matlab中的偏最小二乘法(pls)回归模型,离群点检测和变量选择
偏最小二乘回归方法(PLS)

偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。
多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。
而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。
为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。
最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。
它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。
近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。
偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。
它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。
偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。
下面将简单地叙述偏最小二乘回归的基本原理。
偏最小二乘法算法

偏最小二乘法1.1基本原理偏最小二乘法(PLS)是基于因子分析的多变量校正方法,其数学基础为主成分分析。
但它相对于主成分回归(PCR)更进了一步,两者的区别在于PLS法将浓度矩阵Y和相应的量测响应矩阵X同时进行主成分分解:X二 TP+EY=UQ+F式中T和U分别为X和Y的得分矩阵,而P和Q分别为X和Y的载荷矩阵,E和F分别为运用偏最小二乘法去拟合矩阵X和Y时所引进的误差。
偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y中因子的同时也用于描述变量X。
为了实现这一点,数学中是以矩阵Y的列去计算矩阵X的因子。
同时,矩阵Y的因子则由矩阵X 的列去预测。
分解得到的T和U矩阵分别是除去了人部分测量误差的响应和浓度的信息。
偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T和特征浓度矩阵U进行回归:U=TB得到回归系数矩阵,又称矢联矩阵E:B=(TT )F U因此,偏最小二乘法的校正步骤包括对矩阵Y和矩阵X的主成分分解以及对矢联矩阵B的计算。
12主成分分析主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。
他是将原变量进行转换,即把原变量的线性组合成几个新变量。
同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。
新变量是一组正交的,即互不相矢的变量。
这种新变量又称为主成分。
如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。
卞面以多组分混合物的量测光谱来加以说明。
假设有n个样本包含p个组分,在m个波长下测定其光谱数据,根据比尔定律和加和定理有:如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而人小不同。
换句话说,光谱A表示在由p个波长构成的p维变量空间的一组点(n个),而这一组点一定在一条通过坐标原点的直线上。
这条直线其实就是纯光谱b。
因此由ni个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。
如果一个混合物由2个组分组成,各组分的纯光谱用bl,b2 表示,则有:<=c i{b: + Ci2bl有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴bl,b2来表示。
偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。
近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。
由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。
本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。
偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。
该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。
如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。
在PLS 方法中用的是替潜变量,其数学基础是主成分分析。
替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。
在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。
§§ 6.3.1 基本原理6.3 偏最小二乘(PLS )为了叙述上的方便,我们首先引进“因子”的概念。
一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。
pls最小二乘法

偏最小二乘法
偏最小二乘法(Partial Least Squares, PLS)是一种多元统计分析方法,通常用于处理具有多个自变量(特征)和一个或多个因变量(响应变量)的数据集。
PLS的主要目标是通过线性组合自变量来建立与因变量之间的关系,同时减少自变量之间的多重共线性。
PLS的核心思想是将自变量和因变量进行分解,然后找到它们之间的最大协方差方向。
这种方法可以降低数据维度,同时保留与因变量相关性最高的信息。
PLS可以应用于回归问题和分类问题。
PLS的应用领域包括化学分析、生物信息学、工程、金融和其他领域,特别是在处理高维数据和样本较少的情况下,PLS可以帮助提高模型性能和降低过拟合的风险。
PLS方法通常包括以下步骤:
1. 数据准备:收集自变量和因变量的数据。
2. 标准化:对数据进行标准化处理,以确保不同变量的尺度一致。
3. 模型拟合:建立PLS模型,找到自变量和因变量之间的最大协方差方向。
4. 模型评估:评估模型的性能,通常使用交叉验证等方法。
5. 预测:使用训练好的PLS模型进行新数据的预测。
PLS有不同的变种,包括PLS回归(用于连续因变量),PLS-DA(用于分类问题),以及其他扩展。
这种方法在实际数据分析和建模中具有广泛的应用,可以帮助解决多变量数据分析中的问题。
偏最小二乘回归分析

偏最小二乘回归分析偏最小二乘回归分析(PLS)是一种统计分析技术,用于建立一个或多个解释变量(X)与一或多个响应变量(Y)之间的关系,以帮助研究者分析一个系统的影响因素,并确定响应变量的变化。
偏最小二乘回归分析还可以用来准确预测给定的解释变量可能会产生的响应变量。
偏最小二乘回归分析是为了弥补线性回归分析(LRA)的不足而开发的一种技术。
LRA假定解释变量之间没有非线性关系,而PLS可以更好地模拟非线性关系。
它也可以用于处理多元线性回归的解释变量间的相关性,以及用于处理一组试验组和一组参照组时的相关性。
偏最小二乘回归分析的优势主要体现在其对异常值敏感性低,可以简化计算,处理较大数据量,以及对模型表现和预测准确性更好等方面。
PLS的基本思想是将解释变量和响应变量分解成“属性”和“指标”,并计算属性和指标之间的相关性。
属性是构成解释变量和响应变量的基本成分,而指标是利用属性对响应变量的解释能力的衡量指标。
PLS可以用来计算属性与特定指标的相关性,也可以用来识别有助于预测响应变量值的最相关属性。
建立一个偏最小二乘回归模型的过程很复杂,但是要建立一个模型,需要一些基本步骤。
首先,需要收集一组代表解释变量和响应变量的实际数据。
对于每一对变量,需要对它们的关系进行分析,以获得拟合系数,以及预测响应变量的准确性,并考虑可能的异常值。
接下来,需要调整解释变量的权重,以便尽可能准确地得出每一个变量的重要性。
最后,需要使用正确的统计技术来评估模型。
总而言之,偏最小二乘回归分析是一种统计分析技术,可以用来建立一个或多个解释变量(X)和一个或多个响应变量(Y)之间的关系,并确定响应变量的变化。
它可以在包含多个解释变量的试验中实现更准确的解释和预测,而且可以在任何数据集中成功运行,即使存在异常值也是如此。
因此,偏最小二乘回归分析可以提供更精确的结果,可以帮助研究者在其研究中发现有效的特定关系。
matlab中的偏最小二乘法(pls)回归模型,离群点检测和变量选择

matlab中的偏最小二乘法(pls)回归模型,离群点检测和变量选择一、引言随着数据科学的发展,偏最小二乘法(PLS)回归模型在人脸识别、图像处理、生物信息学等领域得到了广泛应用。
PLS回归模型是一种多元线性回归方法,能够有效地解决自变量多重共线性问题。
在实际应用中,数据分析过程中往往存在离群点和冗余变量,如何有效地检测离群点和选择变量对提高模型性能具有重要意义。
本文将介绍MATLAB中PLS回归模型的实现,以及离群点检测和变量选择的方法及应用。
二、MATLAB中PLS回归模型的实现1.数据准备与处理在进行PLS回归分析之前,首先需要准备一组数据。
这里我们以一个由自变量X和因变量Y组成的数据集为例。
接着,对数据进行预处理,包括去除缺失值、标准化等。
2.建立PLS回归模型在MATLAB中,可以使用PLS工具箱(PLS Toolbox)建立PLS回归模型。
通过PLS命令,可以对数据进行主成分分析,建立PLS回归模型,并计算模型参数。
3.模型参数估计与性能评估建立PLS回归模型后,需要对模型参数进行估计。
可以使用MATLAB中的PLS命令估计参数,并计算模型的决定系数(R)等性能指标,以评估模型质量。
三、离群点检测方法及应用1.离群点检测原理离群点是指数据集中与大部分数据显著不同的数据点。
离群点检测的目的是识别出这些异常数据,以便在后续分析中对其进行处理或剔除。
2.常见离群点检测方法介绍常见的离群点检测方法包括:基于统计量的方法(如Z分数、IQR等)、基于邻近度的方法(如K-近邻、LOF等)、基于聚类的方法(如K-means、DBSCAN等)等。
3.MATLAB中离群点检测方法的实现MATLAB提供了多种离群点检测函数,如zscore、iqr、knn、lof等。
通过调用这些函数,可以实现对数据集中离群点的检测。
四、变量选择方法及应用1.变量选择原理变量选择是指从多个自变量中筛选出对因变量影响显著的变量,以提高模型的解释性和减少过拟合风险。
偏最小二乘回归方法(PLS)

偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。
多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。
而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。
为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。
最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。
它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。
近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。
偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。
它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。
偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。
下面将简单地叙述偏最小二乘回归的基本原理。
偏最小二乘回归分析

偏最小二乘回归分析偏最小二乘回归分析(PartialLeastSquaresRegression,简称PLSR)是一种统计分析方法,它通过最小二乘法拟合变量间的关系来预测数据。
它可以在没有任何变量相关性、异方差假设和线性回归假设的情况下,推断出解释变量与被解释变量之间的关系。
PLSR的实质是利用原始变量的变量组合作为自变量,利用原始被解释变量的变量组合作为因变量,采用最小二乘法拟合变量之间的关系,进而推断出解释变量与被解释变量之间的关系,以及变量组合之间的关系。
PLSR能够有效地把来自大量解释变量的信息汇总到有限的因变量中,从而减少计算时间,并得到更好的预测结果。
尤其是当解释变量之间存在多重共线性时,PLSR能解决多重共线性的问题,也能够更好地拟合变量间的关系,从而获得更好的预测结果。
PLSR的应用在各种数据分析中都有一定的价值,如财务预测、市场调研及消费者行为研究等应用中都有所体现。
同样,PLSR也可以用于研究生物学遗传现象,帮助探索生物学相关变量之间的关系,从而为深入分析提供有价值的参考数据。
PLSR所涉及到的数学模型具有一定的复杂性,数据分析者在使用PLSR方法时,要注意解释变量和被解释变量之间是否存在强关联。
如果是强关联,PLSR分析可能会陷入过拟合,出现拟合不令人满意的预测结果。
同时,还要注意解释变量之间的关联性,以防止多重共线性的影响,否则PLSR的结果也可能不太理想。
因此,在使用PLSR进行数据分析之前,数据分析者应该首先分析出解释变量和被解释变量之间大致的关系,以及它们之间是否存在强关联或多重共线性;其次,数据分析者还要注意选择正确的变量组合,以保证PLSR结果的准确性。
总的来说,偏最小二乘回归分析是一种统计分析方法,它可以有效地减少计算时间,并能得到更好的预测结果,将被广泛用于各种数据分析中,但是必须注意变量的选择以及变量间的关系,以保证PLSR 结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab中的偏最小二乘法(pls)回归模型,离群点检测和变量选择
【实用版】
目录
一、偏最小二乘法(PLS)简介
二、PLS 回归模型的实现
三、离群点检测方法
四、变量选择方法
五、实例应用
六、模型评估与优化
正文
一、偏最小二乘法(PLS)简介
偏最小二乘法(PLS)是一种多元统计数据分析方法,于 1983 年由S.Wold 和 C.Albano 等人首次提出。
PLS 实现了在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。
与 PCA 方法相比,PLS 不仅解决了自变量共线性的问题,还考虑了自变量主元对于因变量变化的解释作用。
二、PLS 回归模型的实现
在 MATLAB 中,可以通过调用 pls.m 函数建立 PLS 回归模型。
该函数返回一个包含成分列表的对象 PLS。
在构建模型时,需要对数据进行预处理,包括去除离群点和选择重要变量。
三、离群点检测方法
离群点是指数据集中与其它数据点显著不同的点。
在 PLS 回归模型中,离群点可能会对模型的性能产生负面影响。
为了识别和处理离群点,
可以采用以下方法:
1.基于残差的方法:通过计算数据点预测残差并与某个阈值进行比较,判断该数据点是否为离群点。
2.基于距离的方法:计算数据点到其它数据点的距离,根据距离阈值判断是否为离群点。
3.基于聚类的方法:对数据集进行聚类分析,将距离聚类中心较远的点视为离群点。
四、变量选择方法
在 PLS 回归模型中,变量选择是为了找到对因变量影响最大的自变量。
常用的变量选择方法包括:
1.逐步回归法:从特征集开始,每一步根据某种准则(如 VIF、R 方等)移除一个特征,直到满足停止条件。
sso 回归法:在回归模型中添加 L1 惩罚项,使得部分系数变为0,从而实现变量选择。
3.主成分分析(PCA):将原始变量映射到新的主成分上,选择主要成分作为新变量,减少变量数量。
五、实例应用
本文以基准近红外数据为例,建立 PLS 回归模型,并采用离群点检
测和变量选择方法进行数据预处理。
通过模型评估,选择最优的 PLS 模型。
六、模型评估与优化
为了评估 PLS 回归模型的性能,可以采用以下指标:
1.RMSEF:拟合的均方根误差。
2.R2:Y 的解释变异的百分比。
3.VIP:预测中的变量重要性,评估变量重要性的一个标准。