2018—2019学年湘教版八年级数学下册第1章《直角三角形》
湘教版八年级数学下册第一章直角三角形PPT课件全套

∴△CBD为等边三角形.
1 ∴BC=BD= AB. 2
在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半.
思考
1 如图,在Rt△ABC中,∠BCA=90°,若BC= 2
AB,那么
C
∠A=30°吗?
A
B
如图,取线段AB的中点D,连接CD.
∵CD是Rt△ABC斜边AB上的中线,
如图,在方格纸上(设小方格边长为单位1)画一个顶点都
在格点上的直角三角形,使其两直角边分别为3,4,量出这
个直角三角形斜边的长度.
c=5 我量得c为5.
B A
c=?
b=4 a=3 C
讨论
在方格纸上,以图中的Rt△ABC的三边为边长分别向外作正
方形,得到三个大小不同的正方形,那么这三个正方形的面
积S1、S2、S3之间有什么关系呢?
西向东航行到O处时,测得A岛在北偏东60°的方向,且与
轮船相距 30 3 海里.若该船继续保持由西向东的航向,那么
有触礁的危险吗?
分析:取轮船航向所在的直线为OB.过点A
作AD⊥OB,垂足为D.AD长为A岛到轮船航
道的最短距离,若AD大于20海里,则轮船
由西向东航行就不会有触礁危险.
解:在图中,过点A作AD⊥OB,垂足为D,连接AO.
在Rt△AOD中,AO= 30 3 海里,∠AOD=30°,
1 于是 AD AO 2 1 30 3 2 25.98(海里)>20(海里).
由于AD长大于20海里,所以轮船由西向 东航行不会触礁.
练习
3.如图是某商店营业大厅电梯示意图.电梯AB的倾斜角为30°, 大厅两层之间的高度BC为6m.你能算出电梯AB的长度吗?
湘教版八年级数学下册第一章《直角三角形的性质和判定(Ⅰ)》课件

四、想一想,探究性质定理
如图,在Rt△ABC中,∠C=90°,如果 C
中线为CD,是否有CD= 1 AB,为什么? 2 1
2
试说明理由。
B
D (D′) A
过C作射线CD′交AB于D′,使∠ 1=∠ A, 则AD′=CD′(等角对等边)
又∠A+∠B=90°(直角三角形两锐角互余) ∠C=∠1+∠2=90°
古,
至行
今万
,里
学路
习。
和”
旅今
行人
都说
是:
相“
辅要
相么
You made my day!
成读 的书
两,
件要
事么
。旅
。行
,
身
体
和
灵
魂
总
要
我们,还在路上……
1.1直角三角形的性质和判定(Ⅰ)
一、回顾知识引入课题
1.直角三角形的定义 有一个是直角的三角形叫直角三角形
2.三角形内角和的性质 三角形内角和等于180°
3.三角形中线的定义 三角形顶点与对边中点的连线段
这节课我们一起探索直角三角形的判定与性质
A 二、想一想,探求判定定理
1.如图在Rt△ABC中, 两锐角的和∠A+∠ B=?
是直角三角形)
六、巩固与练习
C
1.下列说法错误的是( C )
A.一定有∠A=∠C
A
B.只要有一边相等就有△ABO≌ △CDO
C.只要再给一个条件就能得到△ABO≌ △CDO
D.有OA=OC或OB=OD,就有AB=CD
2.若一个三角形的三内角之比为 2:1:1,则该三角形是 等腰直角三角形
湘教版八年级数学下册第一章《直角三角形》优课件

知识点回顾
直角三角形:有一个角是直角的三角形
一、直角三角形的性质:
1.直角三角形的两个锐角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中,30O角所对直角边是斜边的一半;
4.直角三角形两条直角边的平方和等于斜边的平方; (勾股定理)
熟记以下几组勾股数: 3、4、5; 5、12、13; 7、24、25;8、15、17
A
3
B
1
C
4
E
2
D
例4:如图:AD是△ABC中BC边上的高,E 为AC上一点,BE交AD于F,BF=AC, FD=CD,问BE,AC互相垂直么?请说明 理由
A
FE
B
DC
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。
3、在Rt△ABC中,∠C=90º,∠A=30º,BC=2cm, 则AB=_____cm。
4、在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,
AB=a,则DB等于( )
a
a
a
(A) (B) (C) (D)以上结果都不对
2
3
4
想一想
5、下图中的三角形是直角三角形,其余是 正方形,求下列图中字母所表示的正方形的 面积.
二、直角三角形的判定:
1.定义:有一个角是直角的三角形是直角三角形
2. 有两个角是互余的三角形是直角三角形 3. 若三角形中,较小两边的平方和等于较大边的平方,
则这个三角形是直角三角形(勾股定理的逆定理)
三、直角三角形全等的判定:
新版湘教版八年级数学下册第1章直角三角形1.2直角三角形的性质和判定Ⅱ

∴ AB2 = c2.
∴ AB= c.
图1-20
在△ABC和△ABC 中, ∵ BC = BC = a,AC = AC = b,
AB = AB= c, ∴ △ABC≌△ ABC. ∴ ∠C =∠C= 90°. ∴ △ABC是直角三角形.
先构造满足某些条件的 图形,再根据所求证的图
形与所构造图形之间的关系,
在Rt△ ABC中,AC= 4 m,BC = 1 m, 故 AB 42 12 15 3.87(m).
因此 AA = 3.87 - 3.71 = 0.16(m).
即梯子顶端A点大约向上移动了0.16 m,而不是向上 移动0.5 m.
例2 (“引葭赴岸” 问题) “今有方池一丈,葭生其 中央, 出水一尺,引葭赴岸,适与岸齐. 问水深, 葭长各几何?” 意思是:有一个边长为10 尺的 正方形池塘,一棵芦苇生长在池的中央,其出水 部分为1 尺. 如果将芦苇沿与水池边垂直的方向拉 向岸边,它的顶端恰好碰到池边的水面. 问:水深 与芦苇长分别为多少?
解 因为6x>90,所以x >15. 又6x<180,所以x<30. 故选B.
图1-18
练习
1. 如图,一艘渔船以30 海里/时 的速度由西向东追赶 鱼群. 在A 处测得小岛C 在船的北偏东60°方向;40 min 后,渔船行至B 处,此时测得小岛C 在船的北偏 东30°方向. 已知以小岛C 为中心,周围10 海里以内 有暗礁,问:这艘渔船继续向东追赶鱼群是否有触 礁的危险?
图1-21
在Rt△ADC中,DC2 = AC2 - AD2 , ∴b,c组成的三角形是不是直角三角形. (1) a = 8,b = 15,c = 17; (2) a = 10,b = 24,c = 25; (3) a = 4,b = 5, c = 41 .
湘教版八年级数学下册教学课件(XJ) 第1章 直角三角形 第2课时 勾股定理的实际应用

解:(1)在Rt△ ABC中,
A
别踩我,我怕疼!
C 根据勾股定理得
AB 32 42 5米,
∴这条“径路”的长为5米. (2)他们仅仅少走了
(3+4-5)×2=4(步). B
二 利用勾股定理求最短距离
问题 在A点的小狗,为了尽快吃到B点的香肠,它选择A 不选择A C B路线,难道小狗也懂数学?
问题 观看下面同一根长竹竿以三种不同的方式进门的情况,并结合曾 小贤和胡一菲的做法,对于长竹竿进门之类的问题你有什么启发?
这个跟我们学的勾股 定理有关,将实际问 题转化为数学问题
典例精析 例1 一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能
否从门框内通过?为什么?
分析:可以看出木板横着,竖着都不能通过,
A A
B
解:台阶的展开图如图,连接AB.
在Rt△ABC中,根据勾股定理得
C
B
AB2=BC2+AC2=552+482=5329,
∴AB=73cm.
能力提升: 5. 为筹备迎新晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然 后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm, 如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?
例4 在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂, 树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?
6 米
8米
A
6 米
C
8米
解:根据题意可以构建一直角三角
形模型,如图.
在Rt△ABC中,
AC=6米,BC=8米,
由勾股定理得
AB AC2 BC2
62 82
B
AB32= 62 +(10+8)2 =360, B2 ∴AB1<AB2<AB3.
湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计

湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计一. 教材分析湘教版数学八年级下册第1.1节直角三角形的性质和判定(I)是初中数学的重要内容,主要介绍了直角三角形的性质和判定方法。
本节课的内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
教材从直角三角形的定义入手,介绍了直角三角形的性质,如直角三角形的两个锐角互余,直角三角形的斜边最长等。
接着,教材介绍了直角三角形的判定方法,如HL判定法、ASA判定法、AAS判定法等。
这些性质和判定方法在实际应用中具有广泛的应用价值。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念和性质,对于三角形的分类和特点有一定的了解。
但是,对于直角三角形的特殊性质和判定方法,学生可能还没有完全掌握。
因此,在教学过程中,需要注重引导学生理解和掌握直角三角形的性质和判定方法。
三. 教学目标1.知识与技能:使学生理解和掌握直角三角形的性质和判定方法,能够运用这些性质和判定方法解决实际问题。
2.过程与方法:通过观察、操作、推理等数学活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:直角三角形的性质和判定方法。
2.难点:直角三角形的判定方法的灵活运用。
五. 教学方法1.引导发现法:通过提问、引导,让学生发现直角三角形的性质和判定方法。
2.实践操作法:让学生通过实际操作,加深对直角三角形性质和判定方法的理解。
3.合作交流法:鼓励学生分组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教具准备:直角三角形模型、多媒体课件等。
2.学具准备:直角三角形模型、剪刀、胶水等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件展示直角三角形的性质和判定方法,让学生初步了解这些知识。
八年级数学下册 第1章 直角三角形 1.3 直角三角形全等
1.3 直角三角形全等的判定
第1章 直角三角形
1.3 直角三角形全等的判定
知识目标 目标突破 总结反思
1.3 直角三角形全等的判定
知识目标
1.在归纳全等三角形判定定理的基础上,结合勾股定理,推导出
“HL”判定定理.
2.根据题意,能综合应用直角三角形全等的判定知识作图.
1.3 直角三角形全结反思
小结
知识点 斜边、直角边定理
___斜_边____和一条直角边对应相等的两个直角三角形全等(可以简 写成“斜边、直角边”或“HL”).
1.3 直角三角形全等的判定
反思
已知在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,AD, A′D′分别是BC,B′C′边上的高,且AD=A′D′.△ABC与 △A′B′C′是否全等?如果全等,请给出证明;如果不全等,
证明:∵AD⊥BC 于点 D, ∴∠ADB=∠ADC=90°. 在 Rt△ABD 和 Rt△ACD 中,∵AABD= =AACD, , ∴Rt△ABD≌Rt△ACD(HL), ∴∠1=∠2.
1.3 直角三角形全等的判定
【归纳总结】 “HL”判定定理的适用条件
(1)在两个直角三角形中; (2)有一对直角边对应相等; (3)两条斜边对应相等.
1.3 直角三角形全等的判定
目标二 会作直角三角形
例2 教材例2针对训练 已知线段a,c(如图1-3-2),求作 Rt△ABC,使BC=a,AB=c,∠C=90°.
图1-3-2
1.3 直角三角形全等的判定
[解析]已知直角三角形的斜边和一条直角边,先考虑作出直角,然后截 取直角边,再作出斜边即可.
请举出反例.张翔同学的解答过程如下:
湘教版数学八年级下册第一章《直角三角形》说课稿
湘教版数学八年级下册第一章《直角三角形》说课稿一. 教材分析湘教版数学八年级下册第一章《直角三角形》是学生在学习了平面几何基本概念和性质的基础上进行的一章教学。
本章主要通过探讨直角三角形的性质和应用,使学生进一步理解和掌握勾股定理,提高解决实际问题的能力。
本章的主要内容包括直角三角形的定义,性质,分类,直角三角形的边角关系,勾股定理的证明及其应用等。
二. 学情分析学生在学习本章之前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对直角三角形的性质和应用的理解不够深入,对勾股定理的证明和应用可能存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 说教学目标1.知识与技能:使学生理解和掌握直角三角形的定义和性质,能够熟练运用勾股定理解决实际问题。
2.过程与方法:通过观察,操作,探究等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:直角三角形的定义和性质,勾股定理的证明和应用。
2.教学难点:勾股定理的证明,直角三角形在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导发现法,合作交流法等,激发学生的学习兴趣,培养学生的自主学习能力。
2.教学手段:利用多媒体课件,几何画板等教学工具,直观展示直角三角形的性质和应用,提高教学效果。
六. 说教学过程1.导入:通过生活中的实例,引导学生认识直角三角形,激发学生的学习兴趣。
2.新课导入:介绍直角三角形的定义和性质,引导学生通过观察,操作,探究等方法,发现和证明勾股定理。
3.应用拓展:通过解决实际问题,引导学生运用勾股定理,巩固所学知识。
4.课堂小结:对本节课的主要内容进行总结,加深学生对知识的理解。
5.布置作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。
湘教版八年级数学下册1.1直角三角形的性质和判定(Ⅰ)课件(共23张)
1.1 直角三角形的性质和判定(Ⅰ)
锦囊妙计
求直角三角形面积的常用 方法 (1)两直角边长度乘积的一半; (2)斜边长度与斜边上高的乘积的一半.
1.1 直角三角形的性质和判定(Ⅰ)
题型四 运用直角三角形中30°角的性质进行有关计算
例题4 如图 1- 1- 18 , 在 R t △ A B C 中 , ∠C=90°, ∠A=30°, BT是
第1章 直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
第1章 直角三角形
1.1 直角三角形的性质 和判定(Ⅰ)
考场对接
1.1 直角三角形的性质和判定(Ⅰ)
考场对接
题型一 利用直角三角形两锐角之间的关系பைடு நூலகம்角度
例题1 如图1-1-14, 在 Rt△ABC中, ∠ACB=90°, CD是 AB边上的
高, 如果∠A=50°, 则 ∠DCB的度数为( ). A
A.50°
B.45°
C.40°
D.25°
图1-1-14
1.1 直角三角形的性质和判定(Ⅰ)
1.1 直角三角形的性质和判定(Ⅰ)
锦囊妙计
直角三角形中的经典图形
在直角三角形中, 斜边上的高分直角所得的 两个锐角与原
直角三角形的两个锐角之间存在 相等或互余的关系, 这是一个常
见的基本图形, 在 解题中应用广泛. 如图1-1-15, ∵∠B+∠A=90°,
例题3 如图1-1-17所示, 在Rt△ABC中, ∠ACB=90°, CD⊥AB 于点D, CE为斜边AB 上的中线, 且CD=4, CE=5, 求Rt△ABC的 面积.
图1-1-17
1.1 直角三角形的性质和判定(Ⅰ)
1.1 直角三角形的性质和判定(Ⅰ)
八下第1章直角三角形1-2直角三角形的性质和判定Ⅱ第3课时上课新版湘教版
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,
∴△AEF为直角三角形,且AE为斜边.
∴∠AFE=90°,即AF⊥EF.
练一练
1.下列各组线段中,能构成直角三角形的是( C )
A.2,3,4
B.3,4,6
C.5,12,13
D.4,6,7
相传,我国古代 的大禹在治水时 也用了类似的方 法确定直角.
大禹治水
问题引入
1. 直角三角形有哪些性质?
(1)有一个角是直角; (2)两锐角互余; (3)勾股定理; (4)直角三角形30°角的性质.
2.一个三角形满足什么条件是直角三角形?
①有一个内角是90°,那么这个三角形就是直角三角形; ②如果一个三角形中,有两个角的和是90°,那么这个三角形就是直 角三角形.
我们是否可以不用角,而用三角形三边的关系,来判断
是否为直角三角形呢?
首页
合作探究
活动:探究勾股定理的逆定理的证明及应用
据说,古埃及人曾用下面的方法画直角:把一根长绳打
上等距离的13 个结,然后以3 个结间距,4 个结间距、5 个 结间距的长度为边长,用木桩钉成一个三角形,其中一个角
便是直角.你认为结论正确吗?
c
分别为a,b,斜边长为c,那么a2+b2=c2. C b A
问题2 求以线段a、b为直角边的直角三角形的斜
边c的长:
① a=3,b=4; c=5 ② a=2.5,b=6; c=6.5
③ a=4,b=7.5. c=8.5 思考 以前我们已经学过了通过角的关系来确定直角
三角形,可不可以通过边来确定直角三角形呢?
① 5,12,13满足52+122=132, ② 7,24,25满足72+242=252, ③ 8,15,17满足82+152=172.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018—2019学年湘教版八年级数学下册第1章《直角三角形》学校:___________姓名:___________班级:___________考号:___________一、单选题1.在RtΔABC 中,∠ACB =90∘,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是( )A .BC =ECB .EC =BE C .BC =BED .AE =EC2.具备下列条件的ABC ∆中,不是直角三角形的是( )A .ABC ∠+∠=∠B .A BC ∠-∠=∠ C .::1:2:3A B C ∠∠∠=D .3A B C ∠=∠=∠3.如图,在△ABC 中,AB =AC ,∠C =30°,AB ⊥AD ,AD =4,则BC 的长为( )A .4B .8C .12D .164.如图在ΔABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =5,ΔEFM 的周长为13,则BC 的长是( )A .6B .8C .10D .125.把一块等腰直角三角尺和直尺如图放置,如果135∠=︒,则2∠的度数为( )A .35︒B .10︒C .20︒D .15︒6.下列条件,不能判定两个直角三角形全等的是( )A .斜边和一直角边对应相等B .两个锐角对应相等C .一锐角和斜边对应相等D .两条直角边对应相等7.如图,在ABC 中,90C ∠=︒,AD 是CAB ∠的平分线,DE AB ⊥于点E ,DE 平分ADB ∠,则B 等于( )A .22.5°B .30°C .25°D .40°8.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个9.如图所示,AB ∥CD ,O 为∠BAC 、∠ACD 的平分线交点,OE ⊥AC 于E ,若OE =2,则AB 与CD 之间的距离是( )A .2B .4C .6D .810.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A .AASB .SASC .HLD .SSS二、填空题11.如图:B C ∠=∠,DE BC ⊥于E ,EF AB ⊥于F ,ADE ∠等于140︒,FED ∠=__.12.如图,ΔABC 为等边三角形,DC//AB ,AD ⊥CD 于D ,若CD =2,则AB 的长度为__.13.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为_____.14.如图,在Rt △ABC 中,AB=BC=1,∠ABC=90°,点A ,B 在数轴上对应的数分别为1,2.以点A 为圈心,AC 长为半径画弧,交数轴的负半轴于点D ,则与点D 对应的数是_____.15.如图,在Rt ΔABC 中,∠BAC =90°,AB =AC =4,D 是BC 的中点,点E 在BA 的延长线上,连接ED ,若AE =2,则DE 的长为__.16.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC m =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动___分钟后CAP ∆与PQB ∆全等.17.如图,在ABC ∆中,10AB cm =,6AC cm =,8BC cm =,点D 、E 分别在AC 、AB 上,且BCD ∆和BED ∆关于BD 对称,则ADE ∆的周长为__cm .18.如图,在等腰Rt ΔOAA 1中,∠OAA 1=90°,OA =1,以OA 1为直角边作等腰Rt△OA 1A 2,以OA 2为直角边作等腰Rt△OA 2A 3,…则OA 8的长度为__.三、解答题19.已知:如图,在△ABC 中,AB=13,AC=20,AD=12,且AD ⊥BC ,垂足为点D ,求BC 的长.20.如图,Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,CE 平分ACB ∠交AB 于E ,EF AB ⊥交CB 于F .(1)求证://CD EF ;(2)若70A ∠=︒,求FEC ∠的度数.21.如图,直角三角形ABC 中,90ACB ∠=︒,12AC cm =,5BC cm =,13AB cm =,过点C 作CD AB ⊥于点D .(1)找出图中相等的锐角,并说明理由.(2)求出点A 到直线BC 的距离以及点C 到直线AB 的距离.解:(1)CD AB ⊥(已知), 90CDA ∴∠=︒,190A ∴∠+∠=︒,1∠+ 90=︒,A ∴∠= ( ).同理可证,1∴∠= .(2)点A 到直线BC 的距离= cm .C 到直线AB 的距离为线段 的长度.12ABC S ∆= ⨯ 12= ⨯ (填线段名称). 12AC ,5BC =,13AB =,代入上式,解得CD = cm .22.如图,四边形ABCD 中,∠B=90°, AB//CD ,M 为BC 边上的一点,AM 平分∠BAD ,DM 平分∠ADC ,求证:(1) AM ⊥DM;(2) M 为BC 的中点.23.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?24.如图,在ΔABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.参考答案1.C【解析】分析:根据同角的余角相等可得出∠BCD=∠A ,根据角平分线的定义可得出∠ACE=∠DCE ,再结合∠BEC=∠A+∠ACE 、∠BCE=∠BCD+∠DCE 即可得出∠BEC=∠BCE ,利用等角对等边即可得出BC=BE ,此题得解.详解:∵∠ACB=90°,CD ⊥AB ,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A .∵CE 平分∠ACD ,∴∠ACE=∠DCE .又∵∠BEC=∠A+∠ACE ,∠BCE=∠BCD+∠DCE ,∴∠BEC=∠BCE ,∴BC=BE .故选C .点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE 是解题的关键.2.D【分析】根据三角形的内角和定理和直角三角形的定义逐项判断即可.【详解】A 、由180ABC ∠+∠+∠=和A B C ∠+∠=∠可得:∠C=90°,是直角三角形,此选项不符合题意;B 、由A BC ∠-∠=∠得A B C =+∠∠∠,又180A B C ∠+∠+∠=,则∠A=90°,是直角三角形,此选项不符合题意;C 、由题意,318090123C ∠=⨯=++,是直角三角形,此选项不符合题意;D 、由180A B C ∠+∠+∠=得3∠C+3∠C+∠C=180°,解得:1807C ∠=,则∠A=∠B=5407≠90°,不是直角三角形,此选项符合题意,【点睛】本题考查三角形的内角和定理、直角三角形的定义,会判定三角形是直角三角形是解答的关键.3.C【分析】已知AB=AC,根据等腰三角形的性质可得∠B的度数,再求出∠DAC的度数,然后根据30°角直角三角形的性质求得BD的长,再根据等角对等边可得到CD的长,即可求得BC的长.【详解】∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB⊥AD,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12.故选C.【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.4.B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,求出BC=2MF=2EM,所以MF=EM,然后列式整理得到△EFM的周长=BC+EF,代入数据进行计算即可.【详解】解:∵在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,∴BC=2MF,BC=2EM.∴△EFM的周长=MF+EM+EF=BC+EF.∵EF=5,△EFM的周长为13,∴BC=13-5=8.故选:B.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握性质是解题的关键.5.B【分析】由平行线及等腰直角三角形的性质,可得出∠1=∠3、∠2=∠4、∠3+∠4=45°,进而即可求出∠2的度数.【详解】解:∵∠1=∠3,∠2=∠4,∠3+∠4=45°,∴∠2=45°-∠1=10°.故选B.【点睛】本题考查了等腰直角三角形以及平行线的性质,利用“两直线平行,同位角相等”找出∠1=∠3、∠2=∠4是解题的关键.6.B【分析】根据直角三角形全等的判定方法:HL,SAS,ASA,AAS,SSS,做题时要结合已知条件与全等的判定方法逐一验证即可.【详解】A.符合判定HL,故此选项正确,不符合题意;B.全等三角形的判定必须有边的参与,故此选项错误,符合题意;C.符合判定AAS,故此选项正确,不符合题意;D .符合判定SAS ,故此选项正确,不符合题意;故选:B .【点睛】本题考查了直角三角形全等的判定定理,熟记直角三角形的判定定理是解题的关键,注意判定全等一定有一组边对应相等的.7.B【分析】利用全等直角三角形的判定定理HL 证得Rt △ACD ≌Rt △AED ,则对应角∠ADC=∠ADE ;然后根据已知条件“DE 平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,∴CD=ED .在Rt △ACD 和Rt △AED 中,AD AD CD ED⎧⎨⎩== , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】此题考查角平分线的性质.解题关键在于掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.8.C【解析】试题分析:根据等腰三角形的三线合一定理可得:∠1=∠2,∠BDE=∠CDF ,根据角平分线的性质可知:AD 上任一点到AB 、AC 的距离相等,故正确的有3个,选C .9.B【分析】过点O作MN,MN⊥AB于M,求出MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度是多少,再把它们求和即可.【详解】如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.故选B.【点睛】此题主要考查了角平分线的性质和平行线之间的距离;熟练掌握角平分线的性质定理是解决问题的关键.10.B【解析】【分析】两条直角边对应相等,且夹角是直角,所以两个直角三角形全等的依据是SAS.【详解】两条直角边对应相等,且夹角是直角,即相等,所以根据SAS,两个直角三角形全等.故选:B【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形的判定.11.50°【解析】【分析】根据三角形的外角的性质得到∠C=∠ADE-∠DEC=50°,得出∠B=∠C=50°,在根据 ,EF AB和平角的定义计算即可.【详解】解:∵DE⊥BC,∴∠DEC=90°,由三角形的外角的性质可知,∠C=∠ADE-∠DEC=50°,∴∠B=∠C=50°,∵EF⊥AB,∴∠EFB=90°,∴∠FEB=90°-50°=40°,则∠FED=180°-40°-90°=50°,故答案为50°.【点睛】本题考查的是直角三角形的性质,三角形的外角的性质,掌握三角形内角和定理是解题的关键.12.4【解析】【分析】根据等边三角形的性质求出AC=AB,∠BAC=60°,再根据两直线平行,内错角相等可得∠ACD=∠BAC,然后根据直角三角形两锐角互余,求出∠CAD=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2CD.【详解】解:∵△ABC为等边三角形,∴AC=AB,∠BAC=60°,∵DC∥AB,∴∠ACD=∠BAC=60°,∵AD⊥CD,∴∠CAD=90°-60°=30°,∴AB=AC=2CD=4故答案为:4.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的性质,熟记各性质是解题的关键.13.3【分析】根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴12AO BC=,12DO BC=,∴DO=AO=3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.14.-√2+1【解析】【分析】根据勾股定理求出AC长,再结合数轴即可得出结论.【详解】∵在Rt△ABC中,BC=1,AB=1,∴AC=√12+12=√2,∵以A为圆心,以AC为半径画弧,交数轴的负半轴于点D,∴AD=AC=√2,∴点D表示的实数是﹣√2+1,故答案为:﹣√2+1.【点睛】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.15.2√5【解析】【分析】过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=3√2,求得DF=BF-BD=√2,根据勾股定理即可得到结论.【详解】解:过点E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=4√2,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=3√2,∵D是BC的中点,∴BD=2√2,∴DF=BF-BD=√2,∴DE=√DF2+EF2=√(3√2)2+(√2)2=2√5.故答案为:2√5.【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键.16.4【分析】设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12-x)m,分两种情况:①若BP=AC,则x=4,此时AP=BQ,△CAP≌△PBQ;②若BP=AP,则12-x=x,得出x=6,BQ=12≠AC,即可得出结果.【详解】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12-x)m,分两种情况:①若BP=AC,则x=4,AP=12-4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12-x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为4.【点睛】本题考查了直角三角形全等的判定方法、解方程等知识;本题难度适中,需要进行分类讨论.17.8【解析】【分析】先根据△BCD和△BED关于BD对称,得出△BCD≌△BED,故BE=BC,由此可得出AE的长,由△ADE的周长=AE+AD+DE=AE+AC即可得出结论.【详解】解:∵△BCD和△BED关于BD对称,∴△BCD≌△BED,∴BE=BC=8cm,∴AE=10-8=2cm,∴△ADE的周长=AE+AD+DE=AE+AC=2+6=8cm.故答案为8.【点睛】本题考查的是全等三角形的性质,轴对称,熟练掌握相关知识是解题的关键.18.16【解析】【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.【详解】解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=√2OA=√2;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=√2,OA2=√2OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=√2OA2=2√2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2√2,OA4=√2OA3=4.∵△OA4A5为等腰直角三角形,∴A4A5=OA4=4,OA5=√2OA4=4√2.∵△OA5A6为等腰直角三角形,∴A5A6=OA5=4√2,OA6=√2OA5=8.∴OA8的长度为√28=16.故答案为:16.【点睛】此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.19.21【解析】【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,,Rt△ACD中,,∴BC=BD+CD=5+16=21.【点睛】本题主要考查勾股定理,解题的关键是熟练掌握勾股定理公式a2+b2=c2及其变形.20.见详解【解析】试题分析:(1)根据垂线的定义得∠CDB=∠FEB=90°,后根据同位角相等,两直线平行,可以得到EF∥CD;(2)先根据角平分线的定义得∠ACE=45°,再利用互余计算出∠ACD=90°-∠A=20°,则∠ECD=∠ACE-∠ACD=25°,然后根据平行线的性质求解.试题解析:(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDB=∠FEB=90°,∴EF∥CD;(2)解:∵∠ACB=90°,CE平分∠ACB交AB于E,∴∠ACE=45°,∵∠A=70°,∴∠ACD=90°﹣70°=20°,∴∠ECD=∠ACE﹣∠ACD=25°,∵EF∥CD,∴∠FEC=∠ECD=25°.考点:垂直的意义,角平分线,平行线判定21.(1) ∠2;∠2;同角的余角相等;∠B; (2)12;CD;AC;BC;AB;CD;60 13.【分析】(1)由于在△ABC中,∠ACB=90°,CD⊥AB,故得出有关相等的角;(2)根据直角三角形的面积计算CD的长.(1)CD⊥AB(已知),∴∠CDA=90º∴∠A+∠1=90º,∵∠1+∠2=90º,∴∠A=∠2 同角的余角相等).同理可证,∴∠1=∠B.故答案为∠2;∠2;同角的余角相等;∠B;(2)点A到直线BC的距离=12cm.C到直线AB的距离为线段CD的长度.S△ABC=12AC×BC=12AB×CD.∵AC=12,BC=5,AB=13,代入上式,解得CD=6013cm.故答案为5;CD;AC;BC;AB;CD;.60 13【点睛】本题考查的是直角三角形的性质,关键是根据直角三角形的性质及其面积公式解答.22.(1)详见解析;(2)详见解析【分析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,求出∠AMD=90°,根据垂直的定义得到答案;(2)作MN⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换可得结论.【详解】证明:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作MN⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【点睛】本题考查的是平行线的性质、三角形内角和定理以及角平分线的性质,掌握平行线的性质和角平分线上的点到角的两边的距离相等是解题的关键.23.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.24.(1)见解析;(2)见解析.【解析】【分析】(1)由已知条件,证明ABD≌△CAE,再利用角与角之间的关系求证∠BAD+∠CAE=90°,即可证明AB⊥AC;(2)同(1),先证ABD≌△CAE,再利用角与角之间的关系求证∠BAD+∠CAE=90°,即可证明AB⊥AC.【详解】(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠ABC=∠90º,在Rt△ABD和Rt△CAE中,∵{AB=ACAD=CE,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90º,∠EAC+∠ACE=90º,∴∠BAD+∠CAE=90º.∠BAC=180º-(∠BAD+∠CAE)=90º.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD=Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90º,即∠BAC=90°,∴AB⊥AC.【点睛】本题考查了三角形全等的判定和性质,是中考的热点,一般以考查三角形全等的方法为主,借助全等三角形的性质得到相等的角,然后证明垂直是经常使用的方法,注意掌握和应用.。