉联系着
(3) 后期I:
双价体中的两条同源染色体分开,分别向两 极移动,每一染色体有两个染色单体,在着 丝粒区相连(相当于有丝分裂前期的一条染色 体)。这样,每一极得到n条染色体,即在后 期I时染色体数目减半。双价体中哪一条染色 体移向哪一极是完全随机的
(6) 前期II、中期II、后期II和末期II
前期II、中期II、后期II和末期II的情况和有丝 分裂过程完全一样,也是每一染色体具有两 条染色单体,所不同的是染色体在第一次分 裂过程中已经减数,只有n个染色体了
减数分裂的遗传学意义
(一) 减数分裂是有性生殖生物产生性细胞 所进行的细胞分裂方式;而两性性细胞受精结 合(细胞融合)产生的合子是后代个体的起始点
遗传的染色体学说

遗传的染色体学说介绍遗传的染色体学说是基因遗传学的基础理论之一。
该理论认为,遗传信息通过染色体传递给后代,决定了个体的遗传特征和性状。
本文将深入探讨遗传的染色体学说,从染色体的发现、结构与功能、遗传物质的定位等多个方面进行分析。
染色体的发现与研究遗传学与染色体学的关系遗传学是研究遗传现象及遗传规律的科学,而染色体学则是研究染色体的结构、功能和遗传规律的分支学科。
遗传学与染色体学密切相关,染色体学的建立对于遗传学的发展起到了重要推动作用。
染色体的发现染色体的发现可以追溯到19世纪。
1838年,德国细胞学家沙万在肝藻(Aphanocapsa)细胞中首次观察到纤细的结构,被后来的科学家称之为染色体。
随后,另一名德国细胞学家弗莱明在观察动植物细胞时,进一步确认了染色体的存在。
染色体的结构与功能染色体的结构对于大多数生物来说,染色体是由DNA和蛋白质组成的复合物。
在非分裂细胞中,染色质是染色体主要的可见部分。
染色质是由DNA、组蛋白和其他蛋白质组成的复合结构,呈现出一种线状的、纺锤状的或环状的形式。
染色体的功能染色体担负着许多重要的功能,包括: 1. 遗传信息的存储和传递:染色体承载了个体的所有遗传信息,并能通过有丝分裂和减数分裂传递给后代。
2. 基因的表达和调控:染色体上的基因通过转录和翻译等过程表达出来,决定了个体的性状和特征。
3. 遗传多样性的产生:染色体在有丝分裂和减数分裂过程中的交换、断裂和重新组合等事件,导致了个体之间的遗传多样性。
遗传物质的定位DNA的发现与结构DNA(脱氧核糖核酸)被认为是遗传物质。
20世纪初,摩尔根等科学家通过实验证明了遗传物质位于染色体中,并由DNA组成。
1953年,沃森和克里克提出了DNA 的双螺旋结构模型,即著名的DNA双螺旋结构。
基因与DNA的关系基因是决定个体性状的基本单位,而DNA则是基因存在的物质基础。
每个基因都包含在染色体上的特定位置,称为基因座。
而基因座上的DNA序列则决定了基因的信息。
《遗传的染色体学说》 讲义

《遗传的染色体学说》讲义在生命的奥秘中,遗传现象一直是人们探索和研究的重要领域。
而遗传的染色体学说的提出,为我们理解遗传的本质和规律提供了关键的理论基础。
首先,让我们来了解一下什么是染色体。
染色体是存在于细胞核中的线状结构,由 DNA、蛋白质和少量 RNA 组成。
在细胞分裂时,染色体可以清晰地被观察到,它们呈现出特定的形态和特征。
那么,遗传的染色体学说究竟是什么呢?简单来说,它认为基因位于染色体上,染色体是基因的载体。
这一学说的提出并非一蹴而就,而是经历了众多科学家的研究和探索。
早在19 世纪末,孟德尔通过豌豆杂交实验发现了遗传的基本规律,但当时人们并不清楚基因在细胞中的位置和作用方式。
随着显微镜技术的发展,人们能够更清晰地观察到细胞的结构和染色体的行为。
在这个过程中,萨顿通过对蝗虫生殖细胞的研究,观察到染色体在减数分裂过程中的行为与孟德尔遗传定律中基因的分离和组合规律十分相似。
他由此提出了染色体学说的初步想法,即染色体在遗传中可能起着重要的作用。
摩尔根则通过果蝇杂交实验,为遗传的染色体学说提供了有力的证据。
他发现果蝇的某些性状与特定的染色体相关联,进一步证明了基因位于染色体上。
那么,染色体是如何实现遗传功能的呢?在细胞分裂过程中,染色体进行复制,然后在减数分裂时,同源染色体配对并发生交换,这使得遗传物质能够重新组合,增加了遗传的多样性。
基因在染色体上呈线性排列,不同的基因位于不同的位置。
当染色体传递给子代细胞或个体时,其上的基因也随之传递,从而实现了遗传信息的传递。
遗传的染色体学说对于我们理解生物的遗传现象具有重要意义。
它解释了为什么子代能够继承亲代的特征,以及遗传变异是如何产生的。
例如,在有性生殖过程中,双亲的染色体通过配子的结合传递给子代,使得子代获得了双亲的遗传信息。
同时,由于减数分裂过程中的染色体交换和随机组合,子代又具有了不同于双亲的新的遗传组合,这就是遗传变异的来源之一。
此外,遗传的染色体学说也为遗传学的进一步发展奠定了基础。
遗传的染色体学说

对细胞分裂和发育的研究
细胞分裂过程中的染色体行为
染色体学说对细胞分裂过程中染色体的行为进行了详细的描述,包括染色体的复制、分离和重组等过 程。这些过程对于理解细胞分裂的机制以及发育过程中基因组的重排和变化具有重要意义。
细胞分化与染色体的关联
染色体学说揭示了细胞分化过程中染色体的关联和变化。这有助于理解细胞如何从原始的胚胎细胞分 化成具有特定功能的成熟细胞,以及这些过程中染色体的作用和变化。
孟德尔遗传定律的发现
孟德尔的豌豆实验
孟德尔通过对豌豆进行的一系列 实验,揭示了遗传的基本规律, 包括分离定律和自由组合定律。
孟德尔定律的贡献
孟德尔的定律为理解遗传物质的 传递和分布提供了基础们发现了染色体的存在,它们承载了遗传信息。
染色体与遗传
课堂讨论总结
通过课堂讨论,我们深入探讨了遗传 的染色体学说的基本概念和原理,理 解了基因与性状之间的关系,以及基 因在世代传递中的规律。
学生们积极发言,对一些经典案例进 行了深入剖析,加深了对遗传学基础 知识的理解。
下节课预告与预习内容
• 下节课我们将进一步探讨细胞分裂过程中染色体的行为和变化, 以及DNA复制和转录的相关内容。请大家提前预习相关的基础 知识,为课堂学习做好准备。
染色体上的基因定位:染色体上定位的基因可以影响个 体的表型和特征,如人类的基因定位可以解释不同的遗 传特征和疾病易感性。
染色体数目异常:如唐氏综合征是由染色体数目异常引 起的,患者多了一条21号染色体,导致智力低下、面 部畸形等症状。
染色体多态性:一些染色体的微小差异,如X染色体的 长短臂比例、Y染色体的有无等,可能会影响个体的表 型和特征。
THANKS
[ 感谢观看 ]
略,为患者提供更有效的治疗方法。
2.2-遗传的染色体学说

减Ⅱ后期
1 2 3 2′
情况1:减Ⅰ正常,减Ⅱ异常
异常 4
6
正常 3
3
MⅠ
MⅡ
3
减Ⅰ后期
3 正常
2
3 3
减Ⅱ后期
情况2:减Ⅰ异常,减Ⅱ正常
正常 4
6
异常 4
4
MⅠ
MⅡ
2
减Ⅰ后期
2 正常
4
2 2
减Ⅱ后期
例题:某生物的基因型为AaBb,已知Aa和Bb两对等位基 因分别位于两对非同源染色体上,那么该生物的体细胞, 在有丝分裂的后期,基因的走向是( )
精细胞
情况1:减Ⅰ异常,减Ⅱ正常
××
×
×
精原细胞 初级精母细胞
×
×
次级精母细胞
×
精细胞
②减Ⅰ正常,减Ⅱ异常:2个精细胞异常
Aa Bb
精原细胞
aa AA
AA BB
B Bb b
初级精母细胞
aa bb
AA B
AAB
BB a b ab
次级精母细胞
a b ab
精细胞
结论2:若精细胞含有相同基因,则减Ⅱ后期某 对姐妹染色单体未分离,移向了细胞的同一极。
第二章 染色体与遗传
第二节 遗传的染色体学说
天才的“惊奇” 发 现
体细胞
配子
1902年,美国遗传学家萨顿:孟德尔定律中的遗传因子(基因) 的行为和减数分裂过程中的染色体行为存在着明显的平行关系。
Why 基因 ∥ 染色体?
基因
染色体
传递特点 保持独立性和完整性
保持一定的形态特征
存在形式 在体细胞中成对存在, 在体细胞中成对存在,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
链孢霉(Neurospora crassa)
四 遗传的染色体学说
W.S.Sutton[美]和 T.Boveri 发现了genetic factor 与性细胞 在减数分裂中染色体的行为具有平行关系。
Nonhistones proteins have diverse functions
(2)包装模型
(3)染色体DNA的关键序列 origin centromere telomere
二 巨大染色体
三 meiosis and gametogenesis 1 mitosis meiosis
细胞类别 曲霉 酵母 链孢霉 鼠骨髓 鼠肝 鼠肾 鸡输卵管 雏鸡红细胞 海胆精子 Hela(培养)
核小体DNA含量(bp) 154 165 170 192 198 196 196 207 241 183
Histones abound in the chromatin of all eukaryotic cells
第一章 遗传的染色体学说 一 染色体是遗传物质的主要载体 1 Evidence that genes reside in the nucleus 2 Evidence that genes reside in chromosomes 3 染色体的概念(chromosome) 狭义的概念 广义的概念 chromatin 与 chromosome 常染色质(euchromatin) 与 异染色质(heterochromatin) constitutive heterochromatin facultative heterochromatin 4 染色体的数目
两臂长度比(长/短)
符号
1-1.7
M,m
近中着丝粒染色体 submetacentric chro 近端着丝粒染色体 acrocentric chro 顶端着丝粒染色体 telocentric chro
1.7-3
sm
3-7
st
7-
t , T
5 染色体的分子结构 化学组成:1/3 DNA,1/3 Histones and 1/3Nonhistons (1)Nucleosomes
减数分裂的意义:遗传稳定性,遗传重组
3 配子发生和染色体周史
a 高等动物
b 高等植物
c 低等植物的世代交替
高等植物: 精子 生殖核 精子
生长 (2n) meiosis ( n) 孢原细胞--小孢子母细胞---4小孢子 (花药内)
营养核
覆盖细胞(外)
孢原 3细胞退化(近珠孔) 细胞 造孢细胞--胚囊母细胞-4细胞 (子房内) 3次有丝分裂-8核胚 囊
物种
人 金丝猴 黄牛 马 驴 小家鼠 大家鼠 果蝇 洋葱 玉米 水稻 豌豆 向日葵 衣藻
染色体数目
2n=46 2n=44 2n=60 2n=64 2n=62 2n=40 2n=42 2n=8 2n=16 2n=20 2n=24 2n=14 2n=34 2n=16
4 染色体的一般形态结构
名称 中部着丝粒染色体 metacentric chro
Premeiosis 与 interphase 研究材料: Lilium longiflorum
G1 和S期的花粉母细胞在体外培养……有丝分裂
G2花粉母细胞体外培养…… Nhomakorabea异常有丝分裂
G2较晚期花粉母细胞在体外培养……异常 减数分裂 同源 染色体配对不稳定
对细胞分裂形式转变的推测
2 减数分裂分一般过程