201X年春八年级数学下册第十八章平行四边形章末小结与提升课件 新人教版

合集下载

人教版八年级数学下册第18章平行四边形PPT教学课件1

人教版八年级数学下册第18章平行四边形PPT教学课件1

八年级数学下(RJ) 教学课件
平行四边形
18.1.1 平行四边形的性质
第1课时 平行四边形的边、角特征
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握平行四边形的概念及掌握平行四边形的定 义和对边相等、对角相等的两条性质.(重点)
2.根据平行四边形的性质进行简单的计算和证明.(难点) 3.经历“实验—猜想—验证—证明”的过程,发展学生的
求证:OA=OC,OB=OD.
A
D
证明:∵四边形ABCD是平行四边形,
13 O
∴ AD=BC,AD∥BC,
4
∴ ∠1=∠2,∠3=∠4, B
2 C
∴ △AOD≌△COB(ASA),
∴ OA=OC,OB=OD.
归纳总结
平行四边形的性质 平行四边形的对角线互相平分.
应用格式:∵四边形ABCD是平行四边形,
由平行四边形的性质得AB=CD=EF. 两条平行线之间的平行线段相等.
AC E BDF
m
两条平行线间的 距离:两条平行
n线上中任,意一一条点直到线另
一条直线的距离
若m // n,AB、CD、EF垂直于 n,交n于B、D、F, 交 m于A、C、E.
同前面易得AB=CD=EF
两条平行线间的距离相等.
练一练 如图,AB∥CD,BC⊥AB,若AB=4cm,S△ABC =12cm2,求△ABD中AB边上的高.
讲授新课
一 平行四边形的对角线的性质
我们知道平行四边形的边角这两个基本要素的性质,
那么平行四边形的对角线又具有怎样的性质呢?
如图,在□ABCD中,连接AC,BD,并设它们相交于
点O.
D

数学八年级下册第十八章平行四边形小结与复习教学课件 新人教版

数学八年级下册第十八章平行四边形小结与复习教学课件 新人教版
1、∵正方形ABGF,正方形ACDE, ∴AF=AB, AE=AC,∠FAB=∠EAC=90°, ∵∠FAC=∠FAB+∠BAC,∠BAE=∠EAC+∠BAC, ∴∠FAC=∠BAE,∴△FAC≌△BAE, ∴BE=CF;
7、 如图,平行四边形ABCD中,AC、BD为对角线,其交点为O, 若BC=6,BC边上的高为4,试求阴影部分的面积.
4、如图,ABCD为平行四边形,E、F分别为AB、CD的中点,①求 证:AECF也是平行四边形;②连接BD,分别交CE、AF于G、H, 求证:BG=DH;③连接CH、AG,则AGCH也是平行四边形吗?
解: ❶:根据已知可知:
AE∥FC且AE=FC AD=BC DF=EB ∠ABC=∠ADC ∴△ADF≌△CBE (SAS) ∴AF=CE ∠DAF=∠ECB ∴四边形AECF是平行四边形
(3)在(2)的条件下,△ABC应该满足什么条件时, 四边形AECF为正方形.
解:当点O运动到AC的中点时, 且满足∠ACB为直角时,四边形AECF是正方形. ∵由(2)知当点O运动到AC的中点时,四边形AECF 是矩形, 已知MN∥BC, 当∠ACB=90°, 则∠AOF=∠COE=∠COF=∠AOE=90°, 即AC⊥EF, ∴四边形AECF是正方形.
轴对称图形 轴对称图形 轴对称图形
二、几种特殊四边形的常用判定方法:
四边形
平行 四边形
矩形
菱形 正方形
条件
1.定义:两组对边分别平行 2.两组对边分别相等
3.两组对角分别相等
4.对角线互相平分
5.一组对边平行且相等
1.定义:有一个角是直角的平行四边形 2.对角线相等的平行四边形 3.有三个角是直角的四边形
8、 如图,△ABC中,点O是AC上的一动点,过点O作直线MN∥BC, 设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACG的平分线于点F, 连接AE、AF.

新人教版八年级下(初二下)数学精品课件:第十八章平行四边形

新人教版八年级下(初二下)数学精品课件:第十八章平行四边形
3.平行四边形的对角相等, 相邻两角互补。
30
一位饱经苍桑的老人,经过一辈子的辛勤劳动, 到 晚年的时候,终于拥有了一块平行四边形的土地,由于年 迈体弱,他决定把这块土地分给他的四个孩子,他是这样 分的:
老大
老二 老三 老四
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
∵四边形ABCD是平行四边形 ∴∠A=∠C,∠B=∠D.
绕它的中心O旋转 180°后与自身重合
B D
O
A
C
验证
平行四边形的对边相等,对角相等。
已知:四边形ABCD是平行四边形。 求证:AC=BD,AB=CD A B
∠A= ∠D, ∠B= ∠D.
C 提示:可连接BC,试证⊿______≌ ⊿______ 转化思想: 四边形 问题 转化 三角形 问题
A O B D
10+4+7=21
( 2)
△ ABC与△ DBC的周长哪个长,
长多少?
△ ABC的周长小于 △ DBC的周长
2019年4月11日星期四
小6
40
如图,四边形ABCD是平行四边形, AB=10,AD=8,AC⊥BC,求BC、CD、AC、 A 8 D OA的长以及 ABCD的面积.
解:
10
探究
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
∵四边形ABCD是平行四边形∴AB ∥ CD,BC ∥ AD.
B
C
平行四边形的对边相等.
∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
探究
旋转平行四边形,探究角的关系
平行四边形是中心对称图形

八年级数学下册 第十八章 平行四边形章末小结与提升课件

八年级数学下册 第十八章 平行四边形章末小结与提升课件

类型4
解:( 1 )∵四边形ABCD是平行四边形,
∴AB∥CD,∠ADE=∠CBF,AD=BC,
∠ = ∠,
在△ADE 和△CBF 中, = ,
∠ = ∠,
∴△ADE≌△CBF( ASA ),∴DE=BF,
又∵DE∥BF,∴四边形DFBE是平行四边形.
( 2 )以GH为边的平行四边形有▱GHFA、▱GHBF、▱GHED、▱GHCE;以GH为对角线的平行四边
类型4
【解析】( 1 )∵AD=2BC,E为AD的中点,∴DE=BC.
∵AD∥BC,∴四边形BCDE是平行四边形,
∵∠ABD=90°,AE=DE,∴BE=DE,
∴平行四边形BCDE是菱形.
( 2 )连接AC.
∵∠ADB=30°,∠ABD=90°,∴AD=2AB,
∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA.
第二十一页,共二十二页。
内容(nèiróng)总结
章末小结与提升。∴OB=OE,OA=OD.。【解析】∵FD⊥BC,G是FC的中点,。∴∠GDE=90°,∴GD⊥DE.。A.3
B.4
C.5
D.6。特殊(tèshū)的平行四边形的性质和判定。∵四边形ABCD是菱形,。在△CDF和△CBE中,。又
∵∠APB+∠APD=180°,。∴∠APB+∠CPD=180°,。∴点P为菱形ABCD的一个“互补点”.
CF的大小有什么关系?并证明你的猜想.
BC,AB∥CD,CD=BC,
∴∠A=∠CBE,∠A=∠FDC,
∴∠CBE=∠FDC.
∵CF⊥AD,CE⊥AB,∴∠CEB=∠CFD=90°,
在△CDF和△CBE中,
∠ = ∠,
∠ = ∠,

人教版初中八年级数学下册第18章平行四边形章末小结ppt课件

人教版初中八年级数学下册第18章平行四边形章末小结ppt课件

探究线段DM与EM的位置关系,并求
的值.小聪同学的思路是:延长DM交EF D M
EM
于点N,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)如图,当点B、C、H在一条直线上时,线段DM与EM的位置关系是 ,
=;
DM
EM
知识点复习
题组三(综合应用)
四边形ABCD和四边形CEFH都是正方形,连接AF,M是AF中点,连接DM和EM.探
菱形面积=底×高=对角线乘积的一半
所有对角线垂直的四边 形都可以用此方法求面 积
知识点复习
题组二(判定应用)
已知:如图,E、F为 ABCD的对角线AC所在直线上的两点,AE=CF,求证:
BE=DF.(用两种证法)
E
A
D
B
C
F

知识点复习
题组三(综合应用)
四边形ABCD和四边形CEFH都是正方形,连接AF,M是AF中点,连接DM和EM.
和BC于点E、F,AB=2,BC=4,则图中阴影部分的面积为
.
5.如图,过正方形ABCD的顶点B作直线 l,过A、C作l
的垂线,垂足分别为E,F.若AE=1,CF=3,则AB的长度为

A
A
E
DB FElODB FC
C
第4题图
第5题图
方法总结:利用全等三角形进行转化
知识点复习
6.如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AB=2.求(1) ∠ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面 积.
1. 如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴 影部分的面积是________________. 2. 如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且 AE=CF.求证:DE=BF.

新人教版八年级下册数学第十八章平行四边形ppt课件

新人教版八年级下册数学第十八章平行四边形ppt课件
*
*
18.1.2 平行四边形的判定 第1课时
第十八章 平行四边形
18.1 平行四边形
*
一、温故知新,引入新课 1.平行四边形的定义是什么? 2.平行四边形的对边具有什么性质?写出这条性质定理. 3.它的逆命题是什么?你认为它成立吗?
*
平行四边形
定义
性质
平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分
两组对边分别平行的四边形 是平行四边形
*
活动七:作业布置
教材习题18.1第3、14题.
补充习题: 1. 若平行四边形的一边等于14,则它的两条对角线可能的取值分别是( ) A.8和16 B.6和16 C.2和16 D.20和22
*
学习了本节课你有哪些收获?
*
本课小结
A
D
B
C
定 义
表示方法
性 质
两组对边分别平行的四边形叫做 平 行 四边形。其不相邻的两个顶点连成的线段叫它的对角线。
平行四边形ABCD, 记为“□ABCD”, 读作“平行四边形ABCD”, 其中线段AC, BD称为对角线。
平行四边形的对边相等,对角相等, 相邻两角互补。
1.如何利用勾股定理解决实际生活中的具体问题?关键是什么? 2.通过对勾股定理证明的探索,谈一谈你对证明勾股定理的感受.
*
布置作业:
2. 通过查找、翻阅有关证明勾股定理的方法的资料,整理并在下节课进行展示、交流.
1.自己归纳一种或两种勾股定理的证明方法,领悟其证明思想.
B
D
A
C
AB∥CD, AD∥BC
两组对边分别平行的四边形是平行四边形
*
活动一:复习引入

【最新】人教版八年级数学下册第十八章《平行四边形的性质及其判定》精品课件.ppt

【最新】人教版八年级数学下册第十八章《平行四边形的性质及其判定》精品课件.ppt

⑤ 对角线互相平分 的四边形是平行四边形.
□ABCD
能力提升
例1.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加
一个条件使△ABE≌△CDF,则添加的条件不能是( )
A.∠1=∠2 B.BE=FD C.BF=DE D.AE=CF A
【点拨】利用平行四边形的性质以及全等三角形
1E
平行四边形的性质及其判定(上)
课标引路
学习目标
2.掌握平行四边形的判定方法; 3.会利用平行四边形的性质及判定解题.
知识梳理
两组对边分别平行的四边形叫做平行四边形.
AB∥CD, AD∥BC □ABCD
D
A
C B
①平行四边形两组对边分别 平行且相等 ;
②平行四边形对角 相等 ,邻角 互补 ;
∴AB=CD,∠ABE=∠CDF,
B
FD C
在△ABE和△CDF中
∴△ABE≌△CDF, (SAS)
例1.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加
一个条件使△ABE≌△CDF,则添加的条件不能是( )
A.∠1=∠2 B.BE=FD C.BF=DE D.AE=CF A
【解析】C.当BF=ED,∴BE=DF,∵四边形ABCD
(2)若已知一组对边平行,则需证这组对边相等或者另外一组对边平行;
角 (3)若已知一组对角相等,则需证另外一组对角相等;
对角线 (4)若已知一条对角线平分另一条对角线,则需证对角线互相平分.
指点迷津
【分析】 要判断OE=OF,
【证法1】∵四边形ABCD是平行四边形, ∴AO=CO,∴∠3=∠4,
C
③ 两组对边分别相等 的四边形是平行四边形; A

人教版八年级数学下册 第十八章 平行四边形第十八章 平行四边形 单元解读课件(课件)

人教版八年级数学下册 第十八章 平行四边形第十八章 平行四边形 单元解读课件(课件)

会用数学眼光观察
能进行简单的几何猜想
逻辑推理 会数学思维分析
能推演出几何证明,归纳出结论
演绎推理 抽象概括
会数学语言表达
运用几何图形的基本性质进行推理证明 逻辑推理
一个图形中介入其他图形后的影响与作 用,图形形成后的拆分
添加辅助线的能力
识图能力
会用数学眼光观察; 会数学思维分析;
移动图形的能力 会数学语言表达.
(数形结合)
在坐标系中认识平行四边形及特殊的平行四边形
本章难点
学习方法
平行四边形与矩形、菱形、正方形等特殊平行四边形之 间的联系与区别.
内容梳理,绘制结构图或图表(思维导图)
本章核心素养
学习环节 探索发现 提出假设 验证假设 得出结论
理解运用
活动目标
基本技能
核心素养
从实际情况抽象几何模型
数学抽象 直观想象

第1课时 平行四边形的概念及边、角的性质
第2课时 平行四边形对角线的性质 第3课时 平行四边形的判定1 第4课时 平行四边形的判定2 第5课时 三角形的中位线(借助平行四边形研究三角形的性质) 第6课时 矩形的概念及性质
(借助矩形研究直角三角形斜边中线的性质)
第7课时 矩形的判定 第8课时 菱形的概念及性质 第9课时 菱形的判定 第10课时 正方形的概念及性质 第11课时 正方形的判定 第12课时 数学活动 第13~14课时 平行四边形单元复习
正方形,主要考查正方形的性质与判定,经常与其他特殊四边形的性质和判 定等知识综合在一起考查,多以选择题、证明题的形式出现,有时也会出现 在阅读理解题中.
本章知识结构
一组对边 平行
梯形
一个角是直角
一组邻边相等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档