数学模拟题
广东省2024年普通高中合格性学业水平考试数学模拟数学试题一

一、单选题1. 在棱长为2的正方体中,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则四面体的体积的最大值为( )A .2B.C.D.2. 若集合,则集合可能为( )A.B.C.D.3.设是定义域为的奇函数,且,当时,,.将函数的正零点从小到大排序,则的第4个正零点为( )A.B.C.D.4.已知变量关于的回归方程为,若对两边取自然对数,可以发现与线性相关.现有一组数据如下表所示:12345则当时,预测的值为( )A.B.C.D.5. 函数在区间(,)内的图象是( )A.B.C.D.6. 若,且a 为整数,则“b 能被5整除”是“a 能被5整除”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知,则( )A.B.C.D.8.已知函数满足函数恰有5个零点,则实数的取值范围为( )A.B.C.D.9. 已知P为所在平面内一点,且满足,,则A.B.C.D.10. 已知数列的首项,且,,则满足条件的最大整数( )A .2022B .2023C .2024D .202511.在区间与内各随机取1个整数,设两数之和为,则成立的概率为( )广东省2024年普通高中合格性学业水平考试数学模拟数学试题一二、多选题A.B.C.D.12.如图,在正四棱柱中,是线段上的动点,有下列结论:①;②,使;③三棱锥体积为定值;④三棱锥在平面上的正投影的面积为常数.其中正确的是( )A .①②③B .①③C .②③④D .①④13. 已知,分别为随机事件A ,B 的对立事件,,,则( )A.B.C .若A ,B独立,则D .若A ,B互斥,则14.已知非常数函数及其导函数的定义域均为R ,若为奇函数,为偶函数,则( ).A.B.C.D.15. 我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.年年某市城镇居民、农村居民年人均可支配收入比上年增长率如图所示.根据下面图表,下列说法正确的是()A .对于该市居民年人均可支配收入比上年增长率的中位数,城镇比农村的大B .对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C .年该市农村居民年人均可支配收入比年有所下降D .年该市农村居民年人均可支配收入比年有所上升16. 若直线与两曲线、分别交于、两点,且曲线在点处的切线为,曲线在点处的切线为,则下列结论正确的有( )A .存在,使B .当时,取得最小值三、填空题四、填空题五、解答题C.没有最小值D.17. 蜚英塔俗称宝塔,地处江西省南昌市,建于明朝天启元年(1621年),为中国传统的楼阁式建筑.蜚英塔坐北朝南,砖石结构,平面呈六边形,是江西省省级重点保护文物,已被列为革命传统教育基地.某学生为测量蜚英塔的高度,如图,选取了与蜚英塔底部D 在同一水平面上的A ,B两点,测得米,,,,则蜚英塔的高度是_______米.18. 在复平面内,复数所对应的点的坐标为,则_____________.19.已知、分别为椭圆的左、右焦点,为椭圆上的动点,点关于直线的对称点为,点关于直线的对称点为,则当最大时,的面积为__________.20. 如图,在棱长为2的正方体中,点是侧面内的一个动点.若点满足,则的最大值为__________,最小值为__________.21.椭圆的左、右焦点分别为,,过焦点的直线交椭圆于,两点,则的周长为______;若,两点的坐标分别为和,且,则的内切圆半径为______.22. 计算求值:(1);(2)已知,均为锐角,,,求的值.23. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.六、解答题七、解答题八、解答题九、解答题24. 1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组,,…,,并整理得到如图频率分布直方图:(1)求其中阅读量小于60本的人数;(2)已知阅读量在,,内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在内的学生中随机选取3人进行调查座谈,用表示所选学生阅读量在内的人数,求的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).25. 已知.(1)求不等式的解集;(2)令的最小值为,若正数满足,证明:.26. 如图,在四棱锥P A BCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE .27. 在一次猜灯速的活动中,共有20道灯谜,甲同学知晓其中16道灯谜的谜底,乙同学知晓其中12道灯谜的谜底,两名同学之间独立竞猜,假设猜对每道灯谜都是等可能的.(1)任选一道灯谜,求甲和乙各自猜对的概率;(2)任选一道灯谜,求甲和乙至少一人猜对的概率.28.已知等比数列的前n 项和为,,.(1)求;(2)若数列的前n项和为,,且,试写出满足上述条件的数列的一个通项公式,并说明理由.。
高考数学模拟试题含答案详解

高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
2024年初一数学模拟试卷(精选4卷)

2024年初一数学模拟试卷一、选择题(每题2分,共10分)1.下列哪个数是质数?A.21B.29C.35D.392.若a=3,b=5,则a²+b²的值是?A.34B.58C.74D.643.一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长是?A.18cmB.20cmC.22cmD.24cm4.下列哪个数是偶数?A.101B.103C.1075.一个正方形的边长为6cm,则它的对角线长度是?A.4.5cmB.6cmC.8cmD.9cm6.下列哪个数是立方数?A.64B.81C.98D.1007.若a=2,b=3,则2a+3b的值是?A.12B.15C.18D.218.一个长方形的长是10cm,宽是6cm,则它的面积是?A.40cm²B.50cm²C.60cm²D.70cm²9.下列哪个数是素数?B.27C.31D.3710.若a=4,b=6,则a²b²的值是?A.-20B.-10C.10D.20二、判断题(每题2分,共10分)1.两个质数的和一定是偶数。
()2.一个等边三角形的周长是它的任意一边长的三倍。
()3.任何两个奇数的和都是偶数。
()4.一个正方形的对角线长度等于它的边长。
()5.两个负数相乘的结果一定是正数。
()6.任何数乘以0都等于0。
()7.两个偶数的和一定是偶数。
()8.任何数除以1都等于它本身。
()9.两个负数相加的结果一定是负数。
()10.任何数乘以-1都等于它的相反数。
()三、填空题(每题2分,共10分)1.一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是______cm。
2.若a=7,b=8,则a²+b²的值是______。
3.一个正方形的边长为8cm,则它的面积是______cm²。
4.下列哪个数是偶数?______5.两个质数的积一定是______数。
高一数学模拟试题及答案

高一数学模拟试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项不是实数集合R的子集?A. 整数集合ZB. 有理数集合QC. 无理数集合D. 复数集合C2. 函数f(x) = 2x + 3的值域是:A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)3. 如果a和b是方程x^2 - 4x + 4 = 0的两个根,那么a + b的值是:A. 0B. 2C. 4D. 84. 已知点A(3, 4)和点B(6, 8),线段AB的长度是:A. 2B. 3C. 4D. 55. 以下哪个不等式是正确的?A. |-3| > 3B. |-3| < 3C. |-3| = 3D. |-3| ≠ 36. 圆的标准方程为(x - 1)^2 + (y - 2)^2 = 25,圆心坐标是:A. (1, 2)B. (-1, -2)C. (2, 1)D. (-2, -1)7. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π8. 已知等差数列的首项a1 = 3,公差d = 2,第5项a5的值是:A. 7B. 9C. 11D. 139. 以下哪个是二次方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 4D. x = 610. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,根据余弦定理,角A的余弦值是:A. 1/3B. 1/4C. 1/5D. 1/6二、填空题(每题3分,共15分)11. 圆的面积公式为πr^2,其中r是圆的______。
12. 函数y = 3x - 2的反函数是______。
13. 已知等比数列的首项a1 = 2,公比q = 3,第3项a3的值是______。
14. 根据勾股定理,直角三角形的斜边长为c,两直角边长分别为a和b,那么c^2 = ______。
15. 已知向量\(\vec{a}\) = (2, 3),向量\(\vec{b}\) = (4, -1),向量\(\vec{a}\)与向量\(\vec{b}\)的数量积是______。
2024年成人高考数学模拟试题

2024年成人高考数学模拟试题2024年成人高考数学模拟试题一、选择题1、以下哪个数是素数?() A. 10 B. 3 C. 4 D. 5 答案:D. 52、已知一个正方形的边长为2,那么它的面积为() A. 4 B. 6 C.8 D. 16 答案:A. 43、在下列年份中,哪一个是闰年?() A. 2020年 B. 2021年 C. 2022年 D. 2023年答案:A. 2020年4、若x,y为实数,且|x-1|+|y+3|=0,则x-y的值为() A. -4 B. -2 C. 2 D. 4 答案:C. 25、等差数列{an}的前n项和为Sn,已知a3=10,S6=72,则公差d为() A. 1 B. 2 C. 3 D. 4 答案:B. 2二、填空题6、已知圆心为点C的圆:x²+y²-8x-64=0,则该圆的半径r为____。
答案:1061、在三角形ABC中,若sin(A+B)=2sinAcos(A+B),则该三角形是____三角形。
答案:直角611、若函数f(x)在定义域内满足f(x+1)=f(x-1),且f(0)=2,则f(x)的表达式为____。
答案:f(x)=2cos(2x)6111、若log₂(x-1)有意义,则x的取值范围是____。
答案:(1, +∞)61111、若向量a=(1,2),b=(3,4),则a*b=____。
答案:11三、解答题11、求函数y=√x²+4x+3 的值域。
答案:∵x²+4x+3=(x+2)²-1≥-1,∴函数y的值域为[0, +∞)。
111、求sin75°的值。
答案:∵sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=(1/2)(√2/2)+(√3/2)(√2/2)=(√2+√6)/4,∴sin75°的值为(√2+√6)/4。
2024年河南省中考数学模拟卷 含答案

2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
2025年新高考数学模拟试题一带解析
2025年新高考数学模拟试题(卷一)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.某车间有两条生产线分别生产5号和7号两种型号的电池,总产量为8000个.质检人员采用分层抽样的方法随机抽取了一个样本容量为60的样本进行质量检测,已知样本中5号电池有45个,则估计7号电池的产量为()A .6000个B .5000个C .3000个D .2000个2.如图所示,四边形ABCD 是正方形,,M N 分别BC ,DC 的中点,若,,AB AM AN λμλμ=+∈R,则2λμ-的值为()A .43B .52C .23-D .1033.已知n S 为等差数列{}n a 的前n 项和,4920224a a a ++=,则20S =()A .60B .120C .180D .2404.设,αβ是两个不同的平面,,m n 是两条不同的直线,下列命题为假命题的是()A .若,m m n α⊥⊥,则n α或n ⊂αB .若,,⊥⊥⊥m n αβαβ,则m n ⊥C .若,,m l n αββγαγ⋂=⋂=⋂=,且n β,则//l mD .若,,m n m n αβ⊥⊂⊂,则αβ⊥5.第19届亚运会于2023年9月28日至10月8日在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人:“琮琮”“莲莲”和“宸宸”,分别代表世界遗产良渚古城遗址、西湖和京杭大运河.某同学买了6个不同的吉祥物,其中“琮琮”“莲莲”和“宸宸”各2个,现将这6个吉祥物排成一排,且名称相同的两个吉祥物相邻,则排法种数共为()A .48B .24C .12D .66.已知函数1()e 2x f x x a x ⎛⎫=-+ ⎪⎝⎭恰有2个不同的零点,则实数a 的取值范围为()A .1,ee ⎛⎫⎪⎝⎭B .(4e,)⎛∞ ⎝U C .2e ⎫⎪⎭D .(2e,)⎛∞ ⎝U7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点()3,4A -的直线l 的一个法向量为()1,2-,则直线l 的点法式方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上做法,在空间直角坐标系中,经过点()1,2,3M 的平面的一个法向量为()1,4,2m =-,则该平面的方程为()A .4210x y z -++=B .4210x y z --+=C .4210x y z +-+=D .4210x y z +--=8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为12,F F ,过1F 的直线与双曲线C 分别在第一、二象限交于,A B 两点,2ABF △内切圆的半径为r ,若1||2BF a =,r =,则双曲线C 的离心率为()AB.2CD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin 0,0,22f x A x A ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()A .()f x 的最小正周期为πB .当π0,2⎡⎤∈⎢⎥⎣⎦x 时,()f x 的值域为11,22⎡⎤-⎢⎥⎣⎦C .将函数()f x 的图象向右平移π6个单位长度可得函数()sin 2g x x =的图象D .将函数()f x 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点5π,06⎛⎫⎪⎝⎭对称10.已知12,z z 是两个虚数,则下列结论中正确的是()A .若12z z =,则12z z +与12z z 均为实数B .若12z z +与12z z 均为实数,则12z z =C .若12,z z 均为纯虚数,则12z z 为实数D .若12z z 为实数,则12,z z 均为纯虚数11.已知函数()y f x =在R 上可导且(0)2f =-,其导函数()f x '满足:22()21()exf x f x x -=-',则下列结论正确的是()A .函数()f x 有且仅有两个零点B .函数2()()2e g x f x =+有且仅有三个零点C .当02x ≤≤时,不等式4()3e (2)f x x ≥-恒成立D .()f x 在[1,2]上的值域为22e ,0⎡⎤-⎣⎦第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为.13.已知M ,N 是抛物线()2:20C x py p =>上两点,焦点为F ,抛物线上一点(),1P t 到焦点F 的距离为32,下列说法正确的是.(把所有正确结论的编号都填上)①1p =;②若OM ON ⊥,则直线MN 恒过定点()0,1;③若MOF △的外接圆与抛物线C 的准线相切,则该圆的半径为12;④若2MF FN = ,则直线MN 的斜率为4.14.如图,在正方体1111ABCD A B C D -,中,M ,N 分别为线段11A D ,1BC 上的动点.给出下列四个结论:①存在点M ,存在点N ,满足MN ∥平面11ABB A ;②任意点M ,存在点N ,满足MN ∥平面11ABB A ;③任意点M ,存在点N ,满足1MN BC ⊥;④任意点N ,存在点M ,满足1MN BC ⊥.其中所有正确结论的序号是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数31()ln 222f x ax x x x=--+.(1)当1a =时,求()f x 的单调区间;(2)对[1,)x ∀∈+∞,()0f x ≥恒成立,求a 的取值范围.16.(15分)我国老龄化时代已经到来,老龄人口比例越来越大,出现很多社会问题.2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线总计愿生40y60不愿生x2240总计5842100(1)求x和y的值.(2)分析调查数据,是否有95%以上的把握认为“生育意愿与城市级别有关”?(3)在以上二孩生育意愿中按分层抽样的方法,抽取6名育龄妇女,再选取两名参加育儿知识讲座,求至少有一名来自一线城市的概率.参考公式:22()()()()()n ad bca b c d a c b dχ-=++++,()2P kχ≥0.0500.0100.001k 3.841 6.63510.82817.(15分)在直角梯形ABCD 中,//AD BC ,22BC AD AB ===90ABC ∠=︒,如图(1).把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)求证:CD AB ⊥;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BNBC的值;若不存在,说明理由.18.(17分)已知椭圆22:143x y C +=的左右焦点分别为12,F F ,点()00,P x y 为椭圆C 上异于顶点的一动点,12F PF ∠的角平分线分别交x 轴、y 轴于点M N 、.(1)若012x =,求1PF ;(2)求证:PM PN为定值;(3)当1F N P 面积取到最大值时,求点P 的横坐标0x .19.(17分)已知数列12:,,,n A a a a L 为有穷正整数数列.若数列A 满足如下两个性质,则称数列A 为m 的k 减数列:①12n a a a m +++= ;②对于1i j n ≤<≤,使得i j a a >的正整数对(,)i j 有k 个.(1)写出所有4的1减数列;(2)若存在m 的6减数列,证明:6m >;(3)若存在2024的k 减数列,求k 的最大值.2025年新高考数学模拟试题(卷一)(解析版)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
大一数学试卷模拟题
大一数学试卷模拟题一、选择题(每题3分,共30分)1. 函数y = √(x - 1)+ln(2 - x)的定义域是()- A. [1,2)- B. (1,2)- C. [1, +∞)- D. (-∞,2)解析:对于根式函数√(x - 1),要使其有意义,则x-1≥0,即x≥1;对于对数函数ln(2 - x),要使其有意义,则2 - x>0,即x<2。
所以函数的定义域是[1,2),答案为A。
2. 若limlimits_x→1frac{x^2+ax + b}{x - 1}=3,则a、b的值分别为()- A. a = 1,b=-2- B. a = -1,b = 2- C. a = 1,b = 2- D. a=-1,b = -2解析:因为limlimits_x→1frac{x^2+ax + b}{x - 1}=3,当x→1时,分母x -1→0,那么分子x^2+ax + b在x = 1时的值为0,即1 + a + b=0,b=-a - 1。
则frac{x^2+ax - a - 1}{x - 1}=((x - 1)(x+a + 1))/(x - 1)=x+a + 1,limlimits_x→1(x+a + 1)=3,即1+a + 1=3,a = 1,b=-2,答案为A。
3. 函数y=sin x在x = (π)/(2)处的导数是()- A. 0.- B. 1.- C. -1.- D. 不存在。
解析:根据求导公式(sin x)^′=cos x,当x=(π)/(2)时,cos(π)/(2)=0,答案为A。
4. 设y = x^3+2x,则dy=()- A. (3x^2+2)dx- B. (3x^2+2)- C. 3x^2+2dx- D. x^3+2x + C解析:因为y^′=(x^3+2x)^′ = 3x^2+2,根据微分的定义dy=y^′ dx=(3x^2+2)dx,答案为A。
5. 曲线y = x^3-3x^2+1在点(1,-1)处的切线方程是()- A. y=-3x + 2- B. y = 3x-4- C. y=-3x- D. y = 3x-2解析:首先对y = x^3-3x^2+1求导,y^′=3x^2-6x,当x = 1时,y^′=3 - 6=-3,切线方程为y+1=-3(x - 1),即y=-3x + 2,答案为A。
小学生数学模拟训练题及答案3套
小学生数学模拟训练题及答案3套小学生数学模拟训练题一:【二年级】课内知识:275-89-75课外趣题:有三堆水果,每堆水果同样重。
第一堆:1个西瓜、1个菠萝、5个苹果。
第二堆:3个菠萝、11个苹果。
第三堆:1个西瓜、8个苹果。
每个苹果重150克,每个菠萝重克。
【三年级】课内知识:有若干盆鲜花摆成一个四层的中空方阵,最外层每边有12盆,一共摆了多少盆鲜花?课外趣题:三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。
已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。
如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选?【四年级】课内知识:84372725课外趣题:在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数=。
【五年级】课内知识:有三根铁丝,分别长300厘米、444厘米、516厘米。
把它们截成同样长且尽可能长的整厘米小段(不许剩余),每小段折成一个小正方形。
然后将这些小正方形混放在一起拼成一个长方形(每拼一次都必须用上所有这些小正方形),这样可能拼成的长方形有多少种?课外趣题:用12根长为1厘米的小棍摆成一个面积为6平方厘米的多边形(至少用三种方法)。
小学生数学模拟训练题二:【二年级】课内知识:275-89-75解答:原式=275-75-89=200-89=111课外趣题:有三堆水果,每堆水果同样重。
第一堆:1个西瓜、1个菠萝、5个苹果。
第二堆:3个菠萝、11个苹果。
第三堆:1个西瓜、8个苹果。
每个苹果重150克,每个菠萝重克。
解答:观察第一堆和第三堆可以看出1个菠萝=3个苹果,所以每个菠萝重1503=450克。
【三年级】课内知识:有若干盆鲜花摆成一个四层的中空方阵,最外层每边有12盆,一共摆了多少盆鲜花?解答:(12-1)4=44(盆)44+36+28+20=128(盆)课外趣题:三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。
数学初一模拟试题及答案
数学初一模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. -103. 计算下列算式的结果:2x + 3 = 11,那么x的值是:A. 4B. 5C. 6D. 74. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数和0A. x < 4B. x > 4C. x < 2D. x > 26. 一个角的补角是120°,那么这个角的度数是:A. 60°B. 120°C. 180°D. 240°7. 一个三角形的两个内角分别是30°和60°,那么第三个内角的度数是:A. 60°B. 90°C. 120°D. 150°8. 一个数的立方等于-27,那么这个数是:A. 3B. -3C. 9D. -99. 一个数的平方等于16,那么这个数可能是:A. 4B. -4C. 2D. 以上都是A. x = 3B. x = 5C. x = 7D. x = 9二、填空题(每题3分,共30分)1. 一个数的平方是25,那么这个数是______或______。
2. 如果一个数的立方是-64,那么这个数是______。
3. 一个数的绝对值是5,那么这个数可能是______或______。
4. 一个角的补角是90°,那么这个角的度数是______。
5. 一个三角形的两个内角分别是45°和45°,那么第三个内角的度数是______。
6. 如果一个数的相反数是-7,那么这个数是______。
7. 一个数加上它的相反数等于______。
8. 一个数的绝对值是其本身,这个数可能是______或______。
9. 如果一个数的平方是9,那么这个数是______或______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
茂名中考数学试卷 第 1 页 共 15 页茂名市2013年初中毕业生学业考试与高中阶段学校招生考试数 学 试 卷(样卷)考生须知1. 全卷分第一卷(选择题,满分30分,共2页)和第二卷(非选择题,满分90分,共8页),全卷满分120分,考试时间120分钟.2. 请认真填写答题卡和第二卷密封线内的有关内容,并在试卷右上角的座位号处填上自己的座位号.3. 考试结束,将第一卷、第二卷和答题卡一并交回.亲爱的同学:你好!数学就是力量,自信决定成绩。
请你认真审题,细致分析,沉着作答,努力吧,祝你成功!第一卷(选择题,共2页,满分30分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的). 1、若向东2米表示2+,则3-表示A .向东3米B .向西3米C .向南3米D .向北3米 2、下列运算中结果正确..的是 A .x x x 473=- B .134=-a aC .x x x 523=⋅D .632)(x x =3、如图,直线AB ∥CD ,BC AC ⊥于点C ,若︒=∠301,则∠2的度数是A .︒30B .︒40C .︒50D .︒604、如图,这是一个小立方块所搭几何体的俯视图,正方形中的数字表示在该位置小立方块的个数.则该几何体的左视图是A .B .C .D .请你用2B 铅笔把每题的正确答案的字母代号对应填涂在答题卡上,填涂要规范哟!答在本...试卷上无效...... 1C AD B 2(第3题图)11 2 12 (第4题图)茂名中考数学试卷 第 2 页 共 15 页5、不等式组⎩⎨⎧->-<-.32,512x x 的解集是A .61<<xB .31<<-xC .31<<xD .61<<-x6、某单位3月上旬中的1至6日每天用水量的变化如图所示,那么这6天用水量的中位数是 A .5.31B .32C .5.32D .337、分式方程111=-x 的解为 A .2=x B .1=x C .1-=x D .2-=x8、如图,以O 为位似中心将四边形ABCD 放大后得到四边形''''D C B A ,若4=OA ,8'=OA ,则四边形ABCD 和四边形''''D C B A 的周长的比为A .2:1B .4:1C .1:2D .1:49、若0)3()2(22=++-b a ,则2012)(b a +的值是A .0B .1C .1-D .2012 10、函数m mx y -=与x my =)0(≠m 在同一坐标系内的图象可能是ABCDDD'C'B'A'CB A O(第8题图)21 3 5 4 0633 28 29 3031 32 353637 34 日期用水量(升)(第6题yxO茂名中考数学试卷 第 3 页 共 15 页茂名市2013年初中毕业生学业考试与高中阶段学校招生考试数 学 试 卷(样卷)题 号 二(11~15)三(16~18)四(19~20)五六合 计21 22 23 24 25 得 分 评卷人第二卷(非选择题,共8页,满分90分)得 分评卷人二、细心填一填(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方).11、一组数据 3,6,5,2,3,4的极差是 .12、一个正n 边形的每一个内角为︒144,则n 的值为 . 13、如图,某反比例函数的图象过点)2,3(-,则此反比例函数为 .14、某人从A 处出发沿北偏东︒30方向走了3100米到达B 处,再沿北偏西︒60方向走了100米到达C 处,则他从C 处回到A 处至少要走 米.15、如图,已知平行四边形ABCD 的周长为20,对角线AC ,BD 相交于点O ,过O 作AC EO ⊥,连接EC ,则DEC ∆的周长为 .(第13题图)xy(-3,2)(第15题图)D C B A O E茂名中考数学试卷 第 4 页 共 15 页得 分评卷人三、用心做一做 (本大题共3小题,每小题7分,共21分).16、计算:10)21(45sin 2)2012(4--︒+-⨯π.解:17、如图,请你以y 轴为对称轴画出所给图的另一半,若点A 坐标为)3,3(-,写出点A的对应点的坐标,并说明完成后的图形可能代表的含义.18、如图,︒=∠=∠90CDB BAC ,请你从下列条件中任选一个,使得BAC ∆≌CDA ∆,并证明.①CD AB =;②DB AC =;③DCB ABC ∠=∠;④DBC ACB ∠=∠. 解:温馨提示 下面所有解答题都应写出文字说明、证明过程或演算步骤!(第17题图)yxAB A CD (第18题图)茂名中考数学试卷 第 5 页 共 15 页得 分评卷人四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分).19、某人为了了解某企业的发展情况,收集了该企业2008年至2011年每年的产值及产量(其中缺少2010年产量)的有关数据,整理并分别绘成图甲、图乙.根据上述信息,回答下列问题:(1)该企业2008年至2011年四年的年收益的平均数是 千万元; (2)据了解,该企业2010年、2011年的年产量增长率相同,那么2010年的年产量是 万件;(3)根据第(2)小题中的信息,把图乙补画完整.20、小明和小亮用如图所示的两个转盘做配紫色游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转出蓝色,则可以配成紫色,此时小明得一分,否则小亮得一分.(1)用树状图或列表求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?解:绿蓝黄白红(第20题图)(图甲) 2008 2009 2010 2011 年份 3 1年收益 975(千万元)(图乙) 年份 2011 2010 2009 2008 160242 20032 220 200180260240 年产量 (万件)五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分).得分评卷人21、(本题满分8分)某工程队承包了某段全长1200米的公路修建任务,完成了600米的施工任务后,该工程队加快了施工速度,工效是原来的5.1倍,结果提前10天完成任务.问原来每天修建公路多少米?茂名中考数学试卷第 6 页共15 页茂名中考数学试卷 第 7 页 共 15 页得 分评卷人22、(本题满分8分)如图,四边形ABCD 为矩形,E 是BC 延长线上一点,AE 交CD 于点G ,F 是AE上一点,并且EF CF AC ==,︒=∠15AEB .(1)求A C F ∠的度数; (4分)(2)证明:矩形ABCD 为正方形. (4分)解:B DC A EF G (第22题图)得分评卷人23、(本题满分8分)某果农用若干辆载重量为10吨的汽车运一批香蕉到批发市场出售,若每辆汽车只装5吨,则剩下15吨香蕉;若每辆汽车装满10吨,则最后一辆汽车不满也不空.请问这批香蕉共有多少吨?解:茂名中考数学试卷第8 页共15 页茂名中考数学试卷 第 9 页 共 15 页六、灵动智慧,超越自我(本大题共2小题,每小题8分,共16分).得 分评卷人24、(本题满分8分)如图,在梯形ABCD 中,CD AB <,M 为BC 中点,且BC DM ⊥于M ,︒=∠+∠90C B ,动点F 从点B 出发沿线段BA 方向以3厘米/秒的速度运动,点E 从点D 出发沿DC 方向运动,且始终保持FM EM ⊥,当点F 到达点A 时停止运动或当点E 到达点C 时停止运动.设运动时间为t ()0>t 秒,(1)求证:BFM ∆∽DEM ∆; (4分) (2)若︒=∠60ABC ,34=AB ,2=AD ,①求动点E 的运动速度; (2分)②设四边形AFED 的面积为S (平方厘米),求S 与t 的函数关系式. (2分)BDA CMEF (第24题图)茂名中考数学试卷 第 10 页 共 15 页如图,在直角坐标系中,直线k x y +-=经过抛物线c bx ax y ++=2的顶点)5,1(-A 和另一点)4,8(-B .(1)求抛物线的解析式和k 的值. (3分)(2)动点P 是直线AB 上方抛物线上一点(不与A ,B 重合),过点P 作AB PD ⊥于D ,作x PC ⊥轴于C ,交直线AB 与E ,①设PDE ∆的周长为L ,点P 的横坐标为x ,求L 与x 之间的函数关系式.(3分)②问是否存在一点P ,使得以E 为圆心,PD 为半径的圆与两坐标轴相切?若存在请求出P 点坐标;若不存在,请说明理由. (2分)解:得 分评卷人25、(本题满分8分)(第25题图) yx茂名中考数学试卷 第 11 页 共 15 页 茂名市2013年初中毕业生学业考试与高中阶段学校招生考试(样卷)数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷。
2.解答题右端所注的分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本大题共10小题,每小题3分,共30分.)题号 1 2 3 4 5 6 7 8 9 10 答案 B D D D B A A A B A二、填空题(本大题共5小题,每小题3分,共15分.)11、4 12、10 13、xy 6-= 14、200 15、 10 三、(本大题共3小题,每小题7分,共21分.) 16、解:原式=222212-⨯+⨯···················3分 =212-+···························5分=1.···································7分17、解:如图所示:·····························3分点A 的对应点'A 的坐标为)3,3(;所得图形为圣诞树.·····7分 18、解:(答案不唯一)选CD AB =.··········2分证明:︒=∠=∠90CDB BAC ,CB BC =,CD AB =,··········5分 ∴BAC ∆≌CDA ∆.··········7分 四、(本大题共2小题,每小题7分,共14分) 19、解:(1)5.4;···2分 (2)220;···4分 (3)如右图:···7分20、解:(1)列表如下:A A'(第17题图)x y 2008 2009 2011 2010 年份 32 200 160220200242 220 180240260(万件)年产量(第19题图) (白,蓝) (白,黄) (红,绿)(红,蓝) (红,黄) 绿 蓝 黄 白 红 (白,绿)茂名中考数学试卷 第 12 页 共 15 页所以,小明获胜的概率为61. (2)不公平。